Electronic structure of monolayer graphene

Graphene seminar 25/04/13

Andor Kormányos
Literature

M. I. Katsnelson: Graphene (Cambridge University Press)

ArXiv:1205.4849
Crystal lattice of monolayer graphene

Hexagonal lattice of carbon atoms

Two atoms in the unit cell:

More realistic view
Electronic structure from DFT calculations

Electronic structure from DFT calculations

Crossing of \(\pi \) bands at the K point of the Brillouin zone

Dispersion is linear in Wavenumber close to the K point

Band dispersion from Angle Resolved Photoelectron Spectroscopy (ARPES)

Tight-binding model: general theory

It is assumed that the system has translational invariance => we consider an infinite graphene sheet

In general, there are n atomic orbitals in the unit cell

We can form n Bloch functions

$$
\Phi_j(k, r) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} e^{ik \cdot R_{j,i}} \phi_j(r - R_{j,i})
$$

An electronic function is a linear combination of these Bloch functions

$$
\Psi_j(k, r) = \sum_{l=1}^{n} c_{j,l}(k) \Phi_l(k, r)
$$
Tight-binding model: general theory

The energy of the jth band:

\[E_j(k) = \frac{\langle \Psi_j | \mathcal{H} | \Psi_j \rangle}{\langle \Psi_j | \Psi_j \rangle}, \]

Substituting the expansion

\[E_j(k) = \frac{\sum_{i,l}^n c_{ji}^* c_{jl} \langle \Phi_i | \mathcal{H} | \Phi_l \rangle}{\sum_{i,l}^n c_{ji}^* c_{jl} \langle \Phi_i | \Phi_l \rangle} = \frac{\sum_{i,l}^n \mathcal{H}_{il} c_{ji}^* c_{jl}}{\sum_{i,l}^n \mathcal{S}_{il} c_{ji}^* c_{jl}} \]

\[\mathcal{H}_{il} = \langle \Phi_i | \mathcal{H} | \Phi_l \rangle \]

\[\mathcal{S}_{il} = \langle \Phi_i | \Phi_l \rangle \]
Tight-binding model: general theory

Minimizing the energy with respect to the coefficients:

\[c_{jm}^* \rightarrow \frac{\partial E_j}{\partial c_{jm}^*} = 0 \]

\[
\sum_{l=1}^{n} H_{ml} c_{jl} = E_j \sum_{l=1}^{n} S_{ml} c_{jl}
\]

For the special case of two orbitals per unit cell:

\[
\begin{pmatrix}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{pmatrix}
\begin{pmatrix}
c_{j1} \\
c_{j2}
\end{pmatrix}
= E_j
\begin{pmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{pmatrix}
\begin{pmatrix}
c_{j1} \\
c_{j2}
\end{pmatrix}
\]

In short:

\[H\psi_j = E_j S\psi_j \]

Eigenenergies:

\[\det (H - E_j S) = 0 \]
Tight-binding model: graphene

There are \(n=2 \) orbitals in the unit cell.

Diagonal matrix elements

\[
H_{AA} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} e^{i \mathbf{k} \cdot (\mathbf{R}_{A,j} - \mathbf{R}_{A,i})} \langle \phi_{A} (\mathbf{r} - \mathbf{R}_{A,i}) | \mathcal{H} | \phi_{A} (\mathbf{r} - \mathbf{R}_{A,j}) \rangle
\]

\(\mathbf{k} = (k_x, k_y) \)

Assumption: dominant contribution comes from \(i=j \), others can be neglected

\[
H_{AA} \approx \frac{1}{N} \sum_{i=1}^{N} \langle \phi_{A} (\mathbf{r} - \mathbf{R}_{A,i}) | \mathcal{H} | \phi_{A} (\mathbf{r} - \mathbf{R}_{A,i}) \rangle
\]

