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We examine the influence of nuclear spins on the perfor-
mance of optically induced rotations of single electron spins in
semiconductor quantum dots. We consider Raman-type optical
transitions between electron spin states and take into account the
additional effect of the Overhauser field. We calculate average

fidelities of rotations around characteristic axes in the presence
of nuclear spins analytically with perturbation theory up to sec-
ond order in the Overhauser field. Moreover, we calculate the
fidelity using numerical averaging over the nuclear field distri-
bution, including arbitrary orders of the hyperfine interaction.

1 Introduction Single electron spins in quantum dots
represent a suitable physical system for the experimental
realization of quantum bits (qubits) [1]. Since single- and
two-qubit operations are sufficient for implementing any
arbitrary quantum gate [2], a large amount of research has
been conducted for the realization of single-qubit state con-
trol and two-qubit operations [3–9]. Along with electrical
control, one of the possibilities of manipulating single elec-
tron spin states is by optical means [4, 10, 11, 14], which
offers a fast and coherent way for control of spin states in
quantum dots. Experimental achievements in optical initial-
ization, read out, coherent control, and manipulation of single
electron spins in quantum dots [15–22] have reached a level at
which their use for quantum information processing seems to
be feasible. Additionally, optical control offers the possibil-
ity of incorporating electron spin qubits into hybrid systems
in which the single-spin state is entangled with the state of
a photon and quantum information is transferred by pho-
tons [23–25]. The accomplishment of the essential steps for
optimal optical single-spin control is affected by different
types of errors. One type of error can be caused by imper-
fection of the applied laser pulses, which can be optimized
by using laser feedback loops [11] or laser pulses of spe-
cific form [12, 13]. Another type of error can originate from
mixing of heavy- and light-hole states. It influences the trion
state, which is used in some schemes as an intermediate state

[14, 22] and can result in an actual population of the trion
state and not a virtual one, which is necessary for the con-
trol schemes. However, the mixing of the heavy and light
holes in quantum dots can be controlled, e.g., by means of
anisotropic stress [26] and in this way the errors created by
the phenomenon can be avoided.

An additional intrinsic mechanism causing decoherence
of electron spins in III–V semiconductor quantum dots is
their interaction with the nuclear spins of the host material
[7, 27–29]. An electron confined in such a quantum dot inter-
acts by hyperfine coupling with a large nuclear bath (roughly
105–106 nuclear spins per quantum dot). The total magnetic
field of the nuclei, also called the Overhauser field, fluctuates
randomly and acts as an effective magnetic field on the elec-
tron, causing dephasing of the electron spin state. There are
possibilities of improving the decoherence time by reducing
the fluctuations of the Overhauser field. One such possibility
is to polarize nuclear spins to a high degree [28]; another
is to drive or project the nuclear spin state into an eigen-
state of the Overhauser field operator [30, 31]. A significant
improvement of electron spin coherence time was observed in
experiments where nuclear spin fluctuations were suppressed
by driving the nuclear field to a stable state [32–34].

In this paper, we focus on the single-spin rotation errors
arising from the interaction with an unpolarized ensemble
of nuclear spins. One possibility of rotating the single-spin
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Figure 1 Energy level scheme for an electron spin interacting
with σ+-polarized light. The transverse magnetic field splits x-
eigenstates of the electron spin by the Zeeman energy ωZ. The
electron spin states are virtually coupled to the trion state |t↑⟩ by
the laser pulses #1(t) and #2(t) with frequencies ω1 and ω2, with
detuning $.

states in a quantum dot is by using Raman transitions [4, 10]
between single electron spin states split by a magnetic field in
Voigt geometry via the trion state comprised of two electrons
and a heavy hole. In this case, the transitions are driven by
specifically detuned laser pulses (Fig. 1). The hyperfine inter-
action leads to a fluctuating spin-state splitting and therefore
to imperfect spin rotations.

To compare the single-spin rotations in the presence and
in the absence of nuclear spins, we compute the fidelities of
the unitary time evolution of the electron spin state under the
action of the laser light with and without including the hyper-
fine interaction. We average the obtained fidelities over the
Overhauser field distribution analytically to second order of
the hyperfine coupling and numerically to an arbitrary order.
We calculate the average fidelities for rotation axes parallel
and perpendicular to the external magnetic field and discuss
the factors that influence the average rotation fidelities in both
cases. The single-qubit gate errors are an important parameter
to estimate the performance of quantum error correction [35].
Some standard estimates predict that fault-tolerant quantum
computation requires a fidelity of at least 0.9999.

The investigation of the fidelities of single-qubit rotations
exposes the dependence on the relative orientation of the rota-
tion axis relative to the external magnetic field. We find that
the errors of electron spin state rotations around different axes
are not identical. It would be interesting to confirm this obser-
vation for electron spin resonance on single spins in electro-
statically defined or semiconductor nanowire quantum dots.

We find an oscillatory behavior of the fidelity, which, in
contrast to the case of cavity-mediated two-qubit gates [36],
depends only on the interaction time, the Rabi frequencies of
the composite laser pulse, and the detuning. This allows us
to find an analytical description of the oscillatory behavior
as a function of time, and investigate the recurrence of unit
fidelity at finite gate times. These recurrences could be used
for optimized gate operation in the presence of hyperfine
interactions.

This paper is organized as follows. In Section 2, we
describe the mechanism of Raman-type optical transitions

between single electron states. We include the hyperfine
interaction to the system in Section 3 and derive the time-
evolution operator of the single-spin state in the presence
of the Overhauser field. We present the calculated rotation
fidelities with the analysis of the oscillatory behavior and
possible experimental observation of the calculated effects
in Section 4.

2 Optically-induced single-spin rotations The
interaction betweenσ+-polarized light in the growth direction
z and a single electron confined in a quantum dot is given by

H = Et

∣∣t↑
〉 〈

t↑
∣∣ + g∗(t)

∣∣t↑
〉
⟨↑| + g(t) |↑⟩

〈
t↑

∣∣ , (1)

where |↑⟩ is the spin-up state in the conduction band and∣∣t↑
〉

is the trion state formed by two electrons in the singlet
state and a heavy hole with angular momentum +3/2. Et

is the energy of the trion state and g(t) is the coupling to
the laser field. With an additional magnetic field applied
in the x direction, perpendicular to the growth direction
(Voigt geometry), the Hamiltonian (1) reads in the basis
|±x⟩ = 1√

2
(|↑⟩ ± |↓⟩),

∣∣t↑
〉

[23]

H =

⎛

⎜⎜⎜⎜⎜⎜⎝

ωZ

2
0

g∗(t)√
2

0
−ωZ

2
g∗(t)√

2
g(t)√

2

g(t)√
2

Et

⎞

⎟⎟⎟⎟⎟⎟⎠
, (2)

where ωZ is the Zeeman splitting of the electron states |±x⟩.
Applying two-color laser pulses enables arbitrary rotation of
the electron spin by a single pulse [10],

g(t) = #1(t)e−iω1t−iα + #2(t)e−iω2 t ,

with Raman resonance conditions:

ω1 + ωZ/2 = ω2 − ωZ/2 = Et − $,

where $ is the laser detuning from the trion resonance (see
Fig. 1) and α gives the relative phase between two lasers with
real Rabi frequencies #1(t) and #2(t). In the rotating frame
given by e∓iωZ t/2 |±x⟩, e−i(Et−$)t

∣∣t↑
〉
, the Hamiltonian is

H = $
∣∣t↑

〉 〈
t↑

∣∣

+ 1√
2

(
#1(t)eiα + #2(t)eiωZ t

)
|+x⟩

〈
t↑

∣∣ + h.c.

+ 1√
2

(
#1(t)eiα−iωZ t + #2(t)

)
|−x⟩

〈
t↑

∣∣ + h.c. (3)

In the case
∣∣#1,2(t)

∣∣ ≪ ωZ, the fast oscillating terms can be
neglected and the Hamiltonian becomes

H = $
∣∣t↑

〉 〈
t↑

∣∣ + 1√
2
#1(t)eiα |+x⟩

〈
t↑

∣∣ + h.c.

+ 1√
2
#2(t)(|−x⟩

〈
t↑

∣∣ +
∣∣t↑

〉
⟨−x|). (4)
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This Hamiltonian describes the Λ system presented in Fig. 1.
If the temporal profiles of the laser pulses for #1(t) and #2(t)
are of rectangular shape and of the same width, the Hamil-
tonian (4) will be proportional to a step function, such that
the time dependance of the Rabi frequencies can be omitted.
For a realistic laser pulse, this assumption holds if the rise
time of the pulse is much shorter than its duration. Assum-
ing

∣∣#1/2

∣∣ ≪ $, we obtain the effective Hamiltonian by the
Schrieffer–Wolff transformation [4, 36]:

Heff ≈

⎛

⎜⎜⎜⎜⎜⎜⎝

− #2
1

2$
−eiα

#1#2

2$
0

−e−iα
#1#2

2$
− #2

2

2$
0

0 0 $ + #2
1 + #2

2

2$

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The electron spin states are decoupled from the trion state
and the effective single-spin Hamiltonian reads

Heff =
#2

2 − #2
1

4$
σz−cos α

#1#2

2$
σx+sin α

#1#2

2$
σy, (5)

where σi are the Pauli matrices in the basis of the states |±x⟩.
The time-evolution operator for the Hamiltonian (5) can be
represented as

U(t) = exp (−iωt n̂ · σ) ,

where

ω = #2
1 + #2

2

4$
,

where σ is the vector of Pauli matrices and the components
of the unit vector n̂ are given by

nx = − cos α
2 #1#2

#2
1 + #2

2

≡ − cos α n⊥,

ny = sin α
2 #1#2

#2
1 + #2

2

≡ sin α n⊥,

nz = #2
2 − #2

1

#2
1 + #2

2

.

3 Hyperfine coupling To study the influence of
nuclear spins on the performance of the spin rotations, we
add the hyperfine interaction of an electron confined in a
quantum dot to the Hamiltonian (1), which is given by the
contact Fermi interaction [29]:

Hhf = S · h = S ·
N∑

k=0

AkIk, (6)

where S is the electron spin operator and h is the so-called
Overhauser field, the effective nuclear spin field, Ik are the
nuclear spin operators, Ak is the hyperfine coupling strength

of a nuclear spin at the kth lattice site, and N is the number of
nuclear spins interacting with the electron. According to the
central limit theorem, the expectation value of the Overhauser
field underlies a Gaussian distribution with average value of
zero and with the standard deviation σ = A/

√
N, where A

is the average hyperfine constant. For our calculations, we
used A = 90 !eV and N = 105 [7].

The system Hamiltonian together with the hyperfine
interaction is

Hh =

⎛

⎜⎜⎜⎜⎜⎜⎝

ωZ

2
+ hx

2
(hz + ihy)

2
g∗(t)√

2
(hz − ihy)

2
−ωZ

2
− hx

2
g∗(t)√

2
g(t)√

2

g(t)√
2

Et

⎞

⎟⎟⎟⎟⎟⎟⎠
, (7)

where hi (i = x, y, z) are the components of the Overhauser
field, which is considered here to be a fluctuating effective
magnetic field. We express the Hamiltonian (7) in the same
rotating frame as for the Hamiltonian (3), and neglect again
the fast oscillating terms under the assumption

∣∣#1,2(t)
∣∣ , σ ≪

ωZ. In this way, the transverse terms from the hyperfine cou-
pling are excluded from our calculations and the Hamiltonian
in the rotating frame with included Overhauser field becomes

Hh ≃

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

hx

2
0

#1(t)eiα

√
2

0
−hx

2
#2(t)√

2
#1(t)e−iα

√
2

#2(t)√
2

$

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

Choosing again the laser profiles of rectangular shape and the
same width for #1/2(t) and assuming that the Overhauser field
is static, we can render the Hamiltonian Hh time independent.
The system undergoes the dynamics given by Hh only during
the laser pulse. Applying again the Schrieffer–Wolff transfor-
mation and treating the nuclear field as an effective magnetic
field, we obtain an effective Hamiltonian. Also here, the elec-
tron spin states are decoupled from the trion state and we
can work only on the electron spin state subspace. For the
single-spin Hamiltonian, we find (up to a constant)

Hh
eff ≈ 1

2

(
hx − #2

1(t)
2$ − hx

+ #2
2(t)

2$ + hx

)
σz

− cos α
2$#1(t)#2(t)

4$2 − h2
x

σx

+ sin α
2$#1(t)#2(t)

4$2 − h2
x

σy. (9)
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The unitary time-evolution operator of this Hamiltonian can
be represented as

Uh(t) = exp (−iω(h)t n̂(h) · σ) , (10)

where

ω(h) = 1
2

(
4$2 − h2

x

)
(

16$2#2
1#

2
2 +

(
2$

(
#2

2 − #2
1

)

− hx

(
#2

2 + #2
1

)
+ hx

(
4$2 − h2

x

))2
)1/2

.

The components of the unit vector n̂(h) are

nx(h) = − cos α n⊥(h),

ny(h) = sin α n⊥(h),

nz(h) = 2$(#2
2−#2

1)−hx(#2
2+#2

1)+hx(4$2−h2
x)

2(4$2 − h2
x)ω(h)

,

with

n⊥(h) ≡ 2#1#2$

(4$2 − h2
x)ω(h)

.

4 Fidelity The deviation in the optical rotations of the
electron spin state due to the coupling to nuclear spins is
studied by calculating the fidelity of the time evolution. The
fidelity for two unitary operators averaged over all possible
initial states on which the operators are acting is given by
[37, 38]

F =
n +

∣∣Tr
[
U

†
idealUactual

]∣∣2

n(n + 1)
, (11)

where n is the dimension of the Hilbert space, Uideal rep-
resents the ideal operator, and Uactual is the actual operator.
The fidelity of single-spin rotation (n = 2) in the presence of
nuclear spins is given by

F = 1
3

+ 1
6

∣∣Tr
[
U(t)†Uh(t)

]∣∣2
.

The trace of the product of the perfect time-evolution opera-
tor and the time-evolution operator with random Overhauser
field is given by

Tr
[
U(t)†Uh(t)

]
= 2(cos ωt cos ω(h)t

+ sin ωt sin ω(h)t[n⊥n⊥(h) + nznz(h)]).

To obtain the average fidelity, we need to average the
following expression analytically to a particular order or
numerically over the Overhauser field distribution:

F = 1
3

+ 2
3

(cos ωt cos ω(h)t

+ sin ωt sin ω(h)t[n⊥n⊥(h) + nznz(h)])2 . (12)

The average fidelity to the second order of the Overhauser
field is given by

⟨F⟩h = 1 − (#2
1 + #2

2 − 4$2)2(#2
1 − #2

2)2

96$4(#2
1 + #2

2)2
t2σ2

− 2(#2
1+#2

2−4$2)2#2
1#

2
2

3$2(#2
1+#2

2)4
σ2 sin2 ωt +O(σ4),

(13)

where σ = ⟨h2
x⟩ is the standard deviation of the Overhauser

field distribution. The numerically obtained average fidelity
using the effective Hamiltonians is presented in comparison
to the analytical result to second order of hyperfine interac-
tion in Figs. 2 and 3.

Additionally, we determine the exact average fidelity by
evaluating Eq. (11) for the full three-level system. In this
case, the ideal unitary time-evolution operator is defined
through the Hamiltonian (4) and the actual unitary time-
evolution operator is defined through the Hamiltonian (8).
The averaging of the fidelity over the Overhauser field is
done numerically.

Figure 2a shows the average fidelity for a rotation around
a generic axis, which is not parallel or perpendicular to
the characteristic axes. In this case, #1 ̸= #2 and #1,2 ̸= 0,
as can be seen in Eqs. (5) and (9). For the parameters
#1 = 1 meV, #2 = 0.5 meV, and $ = 10 meV, the duration
of a π/2 rotation in the effective model is 35 ps and the aver-
age fidelity is 0.999978 (the exact model gives 0.999988 for a
pulse duration of 35 ps). The average fidelities obtained both
numerically and using second-order perturbation theory from
the effective model, Eq. (13), agree for short interaction times
and remain in good agreement up to the nanosecond scale.
However, the agreement between the average fidelities calcu-
lated using the effective Hamiltonians and the exact average
fidelity is presented up to 50–100 ps.

The rotations around the axis along the magnetic field
(x-axis here) are obtained by setting #1 or #2 equal to
zero. The average fidelity for such a rotation is shown in
Fig. 2b with #1 = 1 meV, #2 = 0, and $ = 10 meV. For
these parameters, a π/2 rotation in the effective single-spin
model lasts around 41 ps and the average error for the rota-
tion is 1 − ⟨F⟩h = 5.3 × 10−5 (the exact average fidelity for a
laser pulse of 41 ps duration is 1 − ⟨F⟩h = 3.9 × 10−5). The
reduction of the average fidelity in this case is anticipated,
since the rotation frequency ω is a quadratic function of both
Rabi frequencies and the reduction of these frequencies leads
to smaller ω and thus to smaller fidelities. The average fidelity
obtained analytically to second order of the Overhauser field
coincides with the numerically averaged fidelity for a few
full rotations around the x-axis (Fig. 2b) and reproduces it
on the nanosecond scale.

The rotations around an axis lying in the y–z plane (cor-
responding to the σx and σy terms in Eqs. (5) and (9)) can
be obtained by applying pulses with #1 = #2. Furthermore,

www.pss-b.com © 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2 (a) Fidelity averaged over Overhauser field for a generic
spin rotation. The presented results were obtained numerically and
analytically from the effective two-state model and compared to
average fidelity calculated exactly considering all three electronic
levels. Here, #1 = 1 meV, #2 = 0.5 meV, and $ = 10 meV. (b)
Fidelity for a spin rotation around the x-axis for the effective single-
spin model averaged numerically over Overhauser field distribution
and its the average value to second order of the Overhauser field.
The exact average fidelity is obtained from exact dynamics of
the three-level electronic system. Here, #1 = 1 meV, #2 = 0, and
$ = 10 meV.

the rotation axis is specified by the phase α, as shown in
Eq. (5). However, setting #1 = #2 does not result in a rota-
tion around an axis lying in the y–z plane if the electron spin
interacts with the nuclear spins. The axis is rotated out of the
y–z plane because of the Overhauser field, as can be seen in
Eq. (9). The average fidelity of a single-spin rotation around
an axis, that is defined by #1 = 1 meV and #2 = 0.98 meV,
is shown in Fig. 3. The fidelity averaged over the nuclear
spin distribution numerically to an arbitrary order and aver-
aged analytically to the second order of the Overhauser field
h is enhanced compared to the average fidelities in other
cases presented in Fig. 2. The same can be found also for
the exact average fidelity (Figs. 2 and 3). A good agreement
between the exact average fidelity and the average fidelity
computed using the effective model can be observed on the
nanosecond time scale. The duration of a π/2 rotation in the
effective model reduces to 20 ps, while the average error for
such rotation decreases to 1 − ⟨F⟩h = 3 × 10−6 (the exact
value is 1 − ⟨F⟩h = 4 × 10−9). This strong improvement in
fidelity cannot be explained only by increase of the inter-

0.99998

0.99999

1

0 0.25 0.5 0.75 1

t, ns

⟨F⟩h

exact
eff. model: analytical
eff. model: numerical

Figure 3 Fidelity for rotations around an axis nearly in the y–z
plane averaged over nuclear spins numerically and to second order
of hyperfine interaction using the effective single-spin model. The
exact average fidelity was computed numerically without excluding
the trion level. Used parameters: #1 = 1 meV, #2 = 0.98 meV, and
$ = 10 meV.

action energy with the laser light ω. The increased average
fidelity in the case when #1 is close to #2 and vice versa can
be attributed to the interplay of different contributions lead-
ing to a reduction of the average fidelity. As can be seen in
Eq. (13), the second term reduces the fidelity as ∝ t2 and the
third term as ∝ sin2 ωt. When both Rabi frequencies #1 and
#2 are of roughly the same value, the fidelity-reducing term
∝ t2 becomes less relevant compared to the term ∝ sin2 ωt.
This can be observed in Fig. 3, where the average fidelity
exhibits an oscillatory behavior for a few full rotations around
the given axis. The fidelity oscillations become dominated by
the ∝ t2 decay for longer interaction times.

The average fidelity depends not only on time (duration
of the laser pulse), it also depends on the detuning and the
Rabi frequencies, since they affect the interaction strength
and rotation axis of the applied pulse. The density plot in
Figs. 4 and 5 shows the dependence of the average fidelity
calculated using the effective model on the Rabi frequencies.
The calculations were done for a fixed time duration of 50 ps,
which corresponds to a different rotation angle depending on
the two Rabi frequencies. Figure 4a shows the dependence
of the average fidelity on the two Rabi frequencies. The
average fidelity increases as the Rabi frequencies grow, since
it increases the interaction energy ω and shortens the time
needed to perform certain rotations. What is remarkable
here is the strong enhancement of the fidelity (up to unity)
in the region where #1 = #2. This means that the average
fidelity of a single-spin rotation depends on the rotation axis
in addition to the rotation frequency. The rotations around
axes perpendicular to the applied magnetic field are the least
sensitive to the nuclear spin effects. The cut of the density
plot in Fig. 4a for #1 = #2 is shown in Fig. 4b. As can be
seen in both Fig. 4a and b, for small # the average fidelity
has a constant value and then increases and oscillates. From
the formula (13), we have for the average fidelity in the case

© 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 4 (a) Average fidelity to second order of hyperfine interac-
tion for $ = 10 meV as function of Rabi frequencies after t = 50 ps
(calculated by using the effective model). (b) The special case of the
average fidelity, when Rabi frequencies are equal (#1 = #2 ≡ #)
as function of# at$ = 10 meV for different interaction times: 25 ps
(blue) and 50 ps (red). We include also the exact average fidelity for
both interaction times.

#1 = #2 ≡ # and under the assumption that # ≪ $:

⟨F⟩h ≈ 1 − 2
3

$2

#4
σ2 sin2 #2t

2$
. (14)

For # ≥
√

2$/t, the fidelity oscillates with decreasing
period and for # ≪

√
2$/t (for t = 50 ps and $ = 10 meV

this threshold is around 0.5 meV) is given by ⟨F⟩h ≈ 1 −
σ2t2/6, which for t = 50 ps is ⟨F⟩h ≈ 0.999927 and for t =
25 ps is ⟨F⟩h ≈ 0.999982. The last expression describes the
average fidelity to second order of hyperfine interaction for an
electron spin interacting just with a static magnetic field and
nuclear spins. As is shown in Fig. 4b, this fidelity increases
for shorter interaction times.

The behavior of the average fidelity for spin rotations
at #1 = #2 has a special character: it reaches unity when
sin ωt = 0. This phenomenon is due to the overlap of two
effects. Without nuclear spins this situation corresponds to a
rotation around an axis in they–zplane, but with the hyperfine
interaction there is an additional fluctuation of the rotation
axis perpendicular to the y–z plane. In the case of #1 = #2,
these fluctuations average to zero. This leads to the result that
only the off-diagonal elements of the time-evolution operator
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0.99998

1
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∆, meV

⟨F⟩h
Ω2 = Ω1 = 1 meV
Ω2 = 0.5 meV
Ω2 = 0 meV

exact eff. model

Figure 5 Average fidelity after 50 ps interaction time as a function
of the laser detuning for different Rabi frequencies: the red plot
shows the special case #1 = #2 = 1 meV, the green plot shows the
average fidelity for #1 = 1 meV, #2 = 0.5 meV, and blue stands for
#1 = 1 meV, #2 = 0 meV.

are altered by the hyperfine interaction. But exactly this effect
cannot be captured by the fidelity, when sin ωt = 0, because
in this case the ideal time-evolution operator is the identity
operator. Consequently, the trace of the product of the time-
evolution operators, the ideal one and the one with hyperfine
interaction, does not contain the off-diagonal terms of the
affected time-evolution operator, which results in a perfect
fidelity. This can also be seen in the dependence of the fidelity
on the laser detuning in Fig. 5. For equal Rabi frequencies,
the fidelity oscillates with increasing period and reaches unity
again for sin ωt = 0.

Figure 5 shows the dependence of the average fidelity
on the laser detuning $ calculated using the effective and
the exact models. The curves calculated using the effective
model show the same behavior as the ones from the exact
calculations and decrease to the same value of ∼0.99992
for a large value of laser detuning for different combina-
tions of #1 and #2. However, the exact curves decrease
to a slightly different fidelity value of ∼0.99994 for large
$. As we can see, the fidelity of single-spin rotations can
be increased by using smaller laser detunings. However,
this strategy is not optimal because, by decreasing the laser
detuning, we increase the population probability of the trion
state, which otherwise can be assumed to be only virtually
populated. Spontaneous relaxation of the trion state repre-
sents a fast relaxation mechanism that will lead to further
decrease of fidelity for single-spin rotations in the case of
non-negligible trion population. The trade-off of sufficiently
large laser detuning for negligible trion state population is
not a serious limitation concerning the quantum computa-
tion because, even for large $, the average fidelity is given
by ⟨F⟩h > 0.9999 for different combinations of #1 and #2

after 50 ps interaction time (see Fig. 5).
The calculated fidelities correspond to small average

errors for the single-spin rotations, which are hard to observe
experimentally. These fidelities will become relevant as
soon as the rotation fidelities describing the laser imperfec-
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tions and heavy–light hole mixing (currently estimated to
be around 96% [11]) will be overcome. Assuming that the
spin-state initialization errors are on the order of 1% [15],
the errors of the spin rotations should be on the order of
10% to be measured in an experiment. The minimal aver-
age fidelity was found for the case of equal Rabi frequencies
in the limit #1, #2 → 0. In this case, the average fidelity is
given by 1 − σ2t2/6, which means that the average fidelity
will sink to 0.9 at t = 1.8 ns. The Rabi frequencies in this
case should satisfy #1, #2 ≪

√
2$/t according to Eq. (14).

For $ = 10 meV, one requires #1, #2 ≪ 0.1 meV, which is
experimentally feasible.

5 Conclusions We studied the nuclear spin effect on
the performance of Raman-assisted optical transitions of
an electron spin in a semiconductor quantum dot. It was
shown that the average rotation fidelities obtained using
second-order perturbation theory are in good agreement up
to the nanosecond time scale with the numerically averaged
fidelities. The average fidelities were calculated for differ-
ent rotation axes using both approaches. In the framework
of the formalism used for describing the interaction of the
single electron spin with the laser light, the average rotation
fidelities differ strongly for different rotation axes. While the
rotations around axes in the y–z plane, perpendicular to the
applied magnetic field, suffer least under interaction with
nuclear spins, the rotations around the x-axis, which is par-
allel to the external magnetic field, are the most affected by
the hyperfine interaction.
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