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We theoretically demonstrate that nuclear spins can be harnessed to coherently control two-electron spin
states in a double quantum dot. Hyperfine interactions lead to an avoided crossing between the spin singlet
state and the ms=+1 triplet state, T+. We show that a coherent superposition of singlet and triplet states can be
achieved using finite-time Landau-Zener-Stückelberg interferometry. In this system the coherent rotation rate is
set by the Zeeman energy, resulting in �1 ns single spin rotations. We analyze the coherence of this spin qubit
by considering the coupling to the nuclear spin bath and show that T2

��16 ns, in good agreement with
experimental data. Our analysis further demonstrates that efficient single qubit and two-qubit control can be
achieved using Landau-Zener-Stückelberg interferometry.
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I. INTRODUCTION

Considerable effort has been made in the past few years to
implement qubits in nanoscale solid-state structures. One of
the most promising candidates are spin qubits confined in
electrostatically defined quantum dots �QDs� embedded in
GaAs structures.1,2 A universal set of quantum gates has been
demonstrated in GaAs double QDs �DQDs� through the
achievements of single-spin rotations and the two-spin-
exchange interaction that generates the �SWAP gate.3–5 De-
spite these advances, coherence times are limited by the hy-
perfine interaction, which couples the trapped electron spin
in the quantum dot to the spin-3

2 nuclei of the GaAs sub-
strate. The resulting nuclear fields cause rapid electron-spin
dephasing, leading to an inhomogenous dephasing time
T2

��10 ns. As each electron spin is coupled to approxi-
mately one million nuclei, the resulting behavior of the
coupled electron-nuclear spin system is complicated and
leads to rich dynamics that are sensitive to experimental
parameters.6

The hyperfine interaction has traditionally been viewed as
a nuisance. However, a recent experiment demonstrates that
generation of a controlled nuclear field gradient can be used
to drive fast spin rotations.7 The development of quantum
control methods in semiconductor quantum dots that are
based on nuclear spin interactions could lead to new para-
digms for single spin control.

We theoretically show that hyperfine interactions can be
harnessed for quantum control in GaAs semiconductor quan-
tum dots. In the presence of an external magnetic field B,
which splits the triplet states, the hyperfine interaction results
in an avoided crossing between the spin singlet S and spin
triplet T+, which form the basis of a new type of spin qubit.
Coherent quantum control of this qubit has already been ex-
perimentally achieved through Landau-Zener-Stückelberg
�LZS� interferometry,8 a technique previously used to coher-
ently manipulate superconducting qubits9,10 and which is
based on the interference due to repeated LZS tunneling
events.11–14 The original LZS problem studies a two-level
system which exhibits an avoided crossing when an external
control parameter is changed. If the control parameter is time

dependent, the system can be brought from an initial state
through the avoided crossing. This passage may result in a
change in populations and relative phase of the states. In the
LZS version, the system is driven from ti=−�→ tf=� and
the difference in energy between the two states is a linear
function of time, �E�t�=�t, which leads to the well-known
result for the nonadiabatic transition probability PLZS=exp
�−2���S�Hint�T+��2 /���, where Hint describes the interaction
between the two levels.

For the DQD system, the usual infinite-time asymptotic
theory describing LZS interferometry cannot be used. The
avoided crossing originates from the hyperfine interaction
between the electronic spins and the nuclear spins whose
fluctuations result in a poorly defined crossing position. The
phenomena observed in the experiments can only be prop-
erly described using finite-time LZS theory.15

To prove that our formalism describes correctly the coher-
ent manipulation of the S-T+ based qubit, we will compare it
to the experimentally measurable quantity PS, the singlet re-
turn probability. We then show how single qubit operations
can be engineered either by the Euler angle method for rota-
tions or by only using LZS interferometry. Finally, we dem-
onstrate that a two-qubit gate can be achieved by capaci-
tively coupling two S-T+ qubits. In contrast to the S-T0 qubit,
where the rotation rate is set by a charge-noise-susceptible
exchange energy, the rotation rate in the S-T+ qubit is set by
the Zeeman energy and approaches 1 ns for modest magnetic
fields of 100 mT.

