Theory seminar: Electronic and optical properties of graphene (S13)

Theory seminar: Electronic and optical properties of graphene (2 Std., 4 Cr.)

Organizers

Prerequisites

  • Advanced quantum mechanics
  • Solid-state physics

Meeting times

First meeting: Wednesday April 17, 11:45 in P812
All other meetings: Thursday at 11:45 in G227

Topics

We will follow the book by Katsnelson (Graphene: Carbon in two dimensions, Cambridge University Press, 2012), proceeding more or less chapter by chapter. The list of dates, topics and presenters is as follows.

Week Date Topic Presenter Material
1 Apr. 17 Organizational meeting
2 Apr. 25 The electronic structure of monolayer graphene Andor Kormányos slides
3 May 2 The electronic structure of multilayer graphene Marko Rančić slides
4 May 9 (holiday)
5 May 16 Quantum transport via evanescent waves Milan Holzäpfel slides
6 May 23 Electron states in a magnetic field Robert Siebler slides
7 May 30 (holiday)
8 June 6 (break)
9 June 13 Edges, nanoribbons and quantum dots Dirk Wiedmann slides
10 June 20 The Klein paradox and chiral tunnelling Werner Schosser slides
11 June 27 Point defects Fabian Paschke slides
12 July 4 Optics and response functions Matthias Droth slides
13 July 11 Crystal lattice dynamics and Raman spectrum Heng Wang slides
14 July 18 The relativistic Coulomb problem Julien Rioux slides

Requirements

  • Give a 45-minute presentation on your selected topic
  • Write a 5-page report due one week following your presentation
  • Attend the presentations from the other participants

Literature

General resource and electronic structure
  • M. I. Katsnelson, Graphene: Carbon in two dimensions (Cambridge University Press, 2012)
  • E. McCann, Electronic properties of monolayer and bilayer graphene, in Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications (Springer-Verlag, 2012), pp. 237-275; arXiv:1205.4849
  • A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov & A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009)
  • R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical properties of carbon nanotubes (Imperial College Press, 1998)
  • W. Nolting, Grundkurs Theoretische Physik 7 (Springer-Verlag, 2005)
  • J. D. Jackson, Classical Electrodynamics (Wiley & Sons, 1962)
Electron states in a magnetic field
  • A. S. Mayorov, D. C. Elias, M. Mucha-Kruczynski, R. V. Gorbachev, T. Tudorovskiy, A. Zhukov, S. V. Morozov, M. I. Katsnelson, V. I. Fal'ko, A. K. Geim & K. S. Novoselov, Interaction-driven spectrum reconstruction in bilayer graphene, Science 333, 860 (2011); arXiv:1108.1742
  • Z. Jiang, Y. Zhang, Y.-W. Tan, H.L. Stormer & P. Kim, Quantum Hall effect in graphene, Solid State Commun. 143, 14 (2007)
Quantum transport and evanescent waves
  • J. C. Cuevas & E. Scheer, Molecular electronics (World Scientific Publishing, 2010)
  • S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, 1995)
  • A. Böhm, The geometric phase in quantum systems (Springer-Verlag, 2003)
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos & A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438, 197 (2005); arXiv:cond-mat/0509330
  • A. S. Mayorov, D. C. Elias, I. S. Mukhin, S. V. Morozov, L. A. Ponomarenko, K. S. Novoselov, A. K. Geim & R. V. Gorbachev, How close can one approach the Dirac point in graphene experimentally?, Nano Lett. 12, 4629 (2012); arXiv:1206.3848
Klein paradox and chiral tunnelling
  • T. Ando, T. Nakanishi & R. Saito, Berry's phase and absence of back scattering in carbon nanotubes, J. Phys. Soc. Jpn. 67, 2857 (1998)
  • Katsnelson, M. I. and Novoselov, K. S. and Geim, A. K., Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2, 620 (2006); arXiv:cond-mat/0604323
Nanostructures
  • O. V. Yazyev, Emergence of magnetism in graphene materials and nanostructures, Rep. Prog. Phys. 73, 056501 (2010); arXiv:1004.2034
  • O. Roslyak, G. Gumbs & D. Huang, Graphene nanoribbons in criss-crossed electric and magnetic fields, Phil. Trans. R. Soc. A 368, 5431 (2010)
  • B. Mandal, Exploring the electronic structure of graphene quantum dots, J. Nanopart. Res. 14, 1317 (2012)
Point defects
  • S. Yuan, H. De Raedt, M. I. Katsnelson, Modeling electronic structure and transport properties of graphene with resonant scattering centers, Phys. Rev. B 82, 115448 (2010); arXiv:1007.3930
  • M. M. Ugeda, D. Fernández-Torre, I. Brihuega, P. Pou, A. J. Martínez-Galera, R. Pérez & J. M. Gómez-Rodríguez, Point defects on graphene on metals, Phys. Rev. Lett. 107, 116803 (2011)
  • M. M. Ugeda, I. Brihuega, F. Guinea & J. M. Gómez-Rodríguez, The missing atom as a source of carbon magnetism, Phys. Rev. Lett. 104, 096804 (2010)
  • V. M. Pereira, F. Guinea, J. M. B. Lopes dos Santos, N. M. R. Peres & A. H. Castro Neto, Disorder induced localized states in graphene, Phys. Rev. Lett. 96, 036801 (2006)
  • B. R. K. Nanda, M. Sherafati, Z. S. Popović & S. Satpathy, Electronic structure of the substitutional vacancy in graphene: Density-functional and Green’s function studies, New J. Phys. 14, 083004 (2012)
  • T. Stauber, N. M. R. Peres & F. Guinea, Electronic transport in graphene: A semi‐classical approach including midgap states, Phys. Rev. B 76, 205423 (2007)
Optics and Raman spectroscopy
  • R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres & A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320, 1308 (2008); arXiv:0803.3718
  • L. J. Karssemeijer & A. Fasolino, Phonons of graphene and graphitic materials derived from the empirical potential LCBOPII, Surf. Sci. 605, 1611 (2011)
  • A. C. Ferrari & D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotech. 8, 235 (2013)
  • L. M. Malard, M. A. Pimenta, G. Dresselhaus & M. S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep. 473, 51 (2009)
Coulomb interaction
  • V N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea & A. H. Castro Neto, Electron-electron interactions in graphene: Current status and perspectives, Rev. Mod. Phys. 84, 1067 (2012); arXiv:1012.3484
  • Y. Wang, V. W. Brar, A. V. Shytov, Q. Wu, W. Regan, H.-Z. Tsai, A. Zettl, L. S. Levitov & M. F. Crommie, Mapping Dirac quasiparticles near a single Coulomb impurity on graphene, Nat. Phys. 8, 653 (2012); arXiv:1205.3206
  • D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea & A. K. Geim, Dirac cones reshaped by interaction effects in suspended graphene, Nat. Phys. 7, 701 (2011); arXiv:1104.1396