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COULOMB INTERACTION

Consider a Dirac electron interacting with a point charge Z
through the Coulomb interaction:

V(r) = − Ze2

εextr
= − h̄νβ

r

β :=
Ze2

εexth̄ν

• Connections to nuclear physics.
• Charge impurities limiting the electron mobility in

graphene.
• Set the stage for the consideration of electron-electron

interaction.



SOLUTION TO THE COULOMB POTENTIAL I

Radial potential V(r)

(−ih̄νσ ·∇+ V(r))
(

ψ1
ψ2

)
= E

(
ψ1
ψ2

)
(1)

let x = r cos ϕ r =
√

x2 + y2
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(y
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SOLUTION TO THE COULOMB POTENTIAL II

Eq. (1) becomes V(r) −ih̄νe−iϕ
(

∂
∂r −

i
r

∂
∂ϕ

)
−ih̄νeiϕ

(
∂
∂r +

i
r

∂
∂ϕ

)
V(r)

( ψ1
ψ2

)
= E

(
ψ1
ψ2

)

Ansatz:

Ψ =

(
ψ1
ψ2

)
=

(
R1(r)ei`ϕ

R2(r)ei(`+1)ϕ

)
` ∈ Z (Ψ(ϕ + 2π) = Ψ(ϕ))

=

(
1 0
0 eiϕ

)(
R1(r)
R2(r)

)
ei`ϕ

∂

∂ϕ
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(
i`R1(r)ei`ϕ

i (`+ 1)R2(r)ei(`+1)ϕ

)
= i
(

` 0
0 `+ 1
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Ψ



SOLUTION TO THE COULOMB POTENTIAL III

Eq. (1) becomes V(r) −ih̄νe−iϕ
(

∂
∂r +

`+1
r

)
−ih̄νeiϕ

(
∂
∂r −

`
r

)
V(r)

Ψ = EΨ

multiply by
(

1 0
0 e−iϕ

)
e−i`ϕ from the left

 V(r) −ih̄ν
(

∂
∂r +

`+1
r

)
−ih̄ν

(
∂
∂r −

`
r

)
V(r)

( R1
R2

)
= E

(
R1
R2

)

and we have removed the ϕ dependence.



SOLUTION TO THE COULOMB POTENTIAL IV
Next Ansatz:(

R1
R2

)
=

(
w+(r) + w−(r)
w+(r)−w−(r)

)
rs− 1

2 eikr

where k = − E
h̄ν , s =

√(
`+ 1

2︸ ︷︷ ︸)2
− β2

=: m

for the Coulomb potential.

Eq. (1) becomes

r
dw−
dr

+ (s + iβ)w− −mw+ = 0,

r
dw+

dr
+
(
s− iβ + 2ikr︸︷︷︸

=:−z

)
w+ −mw− = 0.

Combine into a confluent hypergeometric equation

z
d2w−
dz2 +

(
2s + 1︸ ︷︷ ︸
=: c

− z
)dw−

dz
− (s + iβ)︸ ︷︷ ︸

=: a

w− = 0



SOLUTION TO THE COULOMB POTENTIAL V

General solution:

w−(z) = A1F1(a, c; z) + Bz1−c
1F1(a− c + 1, 2− c; z)

• Case |β| < |m|, asymptotic expression for kr� 1:

w−(r) =
λ exp (−iβ ln (2kr))

(2kr)s , scattered wave

w+(r) =
λ∗ exp (iβ ln (2kr))

(2kr)s e−2ikr. incident wave

w−(r)
w+(r)

= exp (2iδm(k) + 2ikr) , δm(k) = −β ln (2kr)+ arg λ.

• Case |β| > |m|
solution is ill defined



RELATIVISTIC COLLAPSE

Using the Heisenberg uncertainty principle we have p ≈ h̄/R.
• For a nonrelativistic particle:

E(R) ≈ h̄2

2mR2 −
Ze2

R
⇒ R0 =

h̄2

mZe2

• For a relativistic particle:

E(R) ≈

√(
h̄c
R

)2

+ (mc2)
2− Ze2

R
⇒ R0 =

h̄
mc

√(
h̄c

Ze2

)2

− 1︸ ︷︷ ︸√
(Zc/Z)2−1

There is a real R0 only for

Z < Zc =
h̄c
e2 =

1
α
≈ 137.