\(\langle \phi_{A} | \mathcal{H} | \phi_{A} \rangle \) Within the summation this expectation value is the same for every value of \(i \)

\[
H_{AA} \approx \frac{1}{N} \sum_{i=1}^{N} \epsilon_{2p} = \epsilon_{2p}
\]
Tight-binding model: graphene

Carbon atoms on sublattice B are chemically identical to atoms on sublattice A:

\[
H_{BB} = H_{AA} \approx \epsilon_{2p}
\]

Overlap integrals: assuming again that same site contribution dominate (nearest neighbours are B atoms)

\[
S_{AA} \approx \frac{1}{N} \sum_{i=1}^{N} \langle \phi_A (r - R_{A,i}) | \phi_A (r - R_{A,i}) \rangle = 1
\]
Tight-binding model: graphene

Off-diagonal matrix elements

\[H_{AB} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} e^{ik \cdot (R_{B,j} - R_{A,i})} \langle \phi_A (r - R_{A,i}) | \mathcal{H} | \phi_B (r - R_{B,j}) \rangle \]

Assumption: dominant contribution comes from nearest-neighbors, other contributions can be neglected. Looking at, e.g., A type atoms, there are 3 nearest-neighbor B atoms

\[H_{AB} \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{l=1}^{3} e^{ik \cdot (R_{B,l} - R_{A,i})} \langle \phi_A (r - R_{A,i}) | \mathcal{H} | \phi_B (r - R_{B,l}) \rangle \]

The index “l” depends on the index “i”
Tight-binding model: graphene

Off-diagonal matrix elements

\[H_{AB} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} e^{i\mathbf{k} \cdot (\mathbf{R}_{B,j} - \mathbf{R}_{A,i})} \langle \phi_A (\mathbf{r} - \mathbf{R}_{A,i}) | \mathcal{H} | \phi_B (\mathbf{r} - \mathbf{R}_{B,j}) \rangle \]

Assumption: dominant contribution comes from nearest-neighbors, other contributions can be neglected. Looking at, e.g., A type atoms, there are 3 nearest-neighbor B atoms

\[H_{AB} \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{l=1}^{3} e^{i\mathbf{k} \cdot (\mathbf{R}_{B,l} - \mathbf{R}_{A,i})} \langle \phi_A (\mathbf{r} - \mathbf{R}_{A,i}) | \mathcal{H} | \phi_B (\mathbf{r} - \mathbf{R}_{B,l}) \rangle \]

The index “l” depends on the index “i”
Tight-binding model: graphene

The matrix element between nearest-neighbor A and B atoms has the same value for each neighboring pair:

\[
\gamma_0 = - \langle \phi_A (r - R_A, i) | \mathcal{H} | \phi_B (r - R_B, i) \rangle
\]

Note, at this step we have made use of the fact that the atomic orbitals \(\phi_j \) are actually \(p_z \) orbitals, hence have a rotational symmetry.
Footnote: general method to obtain tight-binding Hamiltonians

General method: Slater-Koster parametrization of hopping integrals
For recent introduction see, e.g., Sergej Konschuh PhD thesis

Slater-Koster parametrization is still useful, especially in connection with first principles methods and group theory.
Recent examples: Bilayer MoS2, arXiv:1304.4831

Spin-orbit coupling in trilayer graphene:
Tight-binding model : graphene

The matrix element between nearest-neighbor A and B atoms has the same value for each neighboring pair:

$$\gamma_0 = -\langle \phi_A (r - R_{A,i}) | \mathcal{H} | \phi_B (r - R_{B,l}) \rangle$$

Note, at this step we have made use of the fact that the atomic orbitals ϕ_j are actually p_z orbitals, hence have a rotational symmetry