II. MODEL

The spin preserving Hamiltonian,

H0 = �
js

� jsnjs + u�
j

nj↑nj↓ + ��
s

�c1s
† c2s + H.c.� , �1�

with � js=� j +g��BBs /2 and njs=cjs
† cjs describes the coupling

between two electrons in a DQD in a magnetic field B. g�

denotes the effective Landé g-factor �−0.44 for GaAs�, �B
the Bohr magneton, j=1,2 and s= ↑ , ↓ = 	1 label the dot
number and spin. The first term is the single-particle energy
of the confined electrons, the second accounts for the Cou-
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lomb energy u of two electrons on the same QD, and the last
for tunneling with strength � between the dots.

The diagonalization of the first two terms of Eq. �1� leads
to the relevant charge states of a DQD: the singlets S�0,2�,
S�2,0�, and S�1,1� and triplets T	,0�1,1�, where �l ,r� denotes
the charge configuration of the dots 	see Fig. 1�a�
. The other
states can be neglected as they have energies much higher
than those considered here. The degeneracy of the singlets
S�2,0� and S�1,1� at �= 	u is lifted by the interdot tunneling,
resulting in a splitting of �2�. The hyperfine interaction
HHF=S1 ·h1+S2 ·h2 between the electron spins Si and the
nuclear spins Ii

k opens a splitting �HF at the degeneracy point
�c of the singlet S and the triplet T+. Here, hi=�k=1

n�i�Ai
kIi

k is the
Overhauser �effective nuclear� field operator. The sum runs
over the n�i� nuclear spins in dot i and Ai

k=vik
0��i�rk��2 is
the hyperfine coupling constant with the kth nucleus in dot i
with �i�rk� the electron wave function, 
0 the volume of the
unit cell, and vik the hyperfine coupling strength. From now
on, since we assume symmetric dots, we have n�1�=n�2�
=n. Introducing Si

	=Si
x	 iSi

y and hi
	=hi

x	 ihi
y, we write

HHF =
1

2�
i

�2Si
zhi

z + Si
+hi

− + Si
−hi

+� . �2�

To determine which spin states are relevant for our theory,
we consider PLZS from the asymptotic LZS model and the
result of Ref. 16 for multiple level crossings to estimate the
order of magnitude of the transition probabilities. The initial-
ization of the system is done by preparing a singlet S�2,0�
��i��c�, then � is swept to achieve �f�c. During this op-
eration, the system goes through three avoided crossings �cf.
Fig. 1�. To estimate the matrix element ��S�HHF�T+��2
= ��S�HHF�T−��2= ��HF�2, we use the experimentally found

value of �HF=60 neV from Ref. 8. The matrix element en-
tering PLZS at the avoided crossing between S�2,0� and the
excited singlet state S��1,1� is given by
��S�2,0��H0�S��1,1���2=2�2 with �=5 �eV. The order of
magnitude of � is taken between 10−3–10−2 meV /ns. We
find PT+

�0.97–0.99 and PS��1,1� , PT−
�10−8. These results

show that population of the excited singlet and T− level are
negligible. T0 can also be neglected because it does not cross
with any other level, it splits from S�1,1� due to the exchange
coupling.22

Near the S-T+ crossing, the dynamics can be restricted to
the Hilbert space spanned by T+�1,1�, S�1,1�, and S�2,0� and
described by

HS,T+
� �g��BB 0 0

0 0 �2�

0 �2� u − �
 , �3�

where we can neglect an additive term ��1 with �=�1−�2
the detuning of the dots. According to our previous estimate,
we can reduce Eq. �3� to a 2�2 Hamiltonian which
only takes into account the lowest hybridized singlet
�S�=c����S�1,1��+�1−c���2�S�2,0�� and the triplet
�T+�= �T+�1,1��, where c���= �−u+�−�� /�8�2+ �u−�+��2

with �=�8�2+ �u−��2. The energy associated with the low-
est hybridized singlet is ES���= �u−�−�� /2 and the energy
of the triplet is ET+

=g��BB. The Hamiltonian describing the
dynamics of the lowest energy states in the vicinity of S-T+
can therefore be written as

H0��� = ES����S��S� + ET+
�T+��T+� . �4�

Another relevant quantity derived from Eq. �3� is the degen-
eracy position �c of S and T+, given by the funnel-shaped
function

