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Interplay of charge and spin coherence in Landau-Zener-Stückelberg-Majorana
interferometry
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We study Landau-Zener dynamics in a double quantum dot filled with two electrons, where the spin states can
become correlated with charge states and the level velocity can be tuned in a time-dependent fashion. We show
that a correct interpretation of experimental data is only possible when finite-time effects are taken into account.
In addition, our formalism allows the study of partial adiabatic dynamics in the presence of phonon-mediated
hyperfine relaxation and charge-noise-induced dephasing. Our findings demonstrate that charge noise severely
impacts the visibility of Landau-Zener-Stückelberg-Majorana interference fringes. This indicates that charge
coherence must be treated on an equal footing with spin coherence.
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I. INTRODUCTION

Electron spins trapped in quantum dots (QDs) are promising
candidates for implementing a scalable quantum computer.1,2

Most of the DiVincenzo criteria, which state physical re-
quirements a system must fulfill to achieve quantum com-
puting, have been achieved with spin qubits, including
initialization,3 readout,4 and coherent control.5–7 While ex-
perimental progress has been impressive, many of these
methods are not yet accurate enough to allow large-scale
quantum computing with single spins. A key challenge can be
appreciated by considering the relevant time scales associated
with the spin dynamics. In GaAs quantum dot devices, it is
well known that the hyperfine interaction leads to a randomly
fluctuating nuclear field Bn ∼2 mT, which results in a
10–20 ns inhomogeneous spin dephasing time.5,8,9 For com-
parison, the Rabi period obtained in a GaAs double quantum
dot (DQD) using conventional electron spin resonance (ESR)
is on the order of 110 ns.6 The use of spin-orbit-driven electric
dipole spin resonance (EDSR) in GaAs leads to even slower
Rabi periods of roughly 210 ns.7 Therefore, in the case of
single-spin rotations, gate operation times are nearly an order
of magnitude slower than the inhomogeneous spin dephasing
time. This issue is not specific to GaAs-based nanostructures.
In InAs nanowires, where the spin-orbit interaction is larger
than in GaAs, a Rabi period of ∼17 ns (Ref. 10) was reported.
However, it still is twice as long as the spin dephasing time of
∼8 ns.

Viewed from a different perspective, the maximum ac field
generated in DQD ESR experiments is on the order of 2 mT,
which is the same magnitude as the fluctuating nuclear field.6

As a result, single-spin rotations in GaAs qubits follow im-
perfect trajectories on the Bloch sphere, resulting in a reduced
oscillation visibility and gate errors.6 Single-spin selectivity
imposes an additional challenge