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● Building quantum wells like 

in semiconductors is 

impossible in bulk graphene 

because of KLEIN tunneling

Introduction

                     www.intenseco.com

● Solution: cut graphene into 

ribbons / nanostructures

● Vacuum as infinite high 

potential barrier
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● Summary of electronic properties of graphene

● Nanoribbons

– Calculation of electronic structure with Dirac 

equation

– Calculation of electronic structure with Tight 

Binding method

● Spin polarization at zigzag edges

● Conductance quantization

● Graphene quantum dots

Overview



● TB Hamiltonian and Ansatz

 where:

● leads to (if overlap integrals are neglected):

● with the geometrical factor

Summary: Graphene properties

P. Dietl, Diplomarbeit, KIT, 2009
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● Eigenvalues are

Summary: electronic structure

                                                                             P. Dietl, Diplomarbeit, KIT 2009
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● Expansion of        around K and K' points

● due to low energies the wave function is a LC of 4 terms 

leading to a 4 dimensional space

● Dirac-like Hamiltonian

where 

Summary: low energy limit



7

● General solution for wave function consists of 4 

terms

Summary: low energy limit
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● different shape of ribbons:

● armchair

● zigzag

● arbitrary 

Graphene nanoribbons

                                              M.I. Katnelson, Graphene Carbon in Two Dimensions, 2012
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● infinite dimension in y, but finite in x-direction

● Wavefunction must vanish at the atom sites next to 

the edges

Armchair & ZigZag boundary conditions

                                                                                         P. Dietl, Diplomarbeit, KIT, 2009
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● If you have a potential well and a band structure, you 

need to combine 2 states of the same energies with 

different    -vectors                            to create       or

      - functions, that fulfill the boundary conditions

● These 2 states can be in a single valley – like in the 

case of GaAs with a direct band gap or in different 

valleys like in Si or graphene      valley mixing

Valley mixing
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● Valley mixing is different in 

armchair and zigzag

● The structure is rotated by 

30° and so the Brillouin 

zone

● Armchair: to create a sin(x) 

or cos(x), both valleys are 

needed. They are coupled

● Zigzag: a cone lies 

symmetric around            . 

2 states from same valley

    no coupling between     &

Valley mixing in GNRs
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● Calculation of dispersion relation by Dirac-

Hamiltonian in low energy limit

●  … blackboard …

                                 

●  if                        : no bandgap 

 

Armchair ribbon
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● Dirac Hamiltonian changes because of the rotation of 

the Brillouin zone,                 and               .

 

 

● Graphical solution of

Zigzag ribbon
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● Solving the expression

● “choose” a value for      , find discrete values for    

● Plot the energy: 

 

Zigzag ribbon

          P. Dietl, Diplomarbeit, KIT, 2009
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● Treat ribbon as a 1D chain

● Unit cells are repeated

● Tight binding model for a chain:

● Using Bloch's Theorem

 

Zigzag – full electronic structure
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● Nearest neighbor coupling with

hopping parameter t

● Obtain energies by Eigenvalues of

Zigzag – full electronic structure
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Zigzag – full electronic structure
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Zigzag – full electronic structure

● For wider ribbons the dispersionless states 

appear 
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Armchair – full electronic structure
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Armchair – full 
electronic structure

A. Cresit et. al., Nano Res (2008)

● Low energy approximation just reasonable for wide 

ribbons
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● TB model does not include spins / magnetism

adding a electron-electron interaction term to the 

Hamiltonian

   Hubbard-model:

● Mean field approximation: 

 

Zigzag – edge states

O. Yazyev, Rep. Prog. Phys. 73, 056501 (2010)
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Zigzag – edge effects

O. Yazyev, Rep. Prog. Phys. 73, 056501 (2010)
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● Landauer formula

● Assume ballistic transport,

(holds for ribbons with smoothly varying          )  

● Conductance increases of additional      as soon as 

the energy reaches a new band

Conductance quantization 

                                                                  O. Roslyak et. al., Phys. Lett. A 374, 4061–4064 (2010)
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● Energy states can be calculated with TB method 

(Hückel method)

Hamiltonian           of the chain before - without the 

neighbor unit cells

● Electrostatic effects

lead to the 

Coulomb blockade 

if    tunnels into the dot

or vice versa     is changed

by 

Graphene quantum dots

B. Mandal et. al., J Nanopart Res 14, 1317 (2012)
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● There are armchair and zigzag ribbons showing a 

different behavior due to different BCs and 

corresponding valley mixing

● If the ribbons width is not too narrow, Dirac equation 

gives a good band structure (for low energies)