(
graphene: Zc =

1
αeff

=
h̄ν

e2 ≈ 1
)

For Z > Zc: relativistic collapse.



SCREENING OF CHARGE IMPURITIES I

Vind(r) =
e2

εext

ˆ
dr′

nind(r′)
|r− r′|︸ ︷︷ ︸

Hartree

+ Vxc(r)︸ ︷︷ ︸
exchange

correlation

Approximations:
• Vxc(r) neglected
• µ = 0

Dimensional analysis:

nind

Z

nind(r) = A(β)δ(r) +
B(β)

r2



SCREENING OF CHARGE IMPURITIES II

• A(β) : charge renormalization

QA
ind =

ˆ
dr′ A(β)δ(r′) = A(β)

− Z
εext
→ − Z

εext
+ A(β)

(
= −Z

ε
, phenomenologically

)
Thus

A(β) = Z
(

1
ε
− 1

εext

)
• B(β): nonlinear screening

QB
ind =

ˆ
dr′

B(β)

(r′)2 ≈ 2πB(β) ln
(

rmax

rmin

)
where

rmin ≈ a, rmax ≈ L



THOMAS-FERMI APPROXIMATION I

Approach: write

V(r) = − Ze2

εextr
+ Vind(r) = −

e2

εext
F̃(ln r)

nind(r) = n [µ−V(r)]− n [µ]

n [µ] =

ˆ µ

0
dE N(E) =

µ |µ|
πh̄2ν2

and try to determine V(r) self-consistently.

F̃(x)→ Z− q
ˆ x

ln a
dt F̃(t)

∣∣F̃(t)∣∣ for large x, where q := 2
(

e2

εexth̄ν

)2

⇔
dF̃(x)

dx
= −qF̃(x)

∣∣F̃(x)∣∣ , F̃(0) = Z



THOMAS-FERMI APPROXIMATION II

F̃(x) =
Z

1 + |Z| qx

F(r) = F̃(ln r) =
Z

1 + |Z| q ln
( r

a

) → sgn(Z)
q ln

( r
a

)
V(r) = − e2Z

εext
(
1 + |Z| q ln

( r
a

)) → − e2sgn(Z)
εextq ln

( r
a

)
B(β) = − q

2π

Z |Z|(
1 + |Z| q ln

( r
a

))2



RENORMALIZATION GROUP APPROACH I

Starting from the Friedel sum rule

Qind = − 4
π ∑

m
δm(kF)

we take
δm(k ∼

1
r
) =

√
β2 −m2 ln

( r
a

)
to obtain

B(β) = − 2
π2 β ∑

m

√
β2 −m2

We see that B(|β| < βc =
1
2 ) = 0. Additionally, a flow of

effective charge is dictated by

dβ

d ln r
= 2πβ0B(β), where β0 =

Z0e2

εexth̄ν



RENORMALIZATION GROUP APPROACH II

The flow stops when |β(r)|
reaches

βc =
ν

αc
≈ 1

2
.

Further calculations show
that this happens on a length
scale

r∗ = a exp
(

πεexth̄ν

4e2 cosh−1 (2β0)

)
= a exp

(
πZ
4β0

cosh−1 (2β0)

)

r∗

Z0 > Zc

Zeff = Zc

e-h cloud



SCREENING OF CHARGE IMPURITIES III

A cobalt trimmer impurity on graphene is tuned by the back
gate voltage (Vg) into a charge-neutral state (left) or a
Q = +1 |e| state (right). The long-range radially symmetric
charge cloud forming around the Co trimmer is observed by
differential conductance (dI/dV, color scale) mapping.
Wang et al. 2012
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SINGLE- VERSUS MANY-PARTICLE PICTURE

• Up to now, electrons in graphene treated in the
independent-particle approximation.