�c�u,B� = u + 2�2/g��BB − g��BB . �5�

III. SEMICLASSICAL THEORY

We model the Overhauser field classically, such that it
acts on the electron spin as a magnetic field Bn,i with
hi=g��BBn,i and its physical properties are given by a statis-
tical distribution that reflects the quantum fluctuations of the
nuclear ensemble. At typical operating temperatures and ex-
ternal magnetic fields kBT�gN�NB, where gN and �N are the
nuclear g factor and magneton. In this limit we can assume
the nuclei to be completely unpolarized, resulting
in a Gaussian distribution of nuclear fields17,18

p�Bn,i�= �1 /�2���e−Bn,i
2 /2�2

with �=A /g��B
�n and

A�90 �eV. The effective Hamiltonian describing the qubit
dynamics around the S-T+ avoided crossing is given by

Heff��� = H0��� +
1

2
g��B�

i

�Si
+Bn,i

− + Si
−Bn,i

+ � . �6�

We include the nuclear Zeeman splitting in the T+
energy, ET+

=g��B�B+Bn
z�, where Bn

z =Bn,1
z +Bn,2

z and
Bn,i

	 =Bn,i
x 	 iBn,i

y . The classical approximation of the Over-

(a) (b)

(c)

FIG. 1. �Color online� �a� Energy diagram for the relevant states
in the DQD as a function of �. The spin states for the implementa-
tion of the qubit are the hybridized singlet S and the triplet T+. �b�
A coherent superposition of the qubit states is generated by LZS
interferometry. �c� The initialized S�2,0� is swept through the
avoided crossing by means of an applied linear gate voltage pulse
�i→�f. The final state is a coherent superposition of S and T+

generated by LZS tunneling. At �f, the system evolves in the exter-
nal magnetic field B for a time tw before a reverse gate voltage
pulse brings the system back to �i where a quantum point contact
�QPC� measurement is performed to determine the singlet state re-
turn probability, PS.
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hauser fields is possible because the nuclear state changes
only slightly after a single sweep.19 To obtain an analytical
expression of the LZS propagator �see Appendix A�, we lin-
earize the difference in energy �E�t� around t=0 �Ref. 15�
by assuming ��t�=�t+�c, we find

� =
	g��B�B + Bn

z�
2

2�2 + 	g��B�B + Bn
z�
2� . �7�

Here � is the rate at which the external voltage gates are
ramped. Control over � can therefore be achieved by modi-
fying �.

To test our model we first compute the singlet return prob-
ability PS, an experimentally observable quantity, as a func-
tion of the final detuning �f and waiting time tw,

PS =� �
k=1,2

dBn,k p�Bn,k���S�U�Bn,1,Bn,2��S��2, �8�

with

U�Bn,1,Bn,2� = Ub�Bn,1,Bn,2�Uw�Bn
z�Uf�Bn,1,Bn,2� , �9�

where Ub,f=T exp�−i�ti
tfdtHeff	��t�
 /�� are the backward and

forward LZS propagators and Uw�T exp	−i�0
twdtH0��f� /�


describes the evolution of the system during the waiting time
tw at the final detuning position �f with ��f−�c���HF.

We evaluate PS by numerical sampling. Instead of esti-
mating � from n and A of the QDs, here we use the experi-
mentally determined8 �HF=60 neV to derive ��1.67 mT.
We have ��HF

2 �= ���Bn
−�2�=4�2, with �Bn

−��Bn,2
− −Bn,1

− � /2
= �T+�HHF

� �S�. In Fig. 2 we show PS as a function of �f and tw
for �=0.015 meV /ns, B=100 mT, u=4 meV, and

�=5 �eV. We use a square pulse with a ramping time
�tf− ti� fixed to 1.5 ns and the initial detuning �i is varied to
reach different values of �f.

