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Role of hyperfine interaction for cavity-mediated coupling between spin qubits
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We consider two qubits interacting by means of an optical cavity, where each qubit is represented by a
single-electron spin confined to a quantum dot. It is known that electron spins in III-V semiconductor quantum
dots are affected by the decoherence due to the hyperfine interaction with nuclear spins. Here we show that
the interaction between two qubits is influenced by the Overhauser field as well. Starting from an unpolarized
nuclear ensemble, we investigate the dependance of the fidelities for two-qubit gates on the Overhauser field. We
include the hyperfine interaction pertubatively to second order in our analytical results and to arbitrary precision
numerically.
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I. INTRODUCTION

Substantial progress has been made toward the implemen-
tation of coherent interfaces between an electron spin in a
quantum dot and photons.1–4 The coupling of single spins to
photons is a promising mechanism for implementing quantum
information processing schemes based on quantum dots, where
a qubit (quantum bit of information) is represented by electron
spin degrees of freedom.5 The main source of electron spin
decoherence in semiconductor quantum dots is considered
to be the hyperfine interaction to the nuclear spins of the
lattice atoms.6,7 The dephasing time due to the interaction
with an unprepared ensemble of nuclear spins is about 10 ns,7,8

which is much shorter than the single-qubit operation times by
means of electronic control (≈100 ns).9 There are some ways
to deal with this problem: to prolong the decoherence time
using advanced spin-echo techniques10 or dynamical nuclear
polarization,11 to use nuclear spin “poor” materials such as
graphene12 or nitrogen-vacancy (NV) centers in diamond,13 or
to shorten the qubit manipulation time.14 The optical driving
of electron spins has this last advantage and offers mechanisms
for single-qubit operation time around 30 ps.2 Besides single-
qubit manipulations, two-qubit operations are required for
implementing quantum algorithms. One of the schemes for
optical exchange interaction between two spins is based on
virtual Raman transitions between valence band heavy holes
and conduction band electrons.15 Thereby, a set of quantum
dots is coupled to a high finesse cavity. Each quantum dot is
doped with a single electron and can be controlled by linearly
polarized laser light. The laser polarization is perpendicular to
the growth direction of the quantum dots and perpendicular
to the cavity field polarization as well, so that laser light
is acting on the quantum dots without driving the cavity.
A magnetic field is applied in the Voigt configuration, i.e.,
perpendicular to the growth direction and parallel to the cavity
field polarization, so that single photons emited by quantum
dots escape into the cavity and can be detected afterward. The
cavity frequency is chosen such that it is slightly detuned from
the transition from the electron spin down state to the trion
state, while the laser frequency is detuned from the transition
from the spin up state to the trion state. If these detunings are
the same, then the � system is in a two-photon resonance that
allows for manipulating a single-electron spin (Figs. 1 and 2). If
the detunings in a quantum dot are different, but the difference

of the detunings (the detuning from the two-photon resonance)
match for a pair of quantum dots, then the electron spins in
these quantum dots can resonantly exchange energy through
virtual cavity photons (Fig. 1). In this way virtual photons can
be used for performing coherent interaction between arbitrary
qubits. Two-qubit operations can potentially be carried out on
a subnanosecond timescale;15 therefore the decoherence can
be expected to originate mainly from nuclear spins. In this
paper we calculate the fidelities of such two-qubit operations
in the presence of the hyperfine interaction. We will study
in particular partial SWAP operations and the controlled-not
(CNOT) gate. For this purpose, we first calculate the fidelity
of the quantum gates of interest analytically to second order
of the Overhauser field, and subsequently we perform an exact
numerical calculation for comparison.

