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The KLEIN - Paradox

Dirac-like Hamiltonian:

Schrödinger equation:

with the spinor

solutions:

V
0

0



The KLEIN - Paradox

matching condition:

reflection:

assuming:

the KLEIN - paradox
observing the group velocitiy inside the barrier:

holes inside the barrier

no paradox anymore

creation of electron-hole pairs at the barrier edge



The KLEIN - Paradox

assuming another 
potential:

-a  a

doing exactly the same calculation leads to:

the infinite case:

Paradox!



Role of Chirality

Regarding the massless case:

chirality

Dirac Hamiltonian:

with and its eigenfunctions

 Pseudospin is directly linked
with the direction of the 
momentum of the electron

conservation of the pseudospin

no backscattering from [5]

Regarding the massless case:

chirality operator with eigenvalues
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Regarding the following potential shape:

from [4]



 KLEIN – Tunneling in Single-layer Graphene

x
x

Dirac equation:

momentum conservation:

Ansatz:

Solution:

We can build up the whole wave function
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x
x

Using the matching condition:

4 equations  for 4 unknown parameters

reflexion coefficient:

transmission:

momentum conservation for
monolayer graphene:



KLEIN – Tunneling in Single-layer Graphene

„Transmission probabilities through a 100-nm-wide barrier as a function of the angle 
of incidence for single layer grahene. The elecron concentration n outside the barrier 
is chosen as 0.5x10^(12) 1/cm for all cases. Inside the barrier, hole concentration p 
are 10^(12) 1/cm for the red and 3x10^(12) 1/cm for the blue curve (typical values
for experiments). This corresponds to a Fermi-energy of ca. 80 meV. The barrier 
height is chosen 200 meV for the red and 285 meV for the blue curve“. ( from [2])
 

from [6]



KLEIN – Tunneling and Conductivity

Einsteins relation for conductivity:

with (for graphene), and the diffusion coefficient

conductivity:

Electronic states in a conventional 
semiconductor (from [2])

Electronic states in graphene 
 (from [2])

- chemical potential
- velocity  
- sattering time

Electronic states in graphene 
 (from [2])

- chemical potential
- velocity  
- sattering time



Chiral Tunneling in Bilayer Graphene

Assumptions: energies smaller than 
interlayer hopping

no trigonal warping effects

x
x

Potential:

Ansatz:



Chiral Tunneling in Bilayer Graphene

Second order equations:

Solutions:

with

outside the barrier

inside the barrier



Chiral Tunneling in Bilayer Graphene

Continuity conditions

eight equations for eight unknown parameters

transmission coefficient for the special case

Only numerical solution possible

exponential decay!!



Chiral Tunneling in Bilayer Graphene

no perfect transmission for 
perpendicular incidence in 
bilayer graphene, but in 
monolayer graphene

magic angles with perfect 
transmission in monolayer 
and bilayer graphene

sharper peaks (magic 
angles) in bilayer graphene 
than in monolayer graphene
→ less transmission for 
most angles

( from [6])



KLEIN – Tunneling 

( from [2])

perfect transmission for  
monolayer graphene for 
arbitary width of the tunnel 
barrier

transmission decays 
exponentially for bilayer 
graphene
→ semiclassical behaviour

oscillating transmission for  
nonchiral semiconductor

even though the dispersion 
for both bilayer graphene 
and conventional 
semiconductor are 
parabolic, there is a 
difference in their tuneling 
behaviour 
→ chirality

perpendicular incidence:

( from [6])



Conclusion

Due to Klein tunneling one cannot confine electrons 
by electrostatic gates in monolayer graphene

               not very useful for applications                    
               (e.g. quantum dots)

In bilayer graphene for the case of                        
the tunneling disappears

                higher capability for application
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