We identify coherent oscillations as a function of tw and
�f. From a best fit, we obtain the decoherence time
T2

�= �16.0	0.4� ns, which agrees well with experiment.
The decoherence is mainly due to the fluctuations of Bn

z .
The period of the temporal oscillations is
T=h / �ES��f�−ET+

��4.3 ns for �f=3.97 meV 	see Fig.
2�b�
. For a fixed B, a shorter period can be obtained for
smaller �f, the fastest oscillations being defined by the Zee-
man energy. To further decrease the period the external B
field can be increased and hence the qubit manipulation
could be done in a time scale of 100 ps for B�1.6 T, which
would allow �160 coherent operations within T2

�. In the ex-
change gate demonstrated in Ref. 4, dJ /d� increases with �,
which results in faster dephasing for faster rotations. In con-
trast, here the rotation rate is set by the Zeeman energy,
which is independent of � far from the S-T+ avoided cross-
ing. As a result, the coherent oscillation frequency can be
increased without making the qubit more susceptible to gate-
voltage fluctuations by simply increasing B. Far from the
avoided crossing the level spacing is independent of detun-
ing, similar to the “sweet spot” in superconducting qubits.20

The model predicts coherent oscillations in PS for
�f��c, i.e. in the case where the qubit has not passed the
avoided crossing. It can be explained within finite-time LZS
theory but not with the conventional asymptotic Landau-
Zener formula. In other words, even if tf0, we have
�Uij

LZS�tf , ti��2�0, which illustrates the nonadiabatic character
of the problem. For the pulse conditions used in Ref. 8, os-
cillations are not observed for �f��c, most likely due to
charge dephasing. The coherence time of an admixture of
�1,1� and �2,0� charge states has been measured to be �1 ns
for GaAs QDs �Ref. 21� and sets the time scale at which the
system must be driven to observe oscillations for �f��c. A
finite-time effect in agreement with the experimental data is
the dependence of the oscillation amplitude PS on the pulse
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FIG. 2. �Color online� Theoretical results. �a� The singlet return
probability PS from the semiclassical model as a function of the
waiting time tw and final detuning �f. We find nanosecond oscilla-
tion periods and the dephasing time T2

��16 ns, in good agreement
with experiment. We used B=100 mT, �=0.015 meV /ns,
u=4 meV, and �=5 �eV. �b� PS �blue� as a function of tw for
�f=3.97 meV 	horizontal line in �a�
. We plot �orange�
C sin��t�exp	−�t /T2

��2
, where �= �ES��f�−ET+
� /��2� ·0.23 GHz,

C=0.95, and T2
�= �16.0	0.4� ns is extracted from a best fit.
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FIG. 3. �Color online� Comparison between experimental
�purple, open circles� and theoretical values �blue, filled circles� of
PS for B=45 mT. Theoretical values are obtained by finding the
detuning �f=3.78 meV for which the theoretical and experimental
oscillation periods match. A suitable �=0.12 meV /ns is then cho-
sen such that �i��c. The experiments used passive filtering of
square pulses to reduce PLZS and thereby increase the visibility of
the oscillations. As a result, oscillations in the experimental data are
delayed to longer times due to finite rise time effects. The theory
points are obtained with a perfect square pulse.
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length. Finally, we show in Fig. 3�a� comparison between
experiment and theory for B=45 mT. The experimental data
were obtained from the setup used in Ref. 8. The experi-
ments used passive filtering of square pulses to reduce PLZS
and thereby increase the visibility of the oscillations. As a
result, oscillations in the experimental data are delayed to
longer times due to finite rise time effects.

IV. ARBITRARY SINGLE QUBIT ROTATIONS

The passage through the avoided crossing can be
interpreted as a rotation �see Appendix C�,
ULZS�� , tf , ti�=e−i�·n̂�/2 by an angle � around the axis n̂, see
Fig. 4. Here �=��� , tf , ti� and n̂= n̂�� , tf , ti� is a unit vector,
where �= ��T+�HHF�S�� /��� is the dimensionless coupling
strength. Since n̂ and � are functions of the same experimen-
tal parameters ti�→�i� , tf�→�f�, and ��→��, it is not
straight forward to find them simultaneously in order to build
a given single qubit rotation. For instance, fixing two param-
eters and tuning the third one will simultaneously change n̂
and � limiting the achievable rotations angles. Nevertheless,
the situation is not hopeless and several composite methods
can be engineered to achieve any rotation. We present here
three methods, each of them having their own advantages.