II. MODEL

We start from the microscopic model describing a quantum
dot embedded in a cavity and irradiated by a laser field,

H =
∑

σ=↑,↓,±3/2

ωσe†σ eσ + ωca
†
cac + ωLa

†
LaL + Hhf

+ gca
†
ce

†
ve↑ − igLa

†
Le†ve↓ + h.c., (1)

where ωσ and eσ are the energy and annihilation operators
for the electronic states in the conduction band with spin
σ = ±1/2 =↑,↓ and in the valence band with total angular
momentum σ = ±3/2 (we assume that the heavy hole subband
is sufficiently split from the light hole band to allow for pure
heavy hole excitation). The quantization axis for the electrons
is set by the external magnetic field along the x direction,
while the quantization axis in the valence band is given by the
structure and assumed to be in z direction. Furthermore, for a
linearly polarized cavity mode (ωc, ac) along the x direction
and linearly polarized laser mode (ωL,aL) in the y direction,
we obtain a radiative coupling to the linear combination
ev = (e−3/2 − e3/2)/

√
2 in the valence band. The coupling

strengths to the cavity and laser modes are denoted with gc

and gL, respectively. The hyperfine interaction of a conduction
band electron in the quantum dot with the surrounding nuclear
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FIG. 1. (Color online) Cavity mode mediated spin-spin inter-
action. If the difference of the detunings � for two quantum dots
coincides, then they can exchange virtual cavity photons of energy
ωc. Here ωc and ωi

L are the frequencies of the cavity mode and the
laser acting on quantum dot i, and � denotes the difference between
the detunings, i.e., the detuning from the two-photon resonance on a
given quantum dot.

spins can be written as

Hhf = S ·
N∑

k=1

AkIk, (2)

where Ik is the operator belonging to the kth nuclear spin in
contact with the electron and Ak denotes the corresponding
hyperfine coupling constant. The average hyperfine coupling
constant for GaAs is 90 μeV.16 The electron spin operator
is given by S = 1

2

∑
σ,σ ′=↑,↓ e†σ σ σσ ′eσ ′ , where σ = (σx,σy,σz)

is the vector consisting of Pauli matrices. Here we neglect
the dipolar hyperfine coupling of the valence band states
since it is typically smaller. In the presence of a magnetic
field along the x direction exceeding the nuclear field of
typically ∼10 mT, we can neglect the flip-flop terms and write
Hhf ≈ Sx

∑N
k=1 AkI

k
x ≡ Sxh, where h denotes the Overhauser

FIG. 2. (Color online) Energy level scheme for a quantum
dot filled with a single electron and coupled to a cavity mode.
The Zeeman-split single-electron states can be excited to a trion
(negatively charged exciton) state |X−〉 by coupling to the cavity or
laser field. Both cavity and laser field frequencies are detuned by
�c and �L from resonance, and the combined system is detuned
from its two-photon resonance by � = �c − �L. The Overhauser
shift caused by the hyperfine coupling to the nuclear spins leads
to a fluctuating detuning, thus reducing the fidelity of the optically
generated quantum gates.

(nuclear) field operator in x direction. We do not take
the nuclear Zeeman terms into account, because they are
considerably smaller than the electron Zeeman energy as well
as the average hyperfine coupling in GaAs. We can then
combine the hyperfine Hamiltonian with the first term in
Eq. (1) by using ωσ = (geμBB + h)σ/2 for σ =↑ , ↓= ±1,
where B is the magnetic field applied along x and ge is the
effective electron g-factor. We can now replace the operator
h with one of its eigenvalues and perform an average over h

later. This allows us to follow the steps performed in Ref. 15
before taking the average over nuclear configurations. In GaAs
quantum dots the number N of nuclear spins is large, typically
between 105 and 106, and therefore the Overhauser field
follows a Gaussian distribution around mean value 0 and with
variance σ 
 A/

√
N .16

In order to eliminate the valence band states, we perform a
Schrieffer-Wolff transformation Heff = e−SHeS with the anti-
Hermitian operator

S = gc

ω↑ − ωv − ωc

a†
ce

†
ve↑ − i

gL

ω↓ − ωv − ωL

a
†
Le†ve↓ − h.c.,

(3)

where we use ω3/2 ≈ ω−3/2 ≡ ωv . By setting the valence band
occupation number to e†vev ≈ 1 and using that the laser field
is in a coherent state with gLaL ≈ �L exp(−iωLt), we obtain
to second order in the cavity and laser couplings gc and gL,

Heff = ωca
†
cac +

∑
i=1,2

[
(geμBB + hi)σ

i
↑↑

+ igi
eff(a

†
cσ

i
↓↑e−iωi

Lt − h.c.)