• Theoretically, the effective coupling constant

αeff =
e2

h̄ν
≈ 2.2

indicate that many-body interactions should play an
important role.

• Experimentally, very few evidences of many-body effects.



MANY-PARTICLE HAMILTONIAN

Consists of the kinetic term

H0 = −ih̄νσ ·∇

and the electron-electron interaction

HC =
e2

2 ∑
α,β

¨
dr dr′

ψ̂†
α(r)ψ̂α(r)ψ̂†

β(r
′)ψ̂β(r′)

|r− r′|



MEAN-FIELD APPROXIMATION I

Hartree-Fock approximation (mean field approx.):

ψ†
αψαψ†

βψβ '
〈

ψ†
αψα

〉
ψ†

βψβ︸ ︷︷ ︸
Hartree

+
〈

ψ†
αψβ

〉
ψ†

βψα︸ ︷︷ ︸
Fock

• Hartree:

∑α

〈
ψ†

αψα

〉
= n(r) compensated by interactions with ions for

electrostatic, homogeneous, electroneutral systems
• Fock:〈

ψ†
α(r)ψβ(r′)

〉
=
〈(

∑k ψ†
αkeik·r) (∑k′ ψβk′e

−ik′·r′
)〉

〈
ψ†

α(r + t)ψβ(r′ + t)
〉

!
=
〈

ψ†
α(r)ψβ(r′)

〉
⇒ k = k′ (neglecting Umklapp)

⇒
〈

ψ†
α(r)ψβ(r′)

〉
= ∑

k

〈
ψ†

αkψβk

〉
︸ ︷︷ ︸
=: ρβα(k)

eik·(r−r′)



MEAN-FIELD APPROXIMATION II

HF = −e2 ∑
α,β

¨
dr dr′

〈
ψ†

α(r)ψβ(r′)
〉

ψ̂†
β(r
′)ψ̂α(r)

|r− r′|

= −e2 ∑
α,β

∑
k,k′

¨
dr dr′

ρβα(k′)ψ†
βkψαkei(k′−k)·(r−r′)

|r− r′|

= −e2 ∑
α,β

∑
k,k′

ψ†
βkψαkρβα(k′)

¨
dr dr′

ei(k′−k)·(r−r′)

|r− r′|︸ ︷︷ ︸
=: I(k,k′)

= ∑
k

∑
α,β

ψ†
βkψαk∑

k′
ρβα(k′)I(k, k′)

(
−e2

)
︸ ︷︷ ︸

=: hβα(k)



RENORMALIZATION OF THE FERMI VELOCITY I

Using standard perturbation theory

E(0)
± (k) = ±h̄νk

E(1)
± (k) = ±∑

k′

2πe2∣∣k− k′
∣∣ 1

2

(
1± k · k′

kk′

)

= ±
ˆ kc≈ 1

a

0
dk′

2πe2∣∣k− k′
∣∣ 1

2

(
1± k · k′

kk′

)
= ±h̄

e2

4h̄
ln
(

1
ka

)
︸ ︷︷ ︸ k

=: δν

Doped graphene:

δνF ≈
e2

4h̄
ln
(

1
kFa

)



RENORMALIZATION OF THE FERMI VELOCITY II

Account for virtual electron-hole transition:

δνF ≈
e2

4h̄ε
ln
(

1
kFa

)

Measurement of the cyclotron mass in
graphene as a function of doping (left)
and corresponding Fermi velocity (right)
showing the logarithmic correction.
Elias et al. 2011



SUMMARY

Part I: Point charges

• Solved the case of
a point charge Z
interacting with
Dirac electrons.

• Supercritical
charges are
screened by an
electron-hole
cloud of size r∗.

Part II: Electron-electron interaction

• Many-body effects
in graphene are
predicted but only
a few are
observed.

• Electron-electron
interaction leads to a
renormalization of
the Fermi velocity.
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