Since rotations by an angle � around the z axis are avail-
able by letting the qubit evolve in an external B field, we
would like n̂ to be in the xy plane in order to build any
rotation by the Euler angle method. Below we show that this
is possible if, for example �see Appendix C�, the propagation
times are equal, −ti= tf= tLZS. However, a � rotation from �S�
to �T+� would take an exponentially long time with a single
LZS transition, since it corresponds to a fully adiabatic tran-
sition. However, this problem can be circumvented by se-
quentially applying several LZS transitions. A � rotation
from �S� to �T+� can be achieved in �0.1–1.0 ns for two
consecutive and identical LZS transitions.

The single qubit gates can also be implemented with a
pure LZS interferometry technique, similar to the one used to

control superconducting qubits. This method requires se-
quential driving of the qubit through the avoided crossing.
The different passages result in a series of LZS transitions
each of them corresponding to a rotation of the qubit. By
tuning � and choosing −ti� tf with different ratios for �ti� / �tf�,
any qubit rotations can be achieved within a nanosecond.

Since finite-time effects are present in the system, we can
think about a control method where the qubit is operated on
the �1,1� charge configuration side �“sweet region”�. This
requires the preparation of a T+�1,1� state7 and pulses with
rise times shorter than 1 ns which do not drive the system
through the avoided crossing unless a measurement is re-
quired. The qubit manipulation is achieved through finite-
time LZS interferometry, where tuning � and the propagation
time ti,f allows to achieve any desirable angle. For all those
methods, an arbitrary single qubit rotation can be expressed
as a series of a forward sweep-wait-backward sweep opera-
tors,

D��,�� = �
i=1

l

Ub��b
�i��Uz���i��Uf��f

�i�� , �10�

which reduces to Eq. �8� for l=1. The proposed methods
require a maximum of l=3. It is important to notice that the
rotation axis and the final measurable angles will not be n̂,
�=�i�i, and �=�i�i, but rather �n̂��, ����, and ����, where
the brackets denote the averaging over the nuclear spin bath.
A similar scheme with l=1 has been proposed for the S-T0
qubit.22

V. TWO-QUBIT GATE

To complete the set of quantum gates, a two-qubit opera-
tion such as CNOT is required. We consider the Hamiltonian

HCNOT = Heff
�1� + Heff

�2� + Hint, �11�

where Heff
�i� is the single qubit Hamiltonian �6� and Hint

= ũ� j=2,3nj↑nj↓ describes the capacitive coupling22–24 between
two adjacent QDs belonging to different S-T+ qubits. Tun-
neling between the dots of the different qubits can be sup-
pressed by an appropriate gate voltage. If the control qubit,
qubit-1, is in a S�2,0� state, Hint=0 and the dynamics of the
target qubit, qubit-2, is reduced to the case of a single qubit,
see Fig. 5. When the control qubit is in a �1, 1� charge con-
figuration, the target qubit is influenced by the interdot Cou-
lomb interaction. In this case, the dynamics of the target
qubit can be described by Eq. �6� by replacing u→u+ ũ. In
particular, this affects the position of the avoided crossing.
For a system with two DQDs separated by a distance d
�2R–10R, where R is the approximate radius of one QD,
the intradot Coulomb interaction u�e2 /R is comparable to
the interdot Coulomb interaction ũ�e2 /d resulting in
��c�u�−�c�u+ ũ���1 meV. From the previous discussion, we
know that a � rotation is possible within �1 ns if
�c=�c�u�. In the case where the avoided crossing is at
�c�u+ ũ� the same LZS sequence will leave the target qubit
unchanged, even within a finite-time theory since the sepa-
ration between the two avoided crossings is �1 meV.
Therefore, we estimate the CNOT gate time to be �1–3 ns.

FIG. 4. �Color online� Bloch sphere representation of LZS
transitions as rotations. �a� When the propagation times are equal,
−ti= tf, the rotation axis lies in the xy plane. In addition with the
rotations generated around the z axis by letting the qubit evolve in
the external magnetic field, any rotation can be achieved by the
Euler angle method. �b� If the propagation times are different the
rotations axis may not lie �see Appendix C� in the xy plane. In this
case, a pure LZS interferometry technique can be used to generate
any rotation.
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Let us consider the case where the control qubit is in the
S�2,0� state, which is the logical �1� of the qubit, such that
the target and control qubits are not capacitively coupled,
u=4 meV. For �=0.3 meV /ns, B=100 mT,
�i=3.98597 meV, and �f=3.97991 meV we find for l=6
and ��i�=0 in Eq. �10�

D�1���,�� � � − 0.314 0.945 − 0.096i

− 0.945 − 0.096i − 0.314
� . �12�

This example shows the almost perfect realization of a con-
ditional i�y operation which corresponds to a CNOT gate up
to single-qubit gates.