− g2
c

�i
c(hi)

σ i
↓↓a†

cac −
(
�i

L

)2

�i
L(hi)

σ i
↑↑

]
, (4)

where the index i refers to the respective quantities in dot
i = 1,2, and σi j = |i〉〈j |, i,j =↑ , ↓. The first term inside
the sum in Eq. (4) is the Zeeman splitting due to the external
and nuclear fields, the second term describes the effective
coupling of the cavity mode to the quantum dot electron spins
with strength

gi
eff(t) = gc�

i
L(t)

2

[
1

�i
c(hi)

+ 1

�i
L(hi)

]
, (5)

where

�i
c(hi) = geμBB + hi

2
− ωv − ωc = �i

c + hi

2
, (6)

�i
L(hi) = −geμBB + hi

2
− ωv − ωi

L = �i
L − hi

2
(7)

are the detunings of the cavity and laser fields (Fig. 2), and the
last two terms in Eq. (4) can be interpreted as the Lamb and
Stark shifts of the cavity and quantum dot levels, respectively.

A second Schrieffer-Wolff transform can be used to also
eliminate the cavity mode, which leads to the effective
photon-mediated interaction between two spins i and j in
the interaction picture with H0 = ∑

i(geμBB + hi)σ i
↑↑,

H
ij
int = g̃ij (t)

2
(σ i

↑↓σ
j

↓↑ei(hi−hj )t + σ
j

↑↓σ i
↓↑e−i(hi−hj )t ), (8)
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where

g̃ij (t) = gi
eff(t)g

j

eff(t)

2

[
1

�i(hi)
+ 1

�j (hj )

]
, (9)

with

�i(hi) = �i
c(hi) − �i

L(hi) = �i + hi (10)

represents the coupling strength between two electron spins.
The time-independent interaction Hamiltonian Eq. (8) strictly
applies to the two-photon resonance �i = �j ≡ � in the
absence of nuclear spins. By going over into the rotating frame
with nuclear spins by R = exp[i t(hiσ

i
↑↑ + hjσ

j

↑↑)] we obtain
a time-independent effective interaction Hamiltonian with
Heisenberg transverse coupling type between two electron
spins:

H̃ int
ij = R†Hij

intR = g̃ij (t)

2

(
σ i

yσ
j
y + σ i

zσ
j
z

)
. (11)

The unitary time evolution operator of the interaction
between two electron spins is

Ũ (φ) = exp

(
−i

∫
H̃

ij
int dt

)
, (12)

with φ = ∫
g̃ij (t) dt . The time evolution operator in the

original frame is then

U (φ) = R Ũ (φ)R†

=

⎛
⎜⎝

1 0 0 0
0 cos(φ) i sin(φ)ei(hi−hj )t 0
0 i sin(φ)e−i(hi−hj )t cos(φ) 0
0 0 0 1

⎞
⎟⎠.

(13)

In the subspace {|↑ ↓〉, |↓ ↑〉} the operator U (φ) acts as a
rotation exp(i φ σ · n̂) with n̂ = (− cos[(hi − hj )t], sin[(hi −
hj )t],0). Thus the changed time evolution of the two-electron
spin state due to hyperfine interaction can be interpreted
as a modified rotation in the mentioned subspace (Fig. 3).
There are two distinct effects due to the nuclear spins. First,
the interaction phase becomes Overhauser field dependent
φ = φ(hi,hj ) and, second, the rotation axis starts to precess
in the x-y plane with (hi − hj )t . The second effect has
the maximal contribution when φ(0) = mπ

2 , where φ(0) =
g̃ij (hi = 0,hj = 0) t ≡ g̃ij (0) t and where m is an integer.
When φ(0) = mπ , the trajectory of the two-electron spin state
affected by nuclear spins coincides with an unaffected one.

