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COULOMB INTERACTION

Consider a Dirac electron interacting with a point charge Z
through the Coulomb interaction:
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e Connections to nuclear physics.

e Charge impurities limiting the electron mobility in
graphene.

e Set the stage for the consideration of electron-electron
interaction.



SOLUTION TO THE COULOMB POTENTIAL I

Radial potential V(r)
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SOLUTION TO THE COULOMB POTENTIAL II

Eq. (1) becomes

Ansatz:
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SOLUTION TO THE COULOMB POTENTIAL III

Eq. (1) becomes
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and we have removed the ¢ dependence.



SOLUTION TO THE COULOMB POTENTIAL IV

Next Ansatz:
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Eq. (1) becomes
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SOLUTION TO THE COULOMB POTENTIAL V

General solution:

w_(z) = A1F1(a,¢;z) + Bz~ F, (a—c+1,2—¢z)

e Case |B| < |m|, asymptotic expression for kr > 1:

w_(r) = Aexp (—ifln (Zkr))/ scattered wave
(2kr)®
wy(r) = A exp ((szrl)r: (2kr))e*2ikr. incident wave

Z; 8 = exp (210, (k) +2ikr), (k) = —pIn (2kr) +argA.

e Case |B| > |m|
solution is ill defined



RELATIVISTIC COLLAPSE

Using the Heisenberg uncertainty principle we have p ~ ii/R.
e For a nonrelativistic particle:
W Ze "
=

ER >R~ R’

e For a relativistic particle:

There is a real Ry only for

he 1 1 hv
Z<ZC:e—2:E%137. <graphene:ZC:aeff:ezz1>

For Z > Z: relativistic collapse.



SCREENING OF CHARGE IMPURITIES I
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SCREENING OF CHARGE IMPURITIES II

o A(B) : charge renormalization
ha= [ ar A3 = A(p)

Z Z Z
—— > —— 4+ A(B) (: o phenomenologically>

B =2(;- o)

€ Eext

B(pB): nonlinear screening

nd = /d /ﬁ ~ 27B(p) In (:max>
where

Tmin =~ 4, Tmax ~ L



THOMAS-FERMI APPROXIMATION I

Approach: write

Ze? e2

V(r) = et + Vina(r) = —alf(ln r)
Mina () = n[p —V(r)] —n[y]
/ dEN(E) = 1L
 hA?

and try to determine V(r) self-consistently.
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THOMAS-FERMI APPROXIMATION II
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RENORMALIZATION GROUP APPROACH I

Starting from the Friedel sum rule

Qind = —% ;5m(kl-‘)
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We see that B(|B| < B = 3) = 0. Additionally, a flow of
effective charge is dictated by

we take

to obtain
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RENORMALIZATION GROUP APPROACH II

The flow stops when |B(r)]
reaches

Further calculations show
that this happens on a length
scale

r* = aexp (nifx;hv cosh™! (2/30)>

= aexp (4,8 cosh™ (2,Bo)>




SCREENING OF CHARGE IMPURITIES III

High

A cobalt trimmer impurity on graphene is tuned by the back
gate voltage (V) into a charge-neutral state (left) or a

Q = +1 |e| state (right). The long-range radially symmetric
charge cloud forming around the Co trimmer is observed by

differential conductance (dI/dV, color scale) mapping.
Wang et al. 2012
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SINGLE- VERSUS MANY-PARTICLE PICTURE

e Up to now, electrons in graphene treated in the
independent-particle approximation.

e Theoretically, the effective coupling constant
2
e
Keff = 7— ~ 2.2

indicate that many-body interactions should play an
important role.

e Experimentally, very few evidences of many-body effects.



MANY-PARTICLE HAMILTONIAN

Consists of the kinetic term

Hy = —itwo -V
and the electron-electron interaction
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MEAN-FIELD APPROXIMATION I

Hartree-Fock approximation (mean field approx.):

wlvnglvs = (wive) i + (wivs) viv

Hartree Fock

e Hartree:

Yo ($ipo) = n(r) compensated by interactions with ions for
electrostatic, homogeneous, electroneutral systems
e Fock:
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MEAN-FIELD APPROXIMATION II
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RENORMALIZATION OF THE FERMI VELOCITY I

Using standard perturbation theory
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Doped graphene:



RENORMALIZATION OF THE FERMI VELOCITY II

Account for virtual electron-hole transition:
2
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Measurement of the cyclotron mass in

graphene as a function of doping (left)

and corresponding Fermi velocity (right)

showing the logarithmic correction.
Elias et al. 2011




SUMMARY

PartI: Point charges

e Solved the case of e Supercritical
a point charge Z charges are
interacting with screened by an e-h cloud
Dirac electrons. electron-hole Zett = Ze

cloud of size r*.

Part II: Electron-electron interaction

e Many-body effects e Electron-electron
in graphene are interaction leads to a
predicted but only renormalization of y
a few are the Fermi velocity.

observed. ‘




REFERENCES

¥ Mikhail I. Katsnelson.
Graphene: Carbon in Two Dimensions.
Cambridge University Press, Cambridge, 2012.

[@ Valeri N. Kotov, Bruno Uchoa, Vitor M. Pereira, et al.
Electron-electron interactions in graphene: Current status

and perspectives.
Rev. Mod. Phys. 84, 1067-1125, Jul 2012; arXiv:1012.3484.

El Yang Wang, Victor W. Brar, Andrey V. Shytov, et al.
Mapping Dirac quasiparticles near a single Coulomb
impurity on graphene.

Nat. Phys. 8, 653-657, Jul 2012; arXiv:1205.3206.

[ D.C.Elias, R. V. Gorbachev, A. S. Mayorov, et al.

Dirac cones reshaped by interaction effects in suspended

graphene.
Nat. Phys. 7,701-704, Jul 2011; arXiv:1104.1396.



	Point charges
	Solution to the Coulomb potential
	Relativistic collapse
	Screening of charge impurities
	Thomas-Fermi approximation
	Renormalization group approach


	Electron-electron interaction
	Many-particle Hamiltonian
	Mean-field approximation
	Renormalization of the Fermi velocity

	Summary and references
	Summary
	References