To show that this method produces a CNOT gate, we con-
sider the case where the control qubit is in the T+�1,1� state,
which is the logical �0� of the qubit. We estimate a lower
bound for the strength of the capacitive coupling between the
qubits to be u+ ũ=5 meV �see above�. In this case, the target
qubit evolution takes the form

D�0���,�� � �0.971 + 0.002i − 0.206 − 0.124i

0.206 − 0.124i 0.971 − 0.002i
� , �13�

which is close to 1 and demonstrates the possibility of gen-
erating a CNOT gate with the proposed method.

Notice that our choice for �i,f corresponds to a propaga-
tion time tLZS=0.01 ns such that the total gate time to
achieve controlled i�y is 0.24 ns. The fidelity is F
= �Tr D�0�+Tr	D�1��i�y�†
�2 /16�0.918. A more accurate
CNOT gate can be engineered by fine tuning the parameters
entering the LZS propagator.

VI. CONCLUSIONS

We have demonstrated that coherent control of the S-T+
qubit can be achieved using LZS interferometry. Hyperfine
interactions lead to an avoided crossing between S and T+
states, which allows for efficient quantum control. Moreover,
we predict that in the limit of fast rise-time pulses coherent
oscillations in PS should be observed even without going
through the avoided crossing. This phenomenon is a finite-

time effect which we have theoretically described using the
general finite-time LZS theory and it can be used to operate
the qubit in the �1,1� charge configuration side �sweet re-
gion�.

Our scheme can be extended to DQD in materials with
few nuclear spins �graphene, CNT, Si�. In such cases, the
avoided crossing between the qubit states can be achieved by
engineering a DQD in the presence of micromagnets which
provide the in-plane gradient magnetic field for the realiza-
tion of the LZS-based gates.25 The qubit will moreover ben-
efit from the lack of the inhomogeneous broadening due to
the Overhauser fields and exhibit an extended T2

�. In GaAs
DQDs the method proposed in Ref. 7 could be used to ex-
tend T2

� without canceling the gradient field. Other schemes
to polarize the nuclear spins26 or reduce their fluctuations27,28

also exist.
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APPENDIX A: THE LANDAU-ZENER-STÜCKELBERG
FINITE-TIME PROPAGATOR

In this appendix we follow the work of Vitanov and
Garraway15 and consider, without loss of generality, a two-
level system whose eigenenergies E1 and E2 are time depen-
dent, E1=E1�t� , E2=E2�t� and their difference is a linear
function of time 2��t�=E2�t�−E1�t�=�t. Furthermore, we
assume the levels to be coupled with strength �. The matrix
representation of the system’s Hamiltonian is given by

HLZS�t� = �− ��t� �

� ��t�
� . �A1�

The time evolution of such a system is described by the
time-dependent Schrödinger equation

i�
d

dt
���t�� = HLZS�t����t�� �A2�

with ���t��=c1�t��1�+c2�t��2�. After substitution of Eq. �A1�
into Eq. �A2�, a coupled system of first-order ordinary dif-
ferential equations is obtained

i�ċ1�t� = − ��t�c1�t� + �c2�t� , �A3�

i�ċ2�t� = �c1�t� + ��t�c2�t� . �A4�

By differentiating Eq. �A3� with respect to time and substi-
tuting Eqs. �A3� and �A4� into the newly obtained ordinary
second-order differential equation, we obtain

c̈1�t� = � i

�
� −

�2t2

�2 −
�2

�2�c1�t� . �A5�

It is convenient to introduce dimensionless parameters be-
fore solving Eq. �A5�, here we introduce the dimensionless

FIG. 5. �Color online� A conditional gate can be implemented by
capacitively coupling electrons trapped in quantum dots belonging
to different qubits. The crossing position �c has different values
whenever the charge state of the control qubit is �a� �0,2� or �b�
�1,1�. The later case results in �f��c which suppresses any LZS
transition.
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time �=��
� t which we substitute in Eq. �A5� to obtain

d2

d�2c1��� + �− i + �2 + �2�c1��� = 0, �A6�

where �= �
��� is the dimensionless coupling strength.