The two-qubit CNOT operation can be implemented as a
sequence of single spin rotations combined with the unitary
time evolution operator:15

UCNOT = e−i π
4 σ

j
z e−i π

4 e−i π
3 n̂i ·σ i e−i π

3 n̂j ·σ j U

(
π

4

)
e−i π

2 σ i
z

×U
(π

4

)
e−i π

4 σ i
y e−i π

4 σ
j
y ei π

4 σ
j
z , (14)

where n̂i = (1,1,−1)/
√

3, n̂j = (−1,1,1)/
√

3.
We calculate the fidelity of the generated unitary gate in

the presence of the Overhauser field with respect to the ideal
unitary gate (without Overhauser field) in order to quantify the
effect of the nuclear spins. This fidelity reflects the difference
in final state after the gate operation, averaged over pure input
quantum states.17 The average fidelity for operators acting in

.

FIG. 3. (Color online) Effect of the Overhauser fields hi and hj

on the time evolution of the two-electron spin state: change of the
interaction phase and precessing of the rotation axes in the x-y plane
with (hi − hj )t.

4-dimensional Hilbert space is given by18

F [Ô(0),Ô(h)] = 4 + |Tr(Ô†(0)Ô(h))|2
20

, (15)

where Ô(h) and Ô(0) denote the unitary operator with
and without Overhauser field dependence. Next, the average
fidelity Eq. (15) must be averaged over the nuclear spin
field distributions in the quantum dots i and j to extract
the Overhauser field dependence of the fidelities for the time
evolution and the CNOT operator.

III. FIDELITIES IN SECOND-ORDER HYPERFINE
INTERACTION

Starting from the microscopic model Eq. (1) and per-
forming two subsequent Schrieffer-Wolff transformations15

while including the hyperfine interaction, we find the effective
spin-spin interaction Hamiltonian as described above. Using
Eqs. (5), (6), (7), (9), and (10), we find that the effective
spin-spin coupling depends on the Overhauser fields hi and hj

in the quantum dots,

g̃ij (hi,hj ) = g2
c�

i
L�

j

L

16

(
1

�i + hi

+ 1

�j + hj

)

×
(

1

�i
c + hi/2

+ 1

�i
L − hi/2

)

×
(

1

�
j
c + hj/2

+ 1

�
j

L − hj/2

)
. (16)

We assume that the fluctuations of the Overhauser field
around its zero mean value are small, since h ∼ A ∼ 10−5 eV.
Therefore we can investigate analytically the fidelities to the
second order of the Overhauser field. Since the interaction
Hamiltonian (8) is nuclear field dependent partly through the
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coupling coefficient g̃ij , we need to expand it with respect to
the Overhauser field in both coupled quantum dots:

g̃ij (hi,hj )

g̃ij (0)
= 1 + hihj

4

(
�2

�i
c�

i
L�

j
c�

j

L

− 1

�i
c�

i
L

− 1

�
j
c�

j

L

)

+
∑
l=i,j

[
hl

2

(
�

�l
c�

l
L

− 1

�

)

+ h2
l

4

(
�2

�l 2
c �l 2

L

+ 2

�2

)]
+ O(h3). (17)

The trace of the product of the perfect time evolution
operator and the one with included hyperfine interac-
tion is Tr[U †(0) U (h)] = 2{1 + cos[φ(0)] cos(φ) + cos[(hi −
hj )t] sin[φ(0)] sin(φ)}. We obtain for the average fidelity
between those two operators to the second order of the
Overhauser fields hi and hj ,

F (U ) = 1 − 2

5
φ2(0)

(
D2

i h
2
i + D2

jh
2
j

)
− 2

5
sin2[φ(0)]

φ2(0)

g̃2
ij (0)

(hi − hj )2 + O(h3), (18)

where Dl = (�/�l
c�

l
L − 1/�)/2, l = i,j , are the first-

order coefficients in the Overhauser field in Eq. (17),
and the time was expressed through the interaction phase
φ(0) = g̃ij (0) t .