Therefore

$$H_{AB} \approx -\frac{\gamma_0}{N} \sum_{i=1}^{N} \sum_{l=1}^{3} e^{ik \cdot \delta_i} \equiv -\gamma_0 f(k)$$

$$f(k) = \sum_{l=1}^{3} e^{ik \cdot \delta_l}$$

$$\delta_l = R_{B,l} - R_{A,i}$$

Position of atom B relative to atom A
Tight-binding model : graphene

\[\delta_1 = \left(0, \frac{a}{\sqrt{3}} \right) \quad \delta_2 = \left(\frac{a}{2}, -\frac{a}{2\sqrt{3}} \right) \]

\[\delta_3 = \left(-\frac{a}{2}, -\frac{a}{2\sqrt{3}} \right) \]

\[f(\mathbf{k}) = e^{ik_y a/\sqrt{3}} + 2e^{-ik_y a/2\sqrt{3}} \cos \left(k_x a/2 \right) \]
Tight-binding model: graphene

Finally

\[\delta_1 = \left(0, \frac{a}{\sqrt{3}} \right) \quad \delta_2 = \left(\frac{a}{2}, -\frac{a}{2\sqrt{3}} \right) \]
\[\delta_3 = \left(-\frac{a}{2}, -\frac{a}{2\sqrt{3}} \right) \]

\[f(k) = e^{ik_ya/\sqrt{3}} + 2e^{-ik_ya/2\sqrt{3}} \cos(k_xa/2) \]

Finally

\[H_{AB} \approx -\gamma_0 f(k) \quad H_{BA} \approx -\gamma_0 f^*(k) \]

In a similar fashion:

\[S_{AB} = s_0 f(k) \]
Tight-binding model : graphene

In summary:

\[H_1 = \begin{pmatrix} \epsilon_{2p} & -\gamma_0 f(k) \\ -\gamma_0 f^*(k) & \epsilon_{2p} \end{pmatrix} \]

\[S_1 = \begin{pmatrix} 1 & s_0 f(k) \\ s_0 f^*(k) & 1 \end{pmatrix} \]

The corresponding eigenenergies:

\[
\det \begin{pmatrix} \epsilon_{2p} - E & -\left(\gamma_0 + E s_0\right) f(k) \\ -\left(\gamma_0 + E s_0\right) f^*(k) & \epsilon_{2p} - E \end{pmatrix} = 0
\]

From

\[\gamma_0 = 3.033 \text{ eV} \quad \epsilon_{2p} = 0 \quad \text{Choice of the origin of the energy axis} \]

\[s_0 = 0.129 \quad \text{Such parameters can be obtained from DFT or experiments} \]
Tight-binding model: graphene

\[E_{\pm} = \frac{\epsilon_2 p \pm \gamma_0 |f(k)|}{1 \mp s_0 |f(k)|} \]
Low-energy physics, Dirac-like Hamiltonian

Fermi energy lies at $E=0$

Only two K points are inequivalent, the others are connected by reciprocal vector, or see the original Brillouin zone

$$K_\xi = \xi \left(\frac{4\pi}{3a}, 0 \right)$$

K_-, K_+ points often called "valleys"

$$E_\pm = \frac{\epsilon_{2p} \pm \gamma_0 |f(k)|}{1 \mp \gamma_0 |f(k)|}$$

$$f(K_\xi) = e^0 + e^{i\xi2\pi/3} + e^{-i\xi2\pi/3} = 0$$

Gaples band structure
Low-energy physics, Dirac-like Hamiltonian

Introducing the momentum measured from the K point(s)

\[\mathbf{p} = \hbar \mathbf{k} - \hbar \mathbf{K}_\xi \]

and expanding \(f(k) \) up to first order in \(p \)

\[f(k) \approx -\frac{\sqrt{3}a}{2\hbar} (\xi p_x - ip_y) \]

and we obtain the famous 2D massless Dirac Hamiltonian of graphene

\[H_{1,\xi} = \nu \begin{pmatrix} 0 & \xi p_x - ip_y \\ \xi p_x + ip_y & 0 \end{pmatrix} \quad \nu = \frac{\sqrt{3}a\gamma_0}{(2\hbar)} \]
Low-energy physics, Dirac-like Hamiltonian

