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Crystal lattice of monolayer graphene

Hexagonal lattice of
carbon atoms

Two atoms in the unit
cell: 

More realistic 
view



  

Electronic structure from DFT 
calculations
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Electronic structure from DFT 
calculations

Phys Rev B 77, 035427 (2008)

Crossing of π bands at the 
K point of the Brillouin zone

Dispersion is linear in 
Wavenumber close to the K 
point



  

Band dispersion from Angle Resolved 
Photoelectron Spectroscopy (ARPES)

Nature Physics 3, 36 (2007)



  

Tight-binding model: general theory

It is assumed that the system has translational invariance => we consider
an infinite graphene sheet

In general, there are n atomic orbitals  in the unit cell

We can form n Bloch functions

An electronic function is a linear combination of these 
Bloch functions



  

Tight-binding model:general theory

The energy of the jth band:

Substituting the expansion



  

Tight-binding model:general theory

Minimizing the energy with respect to the coefficients

For the special case of two orbitals per unit cell:

In short

Eigenenergies:



  

Tight-binding model : graphene

There are n=2 orbitals in the unit cell. 

Assumption: dominant contribution comes from i=j, others can be neglected

Within the summation this expectation value is the same for
every value of  i

Diagonal matrix elements



  

Tight-binding model : graphene

Carbon atoms on sublattice B are chemically identical to atoms on sublattice A:

Overlap integrals: assuming again that same site contribution dominate 
(nearest neighbours are B atoms) 



  

Off-diagonal matrix elements 

Tight-binding model : graphene

Assumption: dominant contribution comes from nearest-neighbors, other 
contributions can be neglected. Looking at, e.g., A type atoms, there are
3 nearest-neighbor B atoms 

The index “l” depends on the index “i”



  

Off-diagonal matrix elements 

Tight-binding model : graphene

Assumption: dominant contribution comes from nearest-neighbors, other 
contributions can be neglected. Looking at, e.g., A type atoms, there are
3 nearest-neighbor B atoms 

The index “l” depends on the index “i”



  

Tight-binding model : graphene
The matrix element between nearest-neighbor  A and B atoms has the same
value for each neighboring pair: 

Note, at this step we have made use of the fact that the atomic orbitals 
are actually p_z orbitals, hence have a rotational symmetry



  

Footnote: general method to obtain tight-binding 
Hamiltonians

General method: Slater-Koster parametrization of hopping integrals
                            Physical Review 94, 1498 (1954)
                            For recent introduction see,e.g., Sergej Konschuh PhD thesis

Slater-Koster parametrization is still useful, especially in connection with first
principles methods and group theory. 
Recent examples: Bilayer MoS2, arXiv:1304.4831

Spin-orbit coupling in trilayer graphene: 
 Phys Rev B 87, 045419 (2013)



  

Tight-binding model : graphene
The matrix element between nearest-neighbor  A and B atoms has the same
value for each neighboring pair: 

Note, at this step we have made use of the fact that the atomic orbitals 
are actually p_z orbitals, hence have a rotational symmetry

Therefore

Position of atom B relative to atom A 



  

Tight-binding model : graphene



  

Tight-binding model : graphene

Finally

In a similar fashion:



  

Tight-binding model : graphene

In summary:   

 

The corresponding eigenenergies:

From

Choice of the origin of the energy axis

Such parameters can be obtained from DFT or experiments



  

Tight-binding model : graphene

TB DFTGood qualitative agreement



  

Low-energy physics, Dirac-like Hamiltonian

Fermi energy lies at E=0

Only two K points are inequivalent,
the others are connected by  reciprocal
vector, or see the original Brillouin zone

K_, K
+
 points often called “valleys”

Gaples band structure



  

Low-energy physics, Dirac-like Hamiltonian

Introducing the momentum measured from the K point(s)

and expanding f(k) up to first order in p

and we obtain the famous  2D massles Dirac Hamiltonian of graphene



  

Low-energy physics, Dirac-like Hamiltonian

Introducing the momentum measured from the K point(s)

and expanding f(k) up to first order in p

and we obtain the famous  2D massles Dirac Hamiltonian of graphene

The actual value of the velocity 
v is 106  m/s ≈ c/300



  

Low-energy physics, Dirac-like Hamiltonian

If we now consider H
1
 to be an effective Hamiltonian and solve the corresponding

Schrödinger equation:

What about the overlap matrix S?

Finite overlap contributes with ~p2 terms



  

Low-energy physics, Dirac-like Hamiltonian

If we now consider H
1
 to be an effective Hamiltonian and solve the corresponding

Schrödinger equation:

What about the overlap matrix S?

Finite overlap contributes with ~p2 terms



  

Low-energy physics, Dirac-like Hamiltonian

If we now consider H
1
 to be an effective Hamiltonian and solve the corresponding

Schrödinger equation:

What about the overlap matrix S?

Finite overlap contributes with ~p2 terms

Higher order terms in momentum in E(p) are negligible for energies ≤ 1 eV 



  

Pseudospin and chirality

The eigenstates have two components,
reminiscent of spin ½ 

Looking back to the original definitions, the two components correspond
to the relative amplitude of the  Bloch function on the A and B sublattice.

This degree of freedom is called pseudospin.

If the wavefunction was finite only on A sublattice → (1,0)T = | ↑ > 
                                                      on B sublattice → (0,1)T = | ↓ >

In graphene, the density is usually shared equally between A and B sublattice.

Some substrates can break this symmetry, though



  

Pseudospin and chirality

The eigenstates have two components,
reminiscent of spin ½ 

Looking back to the original definitions, the two components correspond
to the relative amplitude of the  Bloch function on the A and B sublattice.

This degree of freedom is called pseudospin.

If the wavefunction was finite only on A sublattice → (1,0)T = | ↑ > 
                                                      on B sublattice → (0,1)T = | ↓ >

In graphene, the density is usually sharer equally between A and B sublattice.

Some substrates can break this symmetry, though

Note the index ξ: in addition to  pseudospin, there is another degree
of freedom: valley

The valleys are usually not coupled, except in the case of atomic scale 
scatterers and certain boundaries => two independent Hamiltonians



  

Pseudospin and chirality

The particles described by the Dirac Hamiltonian of monolayer graphene have 
yet another property: they are chiral

This means that the orientation of pseudospin depends on the direction of the
electronic momentum p

To see this more clearly, let's write the effective Hamiltonian as 

   and define a pseudospin vector as

and  a unit  vector as



  

Pseudospin and chirality

The particles described by the Dirac Hamiltonian of monolayer graphene have 
yet another property: they are chiral

This means that the orientation of pseudospin depends on the direction of the
electronic momentum p

To see this more clearly, let's write the effective Hamiltonian as 

   and define a pseudospin vector as

and  a unit  vector as

Then

therefore  σ is linked to the direction of n
1



  

Pseudospin and chirality

In other words, the eigenstates of the effective Hamiltonian are also 
eigenstates of the chiral operator

Another way to express this is to calculate
with respect to 

In valley K
+



  

Pseudospin and chirality

Important consequence of the chirality of particles: the probability to scatter
into a direction  characterized by the angle φ ( φ=0 corresponds to forward
Scattering) is proportional to   

For monolayer graphene 

No backscattering! 
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