Averaging of the fidelity (18) over both Overhauser fields,
we find

〈F (U )〉hi ,hj
= 1 − 2

5
φ2(0) σ 2

(
D2

i + D2
j

)
− 4

5

φ2(0)

g̃2
ij (0)

sin2[φ(0)]σ 2 + O(h3). (19)

Assuming the parameters �L = 4.5 meV, �c = 5 meV, gc =
0.5 meV, �i

L = �
j

L = 1 meV and � = 0.5 meV, such that
D ≡ Di = Dj = −0.99 × 103 eV−1and g̃ij = 0.02 meV, the
average fidelity given by Eq. (19) behaves as function of φ(0)
as shown in Fig. 4. The value of 〈F (U )〉h by φ(0) = π/4 is
equal to 0.99995.

As we can see from the formula (19), the two effects induced
by nuclear spins decrease the fidelity with corresponding
strengths: the changing of the electron spin-spin coupling
strength and resonance conditions ∝D2 and the precession
of the rotation axis of the two-electron spin state ∝1/g̃2

ij (0).
These are determined in Eqs. (5), (16), and (17) and depend
on tunable parameters such as � and �L (we can express
�c = �L + �). The cavity detuning can be tuned accordingly,
e.g., in photonic two-dimensional slab microcavities using
Xe condensation.19 The contributions to fidelity reduction
from terms ∝D2 and ∝1/g̃2

ij (0) are not of the same order
[Fig. 5(b)], D2 � 0.1/g̃2

ij (0). But we still keep the terms
∝ D2 in our analytical calculations because they give the
upper boundary of the fidelity, when sin[φ(0)] = 0. By
changing the laser detuning �L and the detuning � we
can adjust the values D and g̃ij and thus tune the fidelity
itself.

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

1

0 π/2 π 3 π/2 2 π 5 π/2 3 π

F
(U

)

φ(0)

Δ L = 4 meV; Δ = 0.3 meV

Δ L = 4.5 meV; Δ = 0.5 meV

FIG. 4. (Color online) Fidelity F of the unitary time evolution
operator U generated by the XY interaction in the presence of nuclear
spins as a function of the interaction phase φ(0) ∝ t , where t denotes
the interaction time. Both lines show the analytical result calculated
in second-order perturbation theory in the nuclear field. The fidelity
can be increased by tuning the parameters � and �L. For smaller �

and �L, the fidelity increases due to faster gate operation. The other
parameters are held fixed and are given in the text.

FIG. 5. (Color online) (a) The average fidelity F of the unitary
time evolution operator U for φ(0) = π/4 calculated in second order
of the nuclear field as function of the laser detuning �L and two-
photon detuning �. An adjustment of these parameters can lead to
an increase of the fidelity or to its reduction. However, the choice
of the optimal parameters is limited by the conditions of the applied
formalism. Further details are given in the text. (b) The ratio between
two contributing mechanism to reduction of the fidelity D2(�,�L) ·
g̃2

ij (�,�L). It increases for smaller detunings and consequently for
improved fidelities.
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The dependence of the fidelity [for φ(0) = π
4 ] in respect

to � and �L is shown in Fig. 5(a). It indicates that fidelity
can be improved considerably by changing the detunings.
However, by choosing better parameters, some assumptions of
the applied theory should be conserved, so that g̃ij  � and
�L(�c) � gc. One can tune the intensity of applied control
laser and rotate the electron spins faster, so that they interact
faster as well and “feel” the dephasing in a lesser extent.
However, the coupling strength g̃ij (t) depends quadratically on
laser intensity, and just slight enhancement of Rabi frequency
�L will make it of the same order as �. Therefore, to improve
the fidelity and to keep these relations true one can use
e.g., � = 0.3 meV and �L = 4 meV. With this choice, the
average fidelity for the gate U (π

4 ) is increased to 0.999 991.
The fidelity decays considerably slower in this case as well
(Fig. 4).