Introducing the momentum measured from the K point(s)

\[\mathbf{p} = \hbar \mathbf{k} - \hbar \mathbf{K}_\xi \]

and expanding \(f(k) \) up to first order in \(p \)

\[f(k) \approx -\frac{\sqrt{3}a}{2\hbar} (\xi p_x - ip_y) \]

and we obtain the famous 2D massless Dirac Hamiltonian of graphene

\[H_{1,\xi} = v \begin{pmatrix} 0 & \xi p_x - ip_y \\ \xi p_x + ip_y & 0 \end{pmatrix} \]

\[v = \sqrt{3}a\gamma_0/(2\hbar) \]

The actual value of the velocity \(v \) is \(10^6 \) m/s \(\approx c/300 \)
Low-energy physics, Dirac-like Hamiltonian

\[H_{1,\xi} = \nu \begin{pmatrix} 0 & \xi p_x - ip_y \\ \xi p_x + ip_y & 0 \end{pmatrix} \]

If we now consider \(H_1 \) to be an effective Hamiltonian and solve the corresponding Schrödinger equation:

\[E_{\pm} = \pm \nu p \]

\[\psi_{\pm} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm \xi e^{i\xi \varphi} \end{pmatrix} e^{i \mathbf{p} \cdot \mathbf{r} / \hbar} \]

\[\mathbf{p} = (p_x, p_y) = p (\cos \varphi, \sin \varphi) \]

What about the overlap matrix \(S \)?

\[E_{\pm} = \frac{c_{2p} \pm \gamma_0 |f(\mathbf{k})|}{1 \mp s_0 |f(\mathbf{k})|} \]

Finite overlap contributes with \(\sim p^2 \) terms
Low-energy physics, Dirac-like Hamiltonian

\[H_{1, \xi} = v \begin{pmatrix} 0 & \xi p_x - i p_y \\ \xi p_x + i p_y & 0 \end{pmatrix} \]

If we now consider \(H_1 \) to be an effective Hamiltonian and solve the corresponding Schrödinger equation:

\[\psi_\pm = \frac{1}{\sqrt{2}} \left(\begin{pmatrix} 1 \\ \pm \xi e^{i \xi \varphi} \end{pmatrix} \right) e^{i p \cdot r / \hbar} \]

\[p = (p_x, p_y) = p (\cos \varphi, \sin \varphi) \]

What about the overlap matrix \(S \)?

\[E_\pm = \frac{\varepsilon_2 p \pm \gamma_0 |f(k)|}{1 \mp s_0 |f(k)|} \quad \text{Finite overlap contributes with } \sim p^2 \text{ terms} \]
Low-energy physics, Dirac-like Hamiltonian

\[H_{1,\xi} = v \begin{pmatrix} 0 & \xi p_x - ip_y \\ \xi p_x + ip_y & 0 \end{pmatrix} \]

If we now consider \(H_1 \) to be an effective Hamiltonian and solve the corresponding Schrödinger equation:

\[E_{\pm} = \pm vp \]

\[\psi_{\pm} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm \xi e^{i\varphi} \end{pmatrix} e^{ip \cdot r / \hbar} \]

\[p = (p_x, p_y) = p (\cos \varphi, \sin \varphi) \]

What about the overlap matrix \(S \)?

\[E_{\pm} = \frac{\varepsilon_{2p} \pm \gamma_0 |f(k)|}{1 \pm s_0 |f(k)|} \quad \text{Finite overlap contributes with } \sim p^2 \text{ terms} \]

Higher order terms in momentum in \(E(p) \) are negligible for energies \(\leq 1 \) eV
Pseudospin and chirality

The eigenstates have two components, reminiscent of spin $\frac{1}{2}$

$$\psi_{\pm} = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ \pm \xi e^{i\xi \varphi} \end{array} \right) e^{ip \cdot r/\hbar}$$

Looking back to the original definitions, the two components correspond to the relative amplitude of the Bloch function on the A and B sublattice.