● Zigzag edges show a spin polarization which could 

be used for spin polarized transport

● The transmission probability for each channel is

Each band adds a       once its energy is reached 

● Quantum dots show coulomb blockade

single electron transistor possible 

Conclusion
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1 Band structure calculation of GNRs with Dirac equation

1.1 Armchair ribbon

We start with Dirac equation obtained by low energy approximation of the band structure of infinite
expanded graphene.
As qy is not restricted we can use plane waves as a solution. This part of the solution can be seperated

c
(′)
A,B = eiqyyϕ

(′)
A,B For the solution in real space we therefore just need to replace qx = −i∂x. Applying

this to the Dirac equation one yields
Applying the Dirac Equation on yields

(−i∂x + iqy)ϕA = ǫϕB

− (i∂x + iqy)ϕB = ǫϕA (1)

where ǫ = E
hvF

Putting the second in the first equation (or vice versa) the following differential equation of second
order is obtained

(

−∂2
x + q2y

)

ϕ
(′)
A,B = ǫ2ϕ

(′)
A,B (2)

We try to solve it with the Ansatz:

ϕB(x) = eiknx, ϕ
′

B(x) = e−iknx (3)

And we find the energy to be ǫ = ±
√

k2n + q2y as one would expect. But what are the allowed values

for kn ?
We need to consider the boundary conditions, which are - according to the figure on slide 9 - the
following:

ΨK,K′(RA)|x=0 = 0 ΨK,K′(RB)|x=0 = 0 (4)

ΨK,K′(RA)|x=Wac+
√
3a = 0 ΨK,K′(RB)|x=Wac+

√
3a = 0 (5)

where Ψ is the most general solution consisting of four terms, as mentioned before.
By using the propertiers of the Wannier function that χ(RA−RA) = 1 and χ(RA−RB) = 0, we obtain

ϕA,B(x = 0) = ϕ
′

A,B(x = 0) (6)

ϕA,B(x = Wac +
√
3a) = e−∆K(Wac+

√
3a)ϕ

′

A,B(x = Wac +
√
3a) (7)

with ∆K the distance between K and K
′

. By insert the Ansatz (Eq.(12)) we find the possible values
of kn

kn =
πn

Wac +
√
3a

+
2π

3
√
3a

(8)

Now we can find an expression for the energy depending on qy and therefore the band structure of the
armchair ribbon:

E = ±

√

(

πn

Nac/2 + 1
+

2π

3

)2

+
(

ky
√
3a

)2
√
3

2
t (9)

where Wac was replaced by Wac = (Nac − 1)
√
3a
2 . As qy is 0 in the case of the armchair ribbon it can

be replaced by ky to make it clear that it starts from the middle of the Brillouin zone.
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1.2 Zigzag ribbon

As the Brillouin zone is rotated in this case we need to replace qx by −qy and qy by qx. The infinite
direction still remains in y-direction, where we again use plane waves.

−~ vf









0 qy + ∂x 0 0
qy − ∂x 0 0 0

0 0 0 −qy + ∂x
0 0 −qy − ∂x 0

















cA
cB
c′A
c′B









= E









cA
cB
c′A
c′B









(10)

We get the equations

(−∂x + qy)ϕA = ǫϕB (11)

(∂x − qy)ϕB = ǫϕA (12)

we obtain the same differential as before in Eq. (2). As we have no valley mixing we need to make a
more general Ansatz. For sublattice A and the K valley it is of the form

ϕA = αezx + βe−zx (13)

and z =
√

q2y − ǫ2 can be real or imaginary.

For the B sublattice we find

ϕB(x) =
α

ǫ
(z − qy)e

zx − β

ǫ
(z + qy)e

−zx (14)

With the boundary conditions

Ψ(RA)|x=0 = 0 Ψ(RB)|x=Wzz+2a = 0 (15)

we get

ϕA(x = 0) = ϕ
′

A(x = 0) = 0 (16)

ϕB(x = Wzz + 2a) = ϕ
′

B(x = Wzz + 2a) = 0 (17)

By inserting the Ansatz (24) & (25) into (27) & (28) we obtain a transcendental equation

qy − z

qy + z
= e−2z(Wzz+2a) (18)

Graphical solution yield that there are nontrivial real solution just for qy > 1
Wzz+2a . For these values a

almost flat band is obtained - the so called dispersionless states which corresponds to the edge states.
If qy < 1

Wzz+2a a solution can be found for imaginary z = ikn. In this case equation (18) can be
transformed into

qy =
kn

tan(kn(Wzz + 2a)
with ǫ = ±

√

q2y + k2n (19)
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