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Light absorption by Dirac fermions
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Light absorption by Dirac fermions
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is the Hamiltonian of the electron-photon interaction. The factor i in
Eq. (7.4) i1s necessary since the standard expression for the complex field is

g = = N .
E(t) = Re [Ecxp(—iw{)} e [Eexp(—iwl) + E° exp(iwt)] (7:35)

and we take into account only the first term. This interaction induces transi-
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Light absorption by Dirac fermions

optical transition matrix element:
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Light absorption by Dirac fermions

Fermi‘s Golden Rule => absorption rate:

2T 5 B
' = EK)' N(e = —hw/2)
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=> energy absorption rate: W, = 'hw = P
- c|E|?
incident energy flux (Jackson, 1962): WW. =
4
=> absorption coefficient:
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Light absorption by Dirac fermions

[R. Nair et al., Science 320, 1308 (2008).]
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Intro: response functions

How does a physical system react to an external perturbation?

More precise: how does the expectation value of observable A change?
According to the response functions!

1. conductivity

2. susceptibilty

3. heat conductivity (retarded Green's functions)

without perturbation: — BHo
21 A)g = Tr(pyA = Ho = Hy — uN
system expectation value of observable }1 density matrix grand potential

with perturbation V; = Fté:
H=Hy+V, (A); = Tr(p:A) pr =1

m p°+/ pi7 (t') dt—Po—%/t[ P() [P (t)]a

Dirac picture

n->n+l
=> not solvable
=> only up to linear terms
inV
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Intro: response functions

transform back to Schrodinger picture:

' L . .
pr = o — %/ e” WOV (t), polen ot dt!
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=> expectation value:
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Here, Gy 5 (t — t') = —if(t — t"){[A(t), B(t')])o is the retarded Green's function.
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Fourier transform: Gmt (E) / Gmt (t — t ) E(t_tf)d(t — t’)
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Intro: response functions

transform back to Schrodin Lo

Usually, the Fourier transform is easier to
calculate. (simple equation of motion; use spectral moments)

. ] ret > SAB (E!) /
spectral representation: B(E) = E_E 10" dE

=> further helpful properties, e.g. Kramers-Kronig relations

further reading: Nolting 7, ,Viel-Teilchen-Theorie”

= Adp = (chapter 3)

Here, Gy 5 (t — t') = ([A(t), B(t')])o is the retarded Green's function.

Fourier transform: Gmt B(E) = / Gmt Bt —1 ) E(t_tf)d(t — t’)

— 20



The optics of Dirac fermions

the interaction of light and Dirac fermions can be described by
Hin = —eE(t) -7 = —ie(E(t) - V)

=> density matrix evolves as: ih0;pp = [H, p
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The optics of Dirac fermions
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The optics of Dirac fermions

8ie* v’ ky am .;'_H?} f‘rm';-.:{ﬂ} (7.31)
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On substituting Eq. (7.26) into Eq. (7.31) we find
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switch perturbation
on adiabatically

retarded Green'‘s function => substitute w — w + 0™

use 1 _p 1 _imé(w — 2upk)
(w+i0T)2 — 4vi k2 w? — 4vi k2 qopk
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defines the principal value of f(x) (Riemann—integrable In (a,c)u(c,b))

(fr1 = frp)d(w = 2vpk) = — (f(=hw/2) = f(hw/2))
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The optics of Dirac fermions

iInclude spin and valley degeneracies:

0 w < 2
“=>Re olw) = { é w > 2:#:
4R H
|
= 0 universal conductivity

With the Kramers-Kronig relation

1 [ Re G¥R(E'
Im G5(E) = WP/ eE fBFE, Lap’

the imaginary part of the conductivity can be found:

hw + 21
hw — 2

4
Im o(w) = — (% —In

Note that at » — 0, Im o(w) vanishes for all frequencies W (i.e. no
energy loss within the graphene sheet).



Plasmons

The response of a material to an external charge density is described
by the dielectric function.

1
in _;E — . —1 ex _;E
pind (7, E) (e(q,E) )p (¢, E)

induced charge density 'T‘ external charge density
dielectric function
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In a metal, the induced charge density will typically screen the external
charge density: €(q, ) > 1 => pina(q, F) = —pexi (T, E).

In the opposite limit, (¢, £/) — 0, arbitrarily small perturbations suffice
to induce finite charge fluctuations within the conduction electron system.

ret

That is, the poles of Gp p_( )correspond to resonances of that system.
These collective excitations of the electron system are called plasmons.



Plasmons

In graphene, plasmons exist for fiw << 2

2e2 1

and disperse like w =
hzecxt

q .

The dispersion w X \/g IS a general property of plasmons in two-
dimensional electron gases. However, the dependence on the electron
density is special for graphene:

woc\/ﬁocnl/4

. graphene,
W X n1/2

. nonrelativistic electrons.

Apart from QU < w < 2;,5 , the dielectric function has a large
Imaginary part such that the plasmons are suppressed due to damping.



Summary

> Each graphene layer absorbs 2.3% = 7« of incoming light
(independent of the photon frequency).

> Read Nolting 7, chapter 3.

82

4h
> Plasmons are collective (=> quasiparticles) charge density fluctuations

of the conduction electron system. Their energies are the poles of the
dielectric function.

> The universal conductivity of graphene is 0 =
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