This degree of freedom is called pseudospin.

If the wavefunction was finite only on A sublattice $\rightarrow (1,0)^T = |\uparrow\rangle$

on B sublattice $\rightarrow (0,1)^T = |\downarrow\rangle$

In graphene, the density is usually shared equally between A and B sublattice.

Some substrates can break this symmetry, though
Pseudospin and chirality

The eigenstates have two components, reminiscent of spin $\frac{1}{2}$

$$\psi_{\pm} = \frac{1}{\sqrt{2}} \left(\pm \xi e^{i\xi \varphi} \right) e^{ip \cdot r/\hbar}$$

Looking back to the original definitions, the two components correspond to the relative amplitude of the Bloch function on the A and B sublattice.

This degree of freedom is called pseudospin.

If the wavefunction was finite only on A sublattice $\rightarrow (1,0)^T = |\uparrow>$$
\hspace{2cm}$on B sublattice $\rightarrow (0,1)^T = |\downarrow>$

In graphene, the density is usually shared equally between A and B sublattice.

Some substrates can break this symmetry, though

Note the index ξ: in addition to pseudospin, there is another degree of freedom: valley

The valleys are usually not coupled, except in the case of atomic scale scatterers and certain boundaries \Rightarrow two independent Hamiltonians
Pseudospin and chirality

The particles described by the Dirac Hamiltonian of monolayer graphene have yet another property: they are **chiral**

This means that the orientation of pseudospin depends on the direction of the electronic momentum \mathbf{p}

To see this more clearly, let's write the effective Hamiltonian as

$$H_{1,\xi} = v \left(\xi \sigma_x p_x + \sigma_y p_y \right)$$

and define a pseudospin vector as $\mathbf{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$

and a unit vector as $\hat{n}_1 = (\xi \cos \varphi, \sin \varphi, 0)$
Pseudospin and chirality

The particles described by the Dirac Hamiltonian of monolayer graphene have yet another property: they are **chiral**

This means that the orientation of pseudospin depends on the direction of the electronic momentum \(\mathbf{p} \)

To see this more clearly, let's write the effective Hamiltonian as

\[
H_{1,\xi} = v \left(\xi \sigma_x p_x + \sigma_y p_y \right)
\]

and define a pseudospin vector as

\[
\mathbf{\sigma} = (\sigma_x, \sigma_y, \sigma_z)
\]

and a unit vector as

\[
\mathbf{\hat{n}}_1 = (\xi \cos \varphi, \sin \varphi, 0)
\]

Then

\[
H_{1,\xi} = vp \mathbf{\sigma} \cdot \mathbf{\hat{n}}_1
\]

therefore \(\sigma \) is linked to the direction of \(n_1 \)
Pseudospin and chirality

In other words, the eigenstates of the effective Hamiltonian are also eigenstates of the chiral operator \(\mathbf{\sigma} \cdot \hat{n}_1 \)

\[
\mathbf{\sigma} \cdot \hat{n}_1 \psi_\pm = \pm \psi_\pm
\]

Another way to express this is to calculate with respect to \(\psi_\pm \).

\[
\langle \mathbf{\sigma} \rangle_{e/h} = \pm (\xi \cos \varphi, \sin \varphi, 0)
\]

In valley \(K_+ \)
Pseudospin and chirality

Important consequence of the chirality of particles: the probability to scatter into a direction characterized by the angle φ ($\varphi=0$ corresponds to forward Scattering) is proportional to

$$w(\varphi) = |\langle \psi_\pm(\varphi) | \psi_\pm(0) \rangle|^2$$

For monolayer graphene

$$w(\varphi) = \cos^2(\varphi/2)$$

No backscattering!