The solution of Eq. �A6� is

c1�t� = �1Di�2/2��2e−i�/4�� + �2Di�2/2��2e3i�/4�� , �A7�

where D
�z� are parabolic cylinder functions, which solve
the Weber equation29

d2

dz2D
�z� + �
 +
1

2
−

1

4
z2�D
�z� = 0 �A8�

and can be obtained from Eq. �A6� by writing the expression
in brackets as −2i�i�2 /2+1 /2+i�2 /2� and substituting
�→2−1/2 exp�i� /4�z.

c2�t� is obtained by inserting Eq. �A7� into Eq. �A3� and
using the property

d

dz
�ez2/4D
�z�� = 
ez2/4D
−1�z� . �A9�

One finds

c2�t� =
�

�2
e−i�/4	− �1Di�2/2−1��2e−i�/4��

+ �2Di�2/2−1��2e−3i�/4��
 . �A10�

To find the constants �1 and �2, we consider initial condi-
tions given by c1��i� and c2��i� and the Wronskian relation

W�D
�z�,D
�− z�� ª D
�z�
d

dz
D
�− z� − D
�− z�

d

dz
D
�z�

=
�2�

��− 
�
. �A11�

We solve the system of equation given by Eqs. �A7� and
�A10� for �1 and �2 using the Wronskian property Eq. �A11�,
we find

�1 =

��1 −
i�2

2
�

�2�
�Di�2/2−1��2e3i�/4�i�c1��i�

−
�2

�
ei�/4Di�2/2��2e3i�/4�i�c2��i�� , �A12�

�2 =

��1 −
i�2

2
�

�2�
�Di�2/2−1��2e−i�/4�i�c1��i�

+
�2

�
ei�/4Di�2/2��2e−i�/4�i�c2��i�� . �A13�

Substituting Eqs. �A12� and �A13� into Eqs. �A7� and
�A10� and having in mind that we are looking for the evolu-
tion operator U�tf , ti� giving the final state knowing the initial
one

���tf�� = U�tf,ti����ti�� , �A14�

we finally find the LZS propagator

ULZS�tf,ti� = �u11�tf,ti� u12�tf,ti�
u21�tf,ti� u22�tf,ti�

� �A15�

with

u11�tf,ti� = u22
� �tf,ti�

=

��1 −
i�2

2
�

�2�

�	Di�2/2��2e−i�/4�f�Di�2/2−1��2e3i�/4�i�
+ Di�2/2��2e3i�/4�f�Di�2/2−1��2e−i�/4�i�


�A16�

and

u12�tf,ti� = − u21
� �tf,ti�

=

��1 −
i�2

2
�

���
ei�/4

�	− Di�2/2��2e−i�/4�f�Di�2/2��2e3i�/4�i�
+ Di�2/2��2e3i�/4�f�Di�2/2��2e−i�/4�i�
 .

�A17�

In the original LZS problem t=0 is defined at the energy
level crossing. A situation where ti0 and tf�0 corresponds
to driving the system through the avoided crossing. The case
ti0 and tf0 corresponds to stop the system before it goes
through the avoided crossing. Finally, ti�0 and tf�0 corre-
sponds to a system which is initially prepared after the
avoided crossing.