The formula Eq. (15) can be applied for calculating the
average fidelity of the CNOT operation. If we neglect the
imperfections of the single-qubit operations in the CNOT
operator sequence and focus only on the decoherence due
to the interaction part, then we find for the trace distance
between a perfect CNOT operator and CNOT operator with
nuclear spins,

Tr[U †
CNOT UCNOT(h)]

= 2

(
1 + cos{2[φ − φ(0)]} cos

[
(hi − hj )

φ(0)

g̃ij (0)

])∣∣∣∣
φ(0)= π

4

.

(20)

The CNOT average fidelity in second order in the Overhauser
field is then

F CNOT = 1 − 16

5

[
φ(0) = π

4

]2

D2σ 2

− 4

5

[
φ(0) = π

4

]2
σ 2

g̃2
ij (0)

+ O(h3). (21)

We find that F CNOT = 0.9999 by using � = 0.5 meV and
�L = 4.5 meV, and F CNOT = 0.999 983 with � = 0.3 meV
and �L = 4 meV, which is smaller than the fidelity of a single
U (π

4 ) operation.
For the average fidelity for further applied CNOT opera-

tions, we find

F CNOT(n) = 4 + |Tr{(U †
CNOT)n [UCNOT(h)]n}|2

20
. (22)

The fidelity F CNOT(n) averaged over the nuclear field (Fig. 6)
is reduced after each application and can be increased by a
better choice of the detuning parameters. Thus for the last set
of parameters only after seven CNOTs, the fidelity drops below
typical error correction thresholds (<0.9999).20

IV. NUMERICALLY EXACT FIDELITIES

For large values of the parameter φ(0) we evaluate the av-
eraging of the fidelities over nuclear fields without expanding
|Tr[U (0)†U (h)]|2. The results of the numerical averaging are
shown in the Fig. 7. The comparison to the analytical result
in Fig. 7(a) reveals that our analytical model can predict the
behavior of the fidelity only up to a certain value of φ(0). From

 0.9988

 0.999

 0.9992

 0.9994

 0.9996

 0.9998

1

1 2 3 4 5 6 7 8 9 10

F
C

N
O

T

n

ΔL = 4.5 meV; Δ = 0.5 meV
ΔL = 4 meV; Δ = 0.3 meV

FIG. 6. (Color online) The analytical and numerical results for
fidelity of n subsequent CNOT operations in the presence of nuclear
spins for different detunings. The analytically calculated values are
represented by circles and the numerically calculated ones by stars.

Fig. 7(a) one can see that around φ(0) 
 12 the numerical and
analytical data begin to differ. For large φ(0), the analytical
data even diverge into negative values. The numerical data, on
the other hand, converge to 1/2. The numerical evaluation of
the fidelity for different sets of detunings [Fig. 7(b)] confirms
that the tuning of the transition parameters can improve the
fidelity significantly. The numerical curve oscillates with the
same period 2π as the analytical one. The maxima correspond
to the situation, when the fidelity is decreased only due to the
modified interaction phase between the electron spin and there
is no effect of the changed rotation axes of the two-electron
spin state. The maxima correspond to the decay of the fidelity,
where both Overhauser field-induced effects are contributing,
and the effect of the precession of the rotation axis is
maximal.

The fidelity curve suggests that the behavior of its lower
boundary could be described by the Gaussian ∼e−φ(0)2

. The
fidelity envelope to the second order of φ(0) is obtained from
Eq. (19) by setting sin[φ(0)]2 = 1, We fit this envelope to
the decay function 1

2 {1 + exp[−φ(0)2/τ 2]}, where τ is given
through parameters σ , D, and g̃ij from Eq. (19) and is defined
as

τ =
√

5

8

g̃ij (0)

σ
√

1 + D2 g̃2
ij (0)

= τ (�,�L). (23)

The Gaussian function gives a good fit to the minimum
points of the fidelity for small φ(0) but decays faster for
larger φ(0). The tail of the fidelity can be fitted by adding
a third-order term to the argument of the exponential function,
1
2 {1 + exp[−φ(0)2/τ 2 + c φ(0)3]} with c as a fitting parameter.
The fits are shown in Fig. 7 and fit with τ1 and c1 corresponds
to the curve with parameters �L = 4.5 meV and with τ2 and
c2 to numerical curve with another set of parameters. The fits
yield c1 = 9.6 × 10−7 and c2 = 5 × 10−8.

The time dependance of the fidelity can be found by
changing from interaction phase φ(0) to time by assuming
φ(0) = g̃ij (0) t . Then for short time dependance of the lower
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 0.5
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 0.8

 0.9

1

0 10π 20π

φ(0)

(b)

(a)

numerical
analytical

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 10π 20π 30π

φ(0)

(b)

(a)

ΔL = 4 meV; Δ = 0.3 meV
ΔL = 4.5 meV; Δ = 0.5 meV

fit 0.5[1+exp(−φ²(0)/τ²2+c2φ³(0)]
fit 0.5[1+exp(−φ²(0)/τ²1+c1φ³(0)]

FIG. 7. (Color online) Numerically calculated average fidelity
of the time evolution operator for large φ(0). (a) The comparison
between analytical and numerical calculations for �L = 4.5 meV and
� = 0.3 meV. The analytically obtained fidelity diverges for large
φ(0) while the numerical fidelity saturates to 0.5. (b) Comparison
between two numerically calculated fidelities for the gate U (φ) with
different detunings.

boundary of the fidelity is described by the function 0.5[1 +
exp(−t2/T 2)], where

T =
√

5

8

h̄

σ
√

1 + D2 g̃2
ij (0)

. (24)

Since from Fig. 5 we know that D2 g̃2
ij (0)  1, we can neglect

it here. It follows that T =
√

5
8

h̄
σ

=
√

5
8

h̄
√

N
A

, where N is the
number of the nuclear spins and A is hyperfine interaction
constant. This implies that the decay of the fidelity does not
depend on the interaction strength of the electron spins and
is affected only by the nuclear field distributions. By tuning
the transition parameters we increase the interaction strength
between the coupled electron spins to some reasonable value.
Thus the spins acquire a larger interaction phase within the
same time. But the decay time of the time evolution operator
fidelity is the same and for GaAs (N = 105, A = 90 μeV)
T = 2 ns. The T2 decay time of a electron spin coupled to the
nuclear bath is given by T2 = 2h̄

√
N

A
21 and in GaAs is ≈ 5 ns.

Since both interacting spins are affected by the decoherence,
the decay of the common interaction phase is faster than of a
single one (T ≈ 0.4 T2).

The numerically exact CNOT fidelities are presented in
Fig. 6. The second-order approximation in Overhauser field
gives a good agreement to the numerical results. Since the
CNOT operator is defined for a fixed interaction phase, there
is no oscillation behavior and the fidelity decreases for each
further applied CNOT gates.

V. CONCLUSIONS

We calculated average fidelities for unitary time evolution
operator and CNOT operation of two quantum dots interacting
through an off-resonant cavity mode. We obtained results to
second order of hyperfine interaction analytically and to an
arbitrary order by averaging the fidelities over the Overhauser
field distribution numerically. Both approaches are in good
agreement for small interaction pulse durations. If only the lon-
gituidinal component of the Overhauser field in two interacting
quantum dots is considered for the hyperfine interaction, then
the time evolution of the two-electron spin state changes in two
ways (Fig. 3), and both effects contribute differently to the re-
duction of the fidelity. A prolongation of the decoherence time
of the two-electron state is possible by narrowing the distribu-
tion of the Overhauser field22 [Eqs. (19) and (21)]. The preces-
sion of the rotion axis of the two-electron state on the Bloch
sphere can be minimized by preparing the the nuclear spin
states in each interacting quantum dot in the same certain state
and minimizing the fluctuations of the Overhauser fields.23
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