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Abstract
We study the Landau level (LL) spectrumusing amulti-band k p· theory inmonolayer transition
metal dichalcogenide semiconductors.Wefind that in awidemagnetic field range the LL can be
characterized by a harmonic oscillator spectrum and a linear-in-magnetic field termwhich describes
the valley degeneracy breaking. The effect of the non-parabolicity of the band-dispersion on the LL
spectrum is also discussed.Motivated by recentmagnetotransport experiments, we use the self-
consistent Born approximation and theKubo formalism to calculate the Shubnikov–deHaas
oscillations of the longitudinal conductivity.We investigate how the doping level, the spin-splitting of
the bands and the broken valley degeneracy of the LLs affect themagnetoconductance oscillations.We
considermonolayerMoS2 andWSe2 as concrete examples and compare the results of numerical
calculations and an analytical formulawhich is valid in the semiclassical regime. Finally, we briefly
analyze the recent experimental results (Cui et al 2015Nat. Nanotechnol. 10 534) using the theoretical
approachwe have developed.

1. Introduction

Atomically thin transitionmetal dichalcogenides semiconductors (TMDCs) [1–3] are recognized as amaterial
systemwhich, due to itsfinite band gap,may have a complementary functionality to graphene, the best known
member of the family of atomically thinmaterials. The experimental evidence that TMDCs become direct band
gapmaterials in themonolayer limit [4] and that the valley degree of freedom [5] can be directly addressed by
opticalmeans [6–9]have spurred a feverish research activity into the optical properties of thesematerials [10–
13]. Equally influential has proved to be the fabrication of transistors based onmonolayerMoS2 [14]which
motivated a lot of subsequent research to understand the transport properties of thesematerials. Achieving good
Ohmic contact tomonolayer TMDCs is still challenging and this complicates the investigation of intrinsic
properties through transportmeasurements. Nevertheless, significant progress has beenmade recently in
reducing the contact resistance by e.g., using local gating techniques [15], phase engineering [16], making use of
monolayer graphene as electrical contact [17–19], or selective etching procedure [20].

Ourmain interest here is to studymagnetotransport properties ofmonolayer TMDCs.Unfortunately, the
relatively strong disorder inmonolayer TMDC samples have to-date hindered the observation of the quantum
Hall effect. Nevertheless, the classical Hall conductance has beenmeasured in a number of experiments
[15, 18, 21–23] andwas used to determine the charge density ne and to extract theHallmobilityμH. In addition,
three recent works have reported very promising progress in the efforts to uncovermagnetic field induced
quantum effects inmonolayer TMDCs. Firstly, in [24] theweak-localization effect was observed inmonolayer
MoS2. Secondly, it was shown that in boron-nitride encapsulatedmono- and few-layerMoS2 [18] and in few
layerWSe2 [20] it was possible tomeasure the Shubnikov–deHaas (SdH) oscillations of the longitudinal
resistance. Both of these developments are very significant and can provide complementary informations: the
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weak localization corrections about the coherence length and spin relaxation processes [25, 26], whereas SdH
oscillations about the cross-sectional area of the Fermi surface and the effectivemass of the carriers.

Here wefirst briefly review themost important steps to calculate the Landau level (LL) spectrum in
monolayer semiconductor TMDCs in perpendicularmagnetic field using amulti-band k p· model [3].We
show that formagnetic fields of B 20 T a simple approximation can be applied to capture all the salient
features of the LL spectrum.Motivated by recent experiments inMoS2 [18] andWSe2 [20], we use the LL
spectrum and the self-consistent Born approximation (SCBA) to calculate the SdHoscillations of the
longitudinal conductance .xxs Wediscuss how the intrinsic spin–orbit coupling and the valley degeneracy
breaking (VDB) of themagnetic field affect themagnetoconductance oscillations.We also point out the different
scenarios that can occur depending on the doping level.

2. LLs inmonolayer TMDCs

Electronic states in theK and K- valleys are related by time reversal symmetry inmonolayer TMDCs and hence
in the presence of amagnetic field their degeneracy should be lifted. (Note that in the case of graphene the
inversion symmetry, which is present there but not inmonolayer TMDCs, ensures that in the non-interacting
limit the LLs remain degenerate in theK and K- valleys.)Recently several works have calculated the LL
spectrumofmonolayer TMDCs using the tight-binding (TB)method [27–29] and found that themagnetic field
can indeed lift the degeneracy of the LLs in different valleys. However, due to the relatively large number of
atomic orbitals that is needed to capture the zeromagnetic field band structure, for certain problems, such as the
SdHoscillations of longitudinal conductance, the TBmethodology does not offer a convenient starting point.
On the other hand, a simplified two-band k p· model was used to predict unconventional quantumHall effect
[30] and to discuss valley polarization [31] andmagneto-optical properties [32]. Thismodel, however, did not
capture theVDB andwas therefore in contradictionwith the TB results and the considerations based on
symmetry arguments.

Wefirst show that theVDB in perpendicularmagnetic field can be described by starting from amore
general, seven-bands k p· model [3]. To this endwe introduce an extended two-band continuummodel which
can be easily compared to previous works [30–33].We then show a relatively simple approximation for the LL
energies whichwill prove to be useful for the calculation of the SdHoscillations in section 3.

2.1. LLs froman extended two-bandmodel
Our starting point to discuss themagnetic field effects inmonolayer TMDCs is a seven-band k p· model
(fourteen-band, if the spin degree is also taken into account), we refer the reader to [3] for details. In order to take
into account the effects of a perpendicularmagnetic field, onemay use theKohn–Luttinger prescription, i.e., we
replace thewavenumbers q qq ,x y( )= appearing in the seven-bandmodel with operators:

q q A,e1

i
ˆ


 = + where B xA 0, , 0T

z( )= is the vector potential in Landau gauge and e 0> is the

magnitude of the electron charge. Note that due to this replacement q q qix yˆ ˆ ˆ= ++ and q q qix yˆ ˆ ˆ= -- become

non-commuting operators: q q, ,eB2 z[ ˆ ˆ ]


=- + where Bz∣ ∣ is the strength of themagnetic field and ...[ ]denotes the
commutator.Workingwith a seven-bandmodel is not very convenient and therefore onemaywant to obtain an
effectivemodel that involves fewer bands. This can be done using Löwdin-partitioning to project out those
degrees of freedom from the seven-bandHamiltonian that are far from the Fermi energy. Since q̂+ and q̂- are
non-commuting operators, it is important to keep their order when one performs the Löwdin-partitioning. To
illustrate this point wefirst consider a two-bandmodel (four-band including spin)which involves the valence
and the conduction bands (VB andCB).Wewill follow the notation used in [3]. Onefinds that the low-energy
effectiveHamiltonian in a perpendicularmagnetic field is given by

H H H H , 1s s s
k peff

,
0 so

, , ( )·= + +t t t

where s= 1 (s=−1)denotes spin  ( ) and

H
m

q q q q
g B s

2 2

1

2
2z z0

2

e
e B

ˆ ˆ ˆ ˆ
( )

m=
+

++ - - +

is the free electron term (g 2e » is the g-factor andμB is the Bohrmagneton). Furthermore,

H
s

s
0

0
3s z

z
so

, vb

cb
( )t

t
=

D
D

t ⎛
⎝⎜

⎞
⎠⎟

describes the spin–orbit coupling inVB andCB (sz is a spin Paulimatrix) and τ=±1 for the±K valleys. The
k p· Hamiltonian H s

k p
,
·
t reads
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H H H H H , 4s s s
w

s s
k p

,
D

,
as

,
3

,
cub

, ( )· = + + +t t t t t

where

H
q

q
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⎛

⎝
⎜⎜

⎞
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⎟⎟

Here the operator q̂ t
 is defined as q q qi .x yˆ ˆ ˆt= t

 Thematerial specific properties are encoded in the
parameters ,vbe cbe (band-edge energies in the absence of SOC), γτ, s (coupling between theVB and theCB) and

,s,at βτ, s,κτ, s, ,s,
1( )ht ,s,

2( )ht which describe the effects of virtual transitions between theVB (CB) and the other
bands in the seven-bandmodel. In general, the off-diagonalmaterial parameters γs, τ,κs, τ and ,s,

1( )h t s,
2( )h t are

complex numbers such that for the K- valley (τ=−1) they are the complex conjugates of theK valley case
(τ= 1). In the absence of amagnetic field, thematerial parameters appearing in equations (5a)–(5d) can be
obtained by, e.g.,fitting the eigenvalues of H s

eff
,t to the band structure obtained fromdensity functional theory

(DFT) calculations.We refer to [3] for the details of this fitting procedure and for tables containing the extracted
parameters formonolayer semiconductor TMDCs.Here we onlymention that such afitting procedure yields
real numbers which depend on the spin index s but do not depend explicitly on the valley index τ. (The
parameters s,

1( )ht and s,
2( )ht cannot be obtained separately from fitting theDFTband structure, only their sum, s,ht

can be extracted. Fortunately, as wewill see below, the effect of H s
cub,1

,t is very small in themagnetic field rangewe
are primarily interested in. )

Wenote that a k p· model, similar to ours, was recently used in [29, 33] to calculate the LL spectrum.There
are two differences between our k p· Hamiltonian equations (4) and themodel in [29, 33]. Thefirst one is that
higher order terms that would correspond to our H w

s
3

,t and H s
cub,1

,t were not considered in [29, 33].We keep these
terms in order to seemore clearly themagnetic field rangewhere the approximation discussed in section 2.2 is
valid. The second difference can be found in our H s

as
,t (5b) and the correspondingHamiltonian used in [29, 33].

This difference can be traced back to theway themagnetic field is taken into account in the effectivemodels that
are obtained frommulti-bandHamiltonians. In [29, 33]first an effective zerofield two-bandmodel was derived
and then in a second step the Luttinger-prescription was performed in this effectivemodel. Therefore the terms
which are∼q2 in the zerofield case become q q q qˆ ˆ ˆ ˆ~ ++ - - + after the Luttinger-prescription. In contrast, as
mentioned above, we perform the Luttinger prescription in themulti-bandHamiltonian and obtain the effective
two-bandmodel H s

eff
,t (1) in the second step. The two approachesmay lead to different results because the

operators q ,ˆ+ q̂-do not commute and this should be taken into account in the Löwdin-partitioning which yields
the effective two-bandmodel.

The spectrumof H s
eff

,t can be calculated numerically using harmonic oscillator eigenfunctions as basis states.

TakingBz> 0 for concreteness, one can see that the operators a and a† defined as q a,
l

2

b
ˆ =- q a ,

l

2

b
ˆ †=+ where

l e B ,zB ( ∣ ∣)= satisfy the bosonic commutation relation a a, 1.[ ]† = (ForBz< 0 one has to define

q a,
l

2

b
ˆ =+ q a

l

2

b
ˆ †=- ). Therefore one can calculate thematrix elements of H s

eff
,t in a large, butfinite harmonic

oscillator basis and diagonalize the resultingmatrix. For a large enough number of basis states the lowest
eigenvalues of H s

eff
,t will not depend on the exact number of the basis states. Such a LL calculation is shown in

figure 1 forMoS2 and infigure 2 forWSe2 (wehave used thematerial parameters given in [3]). One can see that
the LLs in different valleys are not degenerate and that themagnitude of theVDB is different in theVB andCB
and for the lower and higher-in-energy spin-split bands.While the results in theVB are qualitatively similar for
MoS2 andWSe2, considering theCB, forMoS2 the valley splitting of the LLs is smaller in the higher spin-split
band, whereas the opposite is true forWSe2. This is a consequence of the interplay of the Zeeman term in
equation (2) and other, band-structure related termswhich lead toVDB. (ForMoS2 the valley splitting in the
higher spin-split CB (purple and cyan lines) is very small for thematerial parameter set used in these calculations
and can only be noticed for largemagnetic fields.)One can also observe that in theCB the lowest LL is in valleyK,
whereas in theVB it is in valley K .-
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Further details of theVDB, including its dependence on the parameter set that can be extracted fromDFT
calculations, will be discussed in section 2.2.Herewe point out that these results qualitatively agree with the TB
calculations of [27–29], i.e., the continuum approach can reproduce all important features ofmulti-bandTB
calculations. Amore quantitative comparison between our results and the TB results [27–29] is difficult, partly
because the detailsmay depend on theway how thematerial parameters are extracted from theDFT band
structure and also because in the TB calculations the Zeeman effect was often neglected.

The LL energies can also be obtained analytically in the approximationwhere H w
s

3
,t and H s

cub,1
,t are neglected.

Wewill not show these analytical results here because it turns out that an even simpler approximation yields a
good agreement with the numerical calculations shown infigures 1 and 2 (see section 2.2) and offers a suitable
starting point to develop a theory for the SdHoscillations of the longitudinal conductivity.

2.2. Approximation of the LLs spectrum
In zeromagnetic field, the trigonal warping term equation (5c) and the third order term equation (5d) are
important in order to understand the results of recent angle resolved photoelectron spectroscopymeasurements
and in order to obtain a good fit to theDFTband structure, respectively [3]. However, as wewill show for the
calculation of LLs the terms H w

s
3

,t and H s
cub,1

,t are less important. To see this one can perform another Löwdin-
partitioning on H s

eff
,t to obtain effective singe-bandHamiltonians for theVB and theCB separately. Keeping only

lowest order terms inBz onefinds that these single-bandHamiltonians correspond to a harmonic oscillator
Hamiltonian (with different effectivemasses in theVB andCB and for the spin-split bands) and a termwhich
describes a linear-in-Bz splitting of the energies of the LLs in the two valleys. Therefore the LL spectrum can be
approximated by

E n g B s g B a
1

2

1

2

1

2
, 6n

s s s
z

s
z,vb

,
vb

,
vb

,
e B vl,vb B ( )( ) ( )e w m m t= + + + +t t t ⎜ ⎟⎛

⎝
⎞
⎠

Figure 1.Numerically calculated LL spectrumofMoS2. (a)The first few LL in the higher spin-split VB. Red lines: theK valley (τ= 1),
blue lines: the K- valley (τ=−1). The inset shows the LLs in the lower spin-split VB. (b)The first few LL in theCB. LLs both in lower
spin-split band and in the higher spin-split band are shown. Red and purple lines: theK valley, blue and cyan: the K- valley.

Figure 2.Numerically calculated LL spectrumofWSe2. (a)The first few LL in the higher spin-split VB. Red lines: theK valley (τ= 1),
blue lines: the K- valley (τ=−1). The inset shows the LLs in the lower spin-split VB. (b)The first few LL in theCB. LLs both in lower
spin-split band and in the higher spin-split band are shown. Red and purple lines: theK valley, blue and cyan:the K- valley.
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E n g B s g B b
1

2

1

2

1

2
. 6n

s s s
z

s
z,cb

,
cb

,
cb

,
e B vl,cb B ( )( ) ( )e w m m t= + + + +t t t ⎜ ⎟⎛

⎝
⎞
⎠

Here, the following notations are introduced: n= 0,1,2, ...is an integer denoting the LL index,
ss
zvb cb

,
vb cb vb cb( ) ( ) ( )e e t= + Dt are the band edge energies in theVB (CB) for a given spin-split band s and

s eB

mvb cb
, z

s
vb cb

,( )
( )

( )
( )w =t
t are cyclotron frequencies. In terms of the parameters appearing in equations (2)–(4), for τ= 1

the effectivemasses m s
vb cb( )
( ) that enter the expression of the cyclotron frequencies are given by [3]

m m E
a

2 2
, 7

s s s

2

vb
1,

2

e

2

bg

∣ ∣ ( )( ) ( )
 

a
g

= + -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

m m E
b

2 2
, 7

s s s

2

cb
1,

2

e

2

bg

∣ ∣ ( )( ) ( )
 

b
g

= + +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where E .s s s
bg cb

1,
vb
1,( ) e e= - The corresponding expressions for τ=−1 can be easily found from the requirement

electronic states that are connected by time reversal symmetry have the same effectivemass. Thismeans that
bands corresponding to the same value of the product τ s have the same effectivemass. The third term in
equations (6a) and (6b) comes from the free-electron term (2). TheVDB is described by the last term in
equations (6a), (6b) and the valley g-factors are given by

g
m

E
a4 , 8s

s svl,vb
e
2

2

bg

∣ ∣ ( )( )
( )

a
g

= +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

g
m

E
b4 . 8s

s svl,cb
e
2

2

bg

∣ ∣ ( )( )
( )

g
b= -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

As one can see from (8a)–(8b), gvl
(s) depends on the (virtual) inter-band transitionmatrix elements ,sa βs and γ.

Due to the intrinsic spin–orbit coupling, themagnitude of thesematrix elements is spin-dependent [3]. Note,
that gvl is different in theVB and theCB. This is in agreementwith numerical calculations based onmulti-band
TBmodels [27, 29]. For theCB, the details of the derivation that leads to (6b) can be found in [34], for theVB the
derivation of (6a) is analogous and therefore it will not be detailed here.We note that in variance to [34], we do
not define separately an out-of-plane spin g-factor and a spin independent valley g-factor, these two g-factors are
merged in gvl

(s). The response tomagnetic field also depends on the free electronZeeman term. The spin-index s
to be used in the evaluation of the Zeeman term in equations (6a)–(6b) follows the spin-polarization of the given
spin-split band. ForMoS2, the spin polarizations s of each band are shown infigure 5, otherMoX2 (X={S, Se,
Te})monolayer TMDCs have the same polarization. FormonolayerWX2TMDCs the spin polarization in the
VB is the same as for theMoX2, but in theCB the polarization of the lower (higher) spin-split band is the opposite
[3].We aremainly interested in how themagnetic field breaks the degeneracy of those electronic states which are
connected by time reversal in the absence of themagnetic field. Using equations (6a)–(6b), the valley splitting
E g Bi i

zcb vb eff,cb vb B( )
( )

( )
( )d m= of these states can be characterized by an effective g-factor

g g s g ,i
e

s
eff,cb vb vl,cb vb

( )( )
( )

( )
( )t= + where i= 1 (2)denotes the higher-in-energy (lower-in-energy) spin-split band.

In theVB the upper index (1) [(2)] is equivalent to  ,( ) but in theCB the relation depends on the specific
material being considered because the polarization is different forMoX2 andWX2materials. Taking first the
MoX2monolayers one finds that (see alsofigure 5)

g g g g g g a, 9
eff,vb

1
e vl,vb eff,vb

2
e vl,vb( ) ( ) ( )( ) ( )= - + = + 

g g g g g g b. 9
eff,cb

1
e vl,cb eff,cb

2
e vl,cb( ) ( ) ( )( ) ( )= + = - + 

ForWX2monolayers g ieff,vb can also be calculated by (9a), whereas in theCB

g g g g g g . 10
eff,cb

1
e vl,cb eff,cb

2
e vl,cb( ) ( ) ( )( ) ( )= - + = + 

As an example the numerical values of the various g-factors defined above are given in table 1 forMoS2 and in
table 2 forWSe2.One can see that gvl,cb(vb)

(s) can be comparable inmagnitude to ge. This explains why the valley
splitting is very small forMoS2 in the case of the upper spin-split band in theCB (see figure 1), whereas the
opposite is true forWSe2 (figure 2).

As one can see from equations (8a) and (8b), gvl
(s) depends explicitly on the band-gap Ebg

(s) of a given spin s. In
addition, the parameters γ,αs andβs implicitly also depend onEbg

(s) due to thefitting procedure that is used to
obtain them fromDFTband structure calculations [3]. It is known that E s

bg
( ) is underestimated inDFT

calculations and its exact value at themoment is not known formostmonolayer TMDCs. Therefore in [3]we
have obtained two sets of the k p· band structure parameters, the first one usingEbg

(s) fromDFT and the second

5
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one usingEbg
(s) extracted fromGWcalculations. The calculations shown infigures 1 and 2were obtainedwith the

former parameter set. As shown in table 1, the calculated g-factors depend quite significantly on the choice of the
parameter set.While there is an uncertainty regarding themagnitude of g ,s

vl
( ) we expect that the g-factors

obtained by using theDFT and theGWparameter sets will bracket the actual experimental values. On the other
hand, the effectivemasses are probably captured quite well byDFT calculations and therefore the first term in
equations (6a)–(6b) is less affected by the uncertainties of the band structure parameters. The calculations in
figures 1 and 2 correspond to the ‘DFT’ parameter set in tables 1 and 2.

In order to see the accuracy of the approximation introduced in equation (7a)–(7b), infigure 3we compare
the LL spectrumobtained in this approximation and calculated numerically using theHamiltonian (1). As one
can see the approximation is very good both in theVB and in theCBup tomagnetic fields 20T. For larger
magnetic fields and large LL indices (n> 7) deviations start to appear between the full quantum results and the
approximation. The deviations are stronger in theVBwhichwe attribute to the larger trigonal warping [3] of the
band structure in theVB. To our knowledge the effects of the non-parabolicity of the band-dispersion on the LL
spectrumhas not been discussed before formonolayer TMDCs.

Given the noticeable uncertainty regarding the exact values of the effective g-factors, onemay askwhich
features of the LL spectrum are affected or remain qualitatively the same. Looking at tables 1 and 2, one can see
that in some cases only themagnitude of an effective g-factor changes, in other cases both themagnitude and the
sign. Firstly, we consider a case which illustrates possible effects of the uncertainty in themagnitude of an
effective g-factor. Infigure 4we show the LLs in the lower spin-split CB inMoS2 for the two different g

eff,cb
2( ) given

in table 1.One can see that infigure 4(a) theVDB is small, except for the lowest LL, which is clearly separated
from the other LLs. If one assumes that the LLs acquire afinite broadening then all LLswould appear as doubly

Table 1.Valley g-factors inMOS2. in thefirst row the g-factors are obtainedwith the help of DFTband gap, in the second row the
g-factors are calculatedwith a band gap taken from theGW calculations.

Ebg
 Ebg

 gvl,vb
 gvl,vb

 geff,vb
1( ) geff,vb

2( ) gvl,cb
 gvl,cb

 geff,cb
1( ) geff,cb

2( )

DFT 1.66 eVa 1.838 eVa 0.98 0.96 1.02- 2.96 2.11- 2.05- 0.05- 4.11-
GW 2.8 eVb 2.978 eVb 2.57 2.38 0.57 4.38 0.52- 0.6- 1.4 2.52-

a Adapted from [3].
b Adapted from [35].

Table 2.Valley g-factors inWSe2. In thefirst row the g-factors are obtainedwith the help ofDFTband gap, in the second row the g-factors
are calculatedwith a band gap taken from theGW calculations.

Ebg
 Ebg

 gvl,vb
 gvl,vb

 geff,vb
1( ) geff,vb

2( ) gvl,cb
 gvl,cb

 geff,cb
1( ) geff,cb

2( )

DFT 1.337 eVa 1.766eVa 0.38- 0.23- 2.38- 1.77 2.71- 2.81- 4.71- 0.81-
GW 2.457 eVb 2.886eVb 2.55 1.9 0.55 3.9 0.67- 0.13 2.67- 2.13

a Adapted from [3].
b Adapted from [36].

Figure 3.Comparison of the LL spectrum inMoS2 obtained from the two-bandmodel and from the single bandmodel. (a)The
numerically calculated LLs using (1) for the τ= 1, s=−1 in theVB (squares) and the approximation (6a) (solid lines) for LL indices
n 0 ... 9.= (b)The same as in (a) but for the for the τ= 1, s=−1 band in theCB (squares) and the approximation (6b) (solid lines).
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degenerate except the lowest one in, e.g. an STMmeasurement. In contrast, the LLs are infigure 4(b) aremore
evenly spaced andmay appear as non-degenerate even if they are broadened.

Secondly, in some cases also the sign of geff changes depending onwhich parameter set is used. For geff> 0
the LLs in theK valley have higher energy than the LLs in the K- valley, while for negative geff the opposite is
true.We note that in [37] equations (6a)–(6b)were used to understand theVDB in the excitonic transitions in
MoSe2. The exciton valley g-factor gvl,exc was obtained by considering the energy difference between the
lowermost LL in theCB and the uppermost LL in theVB in each valley:

g B E E E E . 11z n n n nex,vl B 0,cb
1,

0,vb
1,

0,cb
1,

0,vb
1,( ) ( ) ( )m = - - -t t t t

=
= 

=
= 

=
=- 

=
=- 

Using equations (7a)–(8b), one can easily show that in this approximation the exciton valley g-factor is
independent of the band gap and it can be expressed in terms of the effectivemasses in theCB andVB [37, 38]:

g
m

m

m

m
4 2 . 12

s sex,vl
e

cb

e

vb

( )= - -
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Therefore, albeit the effective g-factors in theCB andVB separately are affected by uncertainties, the exciton g-
factor, in principle, can be calculatedmore precisely so long the effectivemasses are captured accurately byDFT
calculations. The comparison ofDFT results andARPESmeasurements [3] suggest that theDFT effectivemasses
in theVBmatch the experimental results quite well. At themoment, however, it is unclear how accurate are the
DFT effectivemasses in theCB.

Finally, wemake the following brief comments.

(i) In the gapped-graphene approximation, i.e., if one neglects the free electron term and the terms ,s sa b~ in
equations (7a)–(7b) and in (8a)–(8b) then the lowest LL in theCB and the highest one in theVBwill be non-
degenerate, but for all other LLs the valley degeneracywould not be lifted [31] due to a cancellation effect
between the first and last terms in equations (6a) and (6b).

(ii) By measuring the valley g-factors and the effective masses one can deduce the Diracness of the spectrum
[48], i.e., the relative importance of the off-diagonal and diagonal terms in H s

D
,t (5a) and H s

as
,t (5b),

respectively.

3. SdHoscillations of longitudinal conductivity

Aswewill show, the results of the section 2.2 provide a convenient starting point for the calculation of the SdH
oscillations of themagnetoconductance. Ourmainmotivation to consider this problem comes from the recent
experimental observation of SdHoscillations inmonolayer [18] and few-layer [18, 20] samples. Regarding
previous theoretical works onmagnetotransport in TMDCs, quantum corrections to the low-fieldmagneto-
conductancewere studied in [25, 26]. A different approach, namely, the Adams–Holstein cyclotron-orbit
migration theory [39], was used in [40] to calculate the longitudinalmagnetoconductance σxx. This theory is
applicable if the cyclotron frequency ismuch larger than the average scattering rate 1 .sct̄ By using the effective
mass obtained fromDFT calculations [3] and taking themeasured values of the zero field electronmobility

e n

me

2
e sc

cb

¯m = t and the electron density ne given in [18] formonolayerMoS2, a rough estimate for sct̄ can be

Figure 4.Comparison of the LL spectrum in in the lower-in-energy spin-split CBofMoS2 obtainedwith (a) geff, cb
2 =−4.11 and (b)

g 2.52.eff,cb
2( ) = - LLs in different valleys are denoted by different colours.
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obtained. This shows that formagnetic fields B 15 T the samples are in the limit of 1cb sc¯ w t and therefore
the Adams–Holstein approach cannot be used to describeσxx. Thereforewewill extend the approach of Ando
[42] to calculate xxs inmonolayer TMDCs because it can offer amore direct comparison to existing
experimental results.

Before presenting the detailed theory of SdHoscillations we qualitatively discuss the role of the doping and
the assumptions thatwewill use. Themost likely scenarios in theVB and theCB are shown infigures 5 (a) and
(b), respectively. Considering first the CB, for electron densities n 10 cme

13 2~ - measured in [18] both the upper
and lower spin-split bandswould be occupied. In contrast, due to themuch larger spin-splitting, for hole doped
samples EFwould typically intersect only the upper spin-split VB. Such a situationmay also occur for n-doped
samples in thosemonolayer TMDCswhere the spin-splitting in theCB ismuch larger than inMoS2, e.g., in
MoTe2 orWSe2. For strong doping other extrema in theVB andCB, such as theΓ andQ pointsmay also play a
role, this will be briefly discussed at the end of this section.

Wewill have twomain assumptions in the following. Thefirst one is that one can neglect inter-valley
scattering and also intra-valley scattering between the spin-split bands. Clearly, this is a simplifiedmodel whose
validity needs to be checked against experiments. One can argue that in theVB (see figure 5(a)) in the absence of
magnetic impurities the inter-valley scattering should be strongly suppressed because it would also require a
simultaneous spin-flip. A recent scanning-tunneling experiment inmonolayerWSe2 [41] indeed seems to show
a strong supression of inter-valley scattering. In theCB, for the case shown infigure 5(b), the inter-valley
scattering is not forbidden by spin selection rules. Even ifEFwas smaller, such that only one of the spin-split
bands is populated in a given valley, the inter-valley scatteringwould not be completely suppressed because the
bands are broadened by disorder which can be comparable to the spin-splitting 2Δcb (2Δcb= 3 meV forMoS2
and 20–30 meV for othermonolayer TMDCs.)On the other hand, the intra-valley scattering between the spin-
split bands in theCB should be absent due to the specific formof the intrinsic SOC, see equation (3).We note
that strictly speaking any type of perturbationwhich breaks themirror symmetry of the lattice, such as a
substrate or certain type of point defects (e.g., sulphur vacancies)would (locally) lead to a Rashba type SOC and
hence induce intra-valley coupling between the spin-split bands. It is not knownhow effective is this
mechanism, in the present studywe neglect it. The second assumption is that we only consider the effect of short
range scatterers. This assumption is widely used in the interpretation of SdHoscillations as it facilitates to obtain
analytical results [42].We note that according to [18, 24], some evidence for the presence of short range
scatterers inmonolayerMoS2 has indeed been recently found.While short-range scatterers can, in general, cause
inter-valley scattering, on themerit of its simplicity as aminimalmodel we only take into account intra-valley
intra-band scattering.

Using these assumptions it is straightforward to extend the theory of Ando [42] to the SdHoscillations of
monolayer TMDCs.Namely, as it has been shown in section 2.2, for not too largemagnetic fields the LLs in a
given band can be described by a formulawhich is the same as for a simple parabolic band except that it contains
a termwhich describes a linear-in-magnetic field valley-splitting. Then, because of the assumption that one can
neglect inter-valley and intra-valley inter-band scattering, the total conductancewill be the sumof the
conductances of individual bandswith valley and spin indices τ, s. This simplemodel allows us to focus on the
effects of intrinsic SOC and valley splitting on the SdHoscillations, which is ourmain interest here.

Following [42], we treat impurity scattering in the SCBA and use theKubo-formalism to calculate the
longitudinal conductivityσxx (for a recent discussion see, e.g., [43, 44]). Assuming a randomdisorder potential
V r( )with short range correlations V Vr r r r ,sc( ) ( ) ( )l dá ¢ ñ = - ¢ the self-energy is

r
s

i
s

R
, , ,S = S + St t t in a given

band (τ, s) does not depend on the LL index n. It is given by the implicit equation

Figure 5. Schematics of the dispersion in theVB and in theCB around theK and K- points of the band structure. The spin-split
bands are denoted by red and blue lines, different colours indicate different spin-polarization. The arrows show the spin-polarization
forMoS2. For typical values of doping, the Fermi-level EF (denoted by a dashed line)would intersect only the upper spin-split band in
the VBor both spin-split bands in theCB. The index (1) and (2)denote the upper and lower spin-split band.
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=
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where En
s,t is given by equations (6a)–(6b). The term l2sc B

2l p on the right-hand side of equation (13) can be
rewritten as ,

l c
i

2

1

2 i
sc

B
2

sc

( )
( ) w=l

p p t
where m1 i i

sc sc
3( ) ( ) t l= is the scattering rate calculated in the Born-

approximation in zeromagnetic field. As in section 2.2, the upper index i= 1 (2) refers to the higher(lower)-in-
energy spin-split band in a given valley (see also figure 5).

Using theKubo-formalism the conductivity coming froma single valley and band xx
s,st is calculated as

e
E

f E

E
Ed , 14xx

s
xx

s,
2

2
,( ) ( ) ( )

 òs
p

s= -
¶
¶

t t⎛
⎝⎜

⎞
⎠⎟

where f(E) is the Fermi function and

E n G n E G n E G n E G n E1 Re , 1, , 1, . 15xx
s

c
i

n

s s s s, 2

0
A

,
R

,
A

,
A

,( )( ) ( ) [ ( ) ( ) ( ) ( )] ( )( ) ås w= + + - +t t t t t

=

¥

Here G n E,s
R

, ( )t and G n E,s
A

, ( )t are the retarded and advancedGreen-functions, respectively. Vertex corrections
are neglected in this approximation. Sincewe neglect inter-valley and intra-valley inter-band scattering, the
disorder-averagedGreen-function G n E E E,s

n
s s

R,A
, ,

R,A
, 1( ) [ ]= - - St t t - is diagonal in the indices τ, s and in the

LL representation it is also diagonal in the LL index n. The total conductivity is then given by xx s xx
s

,
,ås s= t

t

where the summation runs over occupied subbands for a given total electron (hole) density ne (nh). In general,
one has to determine ir

s
i

s, ,S + St t by soving equation (13)numerically. TheGreen-functions GR A
s

,
,t can be then

calculated and xx
s,st follows from equation (15). It can be seen from equation (14) that at zero temperature

Es, ( )St and Exx
s, ( )st has to be evaluated atE= EF. In the semiclassical limit, when there aremany occupied LLs

belowEF, i.e., E ,c
i

F
( )w  one can derive an analytical result forσxx

τ, s, see [42, 43] for the details of this
calculation.Here we only give the final formofσxx and compare it to the results of numerical calculations.

Asmentioned above, the situation depicted infigure 5(a), i.e., when there is only one occupied subband in
each of the valleys is probablymost relevant for p-doped samples. One finds that in this case the longitudinal
conductance is
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t is the zero field conductivity per single valley and band, nh is the total charge density
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, ,S St t  The amplitudes 1,2 and  are given by
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where kB is the Boltzmann constant andT is the temperature. One can see that equations (16)–(17b) are very
similar to thewell known expression derived byAndo [42] for a two-dimensional electron gas (2DEG). The
valley-splitting, which leads to the appearance of the amplitudes ,1,2 plays an analogous role to the Zeeman
spin-splitting in 2DEG. Therefore, under the assumptionwemade above, the uncertainty regarding the value of
the effective g-factors affects the amplitude of the oscillations but not their phase. The termproportional to

B EzB Fm in equation (16) is usuallymuch smaller than thefirst term. Thus, it can be neglected in the calculation
of the total conductance, butmay be important if one is interested only in the oscillatory part ofσxx, see below.

We emphasize that equation (16) is only accurate if E .vb
1

F
( )w  However, in semiconductors, especially at

relatively lowdoping, one can reachmagnetic field valueswhere the cyclotron energy becomes comparable to
EF. In this case the numerically calculatedσxxmay differ from4 equation (16). It is known that, e.g.,WSe2 can be
relatively easily gated into theVB, and a decentHallmobility was recently demonstrated in few-layer samples in
[15]. As a concrete examplewe take the following values [15]: n 4 10 cmh

12 2= - ´ - andHallmobility
μH= 700 cm2 V−1 s−1. By takingmvb

1 =−0.36me [3] the Fermi energy is E 26.6 meVF » - and using that

4
Froma theoretical point of view, in strongmagnetic fields one should also calculate vertex correlations toσxx, but this is not

considered here.
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e mH sc
1

vb
1( ) ( )m t= we obtain 1.4 10sc

1 13( )t = ´ - s. The amplitude of the oscillations should become discernible

when B 1,zvb
1

sc
1

H
( ) ( ) w t m= i.e., formagnetic fields B 10 Tz  , while atBz= 14.28 T,which corresponds to

1,vb
1

sc
1( ) ( )w t » there are around six occupied LLs.One can expect that for B 15 Tz  the LL spectrum is well

described by equation (6a), however, since the number of LLs is relatively low, theremight be deviations between
the analytically and numerically calculated .xxs Infigure 6(a)we show a comparison between the analytical result
equation (16) and the numerically calculated longitudinal conductance at zero temperature. The effective g-
factors g

eff,vb
1( ) used in these calculations are given in table 2.

One can see that for largermagnetic fields the amplitude of the oscillations is not captured very precisely by
equation (16) but the overall agreementwith the numerical results is good.Next, infigures 6(b) and (c)we
compare the oscillatory parts xx,oscs of the longitudinal conductivity obtained fromnumerical calculations and
from equation (16) using two different geff,vb values. In the case of the numerical calculationsσxx,osc was

obtained by subtracting the smooth function 2 1 vb
1

sc
1 2( ( ) )( ) ( )w t+ fromσxx. According to equation (16), the

valley-splitting of the LLs and the different effective g-factors should only affect the amplitude of the oscillations.
While the amplitude of the oscillations indeed depends on g ,

eff,vb
1( ) one can see that the agreement is better for

geff,vb
1 = 0.55 than for g 2.38.

eff,vb
1( ) = - For the latter case the position of the conductanceminimuma start to

differ for largemagnetic field, whereas themaximuma inσxx agree in bothfigures. These calculations illustrate
that equation (16)maynot agree with the numerical results when there are only a few LLs below EF.

We now turn to the case shown infigure 5(b)when both spin-split subbands are populated. The total
conductance is given by the sumof the conductances coming from the two spin-split subbands :

.xx xx xx
1 2( ) ( )s s s= + Since the effectivemasses in the spin-split bands are, in general, different, the associated

scattering times τsc
(1) and sc

2( )t calculated in the Born-approximation are also different.We define
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Figure 6.Comparison of the numerically (symbols) and analytically (solid line) calculated zero temperature conductivity forWSe2 for
the situation depicted infigure 5. (a)Total conductivity, g 0.55eff,vb

1( ) = . (b) and (c)Comparison of the oscillatory parts ofσxx. In (b)
g 0.55,eff,vb

1( ) = while in (c) g 2.38eff,vb
1( ) = - (see table 2). The figures correspond to amagneticfield range of about 5.7–15.7 T.
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In equation (18)wehave neglected termswhich are∼μBBz/EF. The result shown in equation (18) is similar to
themultiple subband occupation problem in 2DEG [45–47]. The valley splitting affects the amplitude of the
oscillations (see equation (19b)), whereas the intrinsic SOC can influence the amplitude of the oscillations (see
equation (19a)) and it also leads to a phase difference (equation (18)) between the oscillations coming from the
two spin-split subbands.

The situation depicted infigure 5(b) is easily attained, e.g., in theCBofmonolayerMoS2, whereDFT
calculations predict that the spin-splitting is 2 3cbD = meV and therefore both subbands can be populated for
relatively lowdensities. Our choice of the parameters for the numerical calculations shown below ismotivated
by the recent experiment of Cui et al [18], where SdHoscillations inmono—and few layerMoS2 samples have
beenmeasured.We use ne= 1013 cm−2 andmobilityμH= 1000 cm2 V−1s−1. The effectivemasses are chosen as
m m0.46 ,cb

1
e

( ) = mcb
(2)= 0.43me and the spin-splitting in theCB is 2 3 meVcbD = [3]. Using these parameters we

find EF= 28.43 meV. Since the effectivemasses are rather similar, the scattering times calculated fromμH are
close to each other: 2.6 10sc

1
sc
2 13( ) ( )t t» » ´ - s, i.e., they are almost twice as long as in the case ofWSe2. The

oscillations inσxx should become discernible forBz 7 T, and atBz= 10 T there are ten LLs in both the lower
and the upper spin-split CB in each valley.Wewill focus on the oscillatory part xx xx xx,osc ,osc

1
,osc

2( ) ( )s s s= + of the
conductance, since this contains information about the spin and valley splittings. As in the previous example, we
first calculateσxx

(i) numerically using equations (13)–(15) and obtain xx
i

,osc
( )s by subtracting the smooth function

2 1 .i
c
i i

sc
2[ ( ) ]( ) ( ) ( ) w t+ We then compare these results to the oscillations that can be obtained from

equation (18).
Infigures 7(a) and (b)we show the numerically calculated xx

1( )s and xx
2( )s for the two different sets of g-factor

values given in table 1 as a function of c sc¯ ¯w t whichwas introduced as a dimensionless scale of themagnetic field.

Here eB

mc
z

cb
¯

¯
w = with m m mcb

1
cb

2¯ ( ) ( )= and .sc sc
1

sc
2¯ ( ) ( )t t t= All calculations are at zero temperature. One can

observe that due to theCB spin splitting 2 cbD the oscillations of xx
1( )s and xx

2( )s will not be in-phase for larger
magnetic field. This effect is expected to be evenmore important for TMDCs having larger 2Δcb thanMoS2 and
leads tomore complex oscillatory features in the total conductance xxs than in the previous example of p-doped
WSe2where only one band in each valley contributed to the conductance. One can also observe that in
figure 7(b) additional peaks with smaller amplitude appear in xx,osc

2( )s for largermagnetic fields, while there are no

such peaks in xx,osc
2( )s infigure 7(a). The origin of this behaviour can be traced back to the different valley-splitting

Figure 7.Oscillations ofσxx in n-dopedMoS2. (a)Numerically calculatedσosc
(1) (red squares) and osc

2( )s (blue circles) using
g 0.05eff,cb

1( ) = - and g 4.11.eff,cb
2( ) = - (b)Numerically calculated osc

1( )s (red squares) and osc
2( )s (blue circles) using g 1.44eff,cb

1( ) = and

g 2.55.eff,cb
2( ) = - (c)The total oscillatory conductance osc osc

1
osc
2( ) ( )s s s= + corresponding to (a) (red squares) and the analytical result

calculated from equation (18) (solid line). (d)The same as in (c) but corresponding to (b).The figures correspond to amagneticfield
range of about 4–14 T.
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patterns shown infigure 4. The valley splitting of the LLs infigure 4(a) is small (except for the lowest LL), while in
figure 4(b) all LLs belonging to different valleys are well-separated for largerfields and this leads to the
appearance of the additional, smaller amplitude peaks in xx,osc

2( )s infigure 7(b). The comparison between the

numerically calculated total oscillatory part xx xx xx,osc ,osc
1

,osc
2( ) ( )s s s= + and the corresponding analytical result

given in equation (18) is shown infigures 7(c) and (d). The agreement between the two approaches is
qualitatively good for 1.c sc¯ ¯ w t However, for largermagnetic fields where 1c sc¯ ¯ w t the amplitude of the
oscillations start to differ. In this regime the oscillatory behaviour in xx,oscs can be quite complex, influenced by
both the valley splitting and also by the intrinsic SOC splitting of the bands.

We have tried to analyze the experimental results byCui et al [18] using the theoretical approach outlined
above. To this endwe have first calculatedσxx, exp(Bz) by inverting the experimentally obtained resistancematrix
and normalized it by the zero-field conductanceσxx, exp(0). To simplify the ananlysis, we assumed that the
effectivemasses are the same in the two spin-split CB: m m m0.43 ,cb

1
cb

2
e

( ) ( )= = and hence .sc
1

sc
2( ) ( )t t= We then

fitted B 0xx z xx,exp ( ) ( )s s by the function f B C A B1 ,z z0 q
2( ) ( ( ) )m= + + where the amplitudesA,C and the

quantummobilityμq are fit parameters. This function, according to equation (18), should give the smooth part
of the conductance. Thefit was performed in themagneticfield range [4T–15T]: for smaller fields theweak-
localization correctionsmight be important which are not considered in this work, while in largermagnetic field
the semiclassical approximationmay not be accurate.We have found thatσxx, exp can be approximated quite
well by f B .z0 ( ) Themost important parameter that can be extracted from the fit is the quantum scattering time

τsc,q, which is obtained from .q
m

esc,
cb qt =
m

Wefind that it is roughly 3.5 times shorter than the transport

scattering time sc,trt that follows from themeasuredHallmobilityμH= 1000 cm2 V−1s−1. The ratio τsc,tr/τsc,q
depends to some extend on thefitting range that is used, but typically it is 2.sc,tr sc,qt t > This differencemay be
explained by the fact that small-angle scattering is unimportant for τsc,tr but it can affect τsc,q.We note that Cui
et al [18] has also found that the sc,trt is larger than ,sc,qt but they have used the amplitude of the longitudinal
resistance oscillations in themagnetic field range 10–25 T to extract τsc,q and obtained 1.5.sc,tr sc,qt t » The
significantly shorter sc,qt makes it difficult to analyze themagnetic oscillations in a quantitative way using
equation (18). Namely, it implies that oscillations should be discernible for B 15z  T, i.e., formagnetic fields
where only a few LLs are occupied and the semiclassical approximationmay not be accurate. Using f0(Bz)we
then extracted the oscillatory part B B f Bxx z xx z z,osc ,exp 0( ) ( ) ( )s s= - of the conductance and fitted it with the
function

f B A
B

B B

D
E

D
E

4

1
exp

cos
2

cos
2

, 20
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z

z
z

osc

q
2
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2 2

q

1
F

cb
2

F cb

cb

( )( ) ( )
( )

( )
 

m

m

p
m

p
w w

=-
+

-

´ +
- D

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

whereD1,2 are fitting parameters. As one can see infigure 8, thefit can qualitatively reproduce the
meauserements, but the complex oscillations between 15 and 22 T are not captured.We also note that a
somewhat better fit can be obtained if we assume that the charge density is larger thanwhat is deduced from the
classical Hallmeasurements (see the black line infigure 8) and if we choose the spin-splitting larger than the
value obtained fromDFT calculations (purple line). In all cases wefind, however, that thefit parametersD1 and
D2 differ quite significantly in theirmagnitude, which is difficult to interpret in the present theoretical
framework. Thismight indicate that additional scattering channels, such as inter-valley scattering, would have to
be taken into account for a quantitative theory.

Finally, wewould briefly comment on the relevance of the other valleys in the band structure for the SdH
oscillations. Regarding p-doped samples, theΓ pointmight, in principle, be important forMoS2.However,
according toDFT calculations [3] andARPESmeasurements [49] the effectivemass at theΓ point is significantly
larger than at±K and therefore we do not expect that states atΓwould lead to additional SdHoscillations.
Nevertheless, they can be important for the level broadening of the sates at±K because scattering from K toΓ
does not require a spin-flip [3]. In the case of othermonolayer TMDCs theΓ valley ismost likely too far away in
energy from the top of theVB at±K to influence the transport for realistic dopings [3]. The situation can be
more complicated for n-doped samples, especially forWS2 andWSe2. For these twomaterials the states in the six
Q valleys are likely to be nearly degenerate with the states in the±K valleys. Therefore theQ valleysmight be
relatively easily populated forfinite n-doping and, in contrast to theΓ point, the effectivemass is comparable to
that in the±K [3] valleys. Therefore theymay contribute to the SdHoscillations. Theywould also affect the level
broadening of the±K valley states because scattering fromK K( )- to three of the sixQ valleys is not forbidden
by spin selection rules [3]. Furthermore, we note that in the absence of amagnetic field the sixQ valleys are
pairwise connected by time reversal symmetry. Therefore, taking into account only the lowest-in-energy spin-
split band in theQ valleys, the LLs belonging to theQ valleys will be three-fold degenerate: themagnetic field,
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similarly to the case of theK and K- points, would lift the six-fold valley-degeneracy. The effective valley g-
factors, however,might be rather different from the ones in the±K valleys. For n-dopedmonolayerMoX2

materials the situation is probably less complicated because theQ valleys are higher in energy and are not as
easily populated as for theWX2monolayers. ForMoS2monolayers, therefore, one can neglect theQ valleys in
first approximation.

4. Summary

In summary, we have studied the LL spectrumofmonolayer TMDCs in a k p· theory framework.We have
shown that in awidemagnetic field range the effects of the trigonal warping in the band structure are not very
important for the LL spectrum. Therefore the LL spectrum can be approximated by a harmonic oscillator
spectrum and a linear-in-magntic field termwhich describes theVDB. This approximation and the assumption
that only intra-valley intra-band scattering is relevant allowed us to extend previous theoretical work on SdH
oscillations to the case ofmonolayer TMDCs. In the semiclassical limit, where analytical calculations are
possible, it is found tha theVDB affects the amplitude of the SdHoscillations, whereas the spin-splitting of the
bands leads to a phase difference in the oscillatory components. Since in actual experimental situations there
might be only a few occupied LL belowEF, we have also performed numerical calculations for the conductance
oscillations and compared them to the analytical results. As it can be expected, if there are only a few populated
LLs the amplitude of the SdHoscillations obtained in the semiclassical limit does not agree werywell with the
results of numerical calculations. This should be taken into account in the analysis of the experimental
measurements.We used our theoretical results to analyze themeasured SdHoscillations of [18]. It is found that
the quantum scattering time relevant for the SdHoscillations is significantly shorter than the transport
scattering time that can be extracted from theHallmobility. Finally, we briefly discussed the effect of other
valleys in the band structure on the SdHoscillations.
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