APPENDIX B: ASYMPTOTIC EXPANSION OF THE
PARABOLIC CYLINDER FUNCTIONS

The expression of the LZS propagator can be expressed
with simpler functions when the argument ��1 and the pa-
rameter ��1, in this case the parabolic cylinder functions
can be expanded asymptotically.30 The necessary asymptotic
forms to expand Eqs. �A16� and �A17� are

D	i�2/2��2e�i�/4�� � cos �e��2/8	i , �B1�

D	i�2/2−1��2e�i�/4�� �
�2

�
sin �e��2/8	i� +�/4�, �B2�

Di�2/2��2e3i�/4�� � cos �e−3��2/8+i 

+
���

��1 −
i�2

2
� sin �e−��2/8−i� +�/4�,

�B3�
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Di�2/2−1��2e3i�/4�� �
�2

�
sin �e−3��2/8+i� −3�/4�

+
�2�

��1 −
i�2

2
� cos �e−��2/8−i ,

�B4�

where we have defined

 = −
�2

4
+
�2

2
ln� 1

�2
�� + ��2 + �2 ��

+
�

2
��2 + �2, �B5�

and

cos � =�1

2�1 +
�

��2 + �2� ,

sin � =�1

2�1 −
�

��2 + �2� . �B6�

Using the above expressions and writing �i=ei���i� to ful-
fill the condition for the expansion we find

u11�tf,ti� = u22
� �tf,ti�

� �1 − e−��2�sin �f cos �ie
−i	 f+ i+arg ��1−i�2/2�+�/4


+ sin �i cos �fe
i	 f+ i+arg ��1−i�2/2�+�/4
�

+ e−��2/2�cos �f cos �ie
i� f− i�

− sin �f sin �ie
−i� f− i�� , �B7�

and

u12�tf,ti� = − u21
� �tf,ti�

� �1 − e−��2�sin �f sin �ie
−i	 f+ i+arg ��1−i�2/2�+�/4


− cos �f cos �ie
i	 f+ i+arg ��1−i�2/2�+�/4
�

+ e−��2/2�cos �i sin �fe
−i� f− i�

+ cos �f sin �ie
i� f− i�� . �B8�

where cos �i,f, sin �i,f, and  i,f are, respectively, given by Eqs.
�B5� and �B6� for �=ei���i� ,�f.

We noticed that the asymptotic expansions in Eqs.
�B1�–�B4� are valid for the weaker condition �+��1, as
already reported in Ref. 15 for the expansion of �u11�2 and
�u12�2.

APPENDIX C: THE LZS PROPAGATOR AS A ROTATION

In quantum mechanics the rotation operator D�n̂ ,!� by an
angle ! around an axis n̂ of a two-level system has the
representation

D�n̂,!� = ein̂·�!/2

=�cos
!

2
− inz sin

!

2
�− inx − ny�sin

!

2

�− inx + ny�sin
!

2
cos

!

2
+ inz sin

!

2
 .

�C1�

Identifying Eqs. �A15� and �C1� with uij given by Eqs. �B7�
and �B8� we can express the rotation angle ! and the rotation
axis n̂ as functions of the LZS propagator parameters
�i , �f , �. We have

cos
!

2
= �1 − e−��2

cos "	sin �f cos �i + cos �f sin �i


+ e−��2/2 cos �	cos �f cos �i − sin �f sin �i
 ,

�C2�

where

" =  f +  i + arg ��1 −
i�2

2
� +

�

4
, �C3�

and

� =  f −  i . �C4�

The components of the rotation axis are given by �see Fig. 6�

nx =
1

sin
!

2

��1 − e−��2
sin "	sin �f sin �i + cos �f cos �i


+ e−��2/2 sin �	cos �i sin �f − cos �f sin �i
� , �C5�

−1

−0.5

0

0.5

1

0 2 4 6 8 10

n y

τf [ ]

(a) (b)

(c) (d)

−1

−0.5

0

0.5

1

0 2 4 6 8 10

co
s(

ϑ/
2)

τf [ ]
−1

−0.5

0

0.5

1

0 2 4 6 8 10

n x

τf [ ]

−1

−0.5

0

0.5

1

0 2 4 6 8 10

n z

τf [ ]

FIG. 6. �Color online� �a� Cosine of the rotation angle and com-
ponents of the rotation axis �b�–�d� as a function of �f for the di-
mensionless parameters �i=10 and �=3.
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ny =
1

sin
!

2

��1 − e−��2
cos "	− sin �f sin �i + cos �f cos �i


+ e−��2/2 cos �	− cos �i sin �f − cos �f sin �i
� , �C6�

nz =
1

sin
!

2

��1 − e−��2
sin "	sin �f cos �i − cos �f sin �i


+ e−��2/2 sin �	− cos �f cos �i + sin �f sin �i
� . �C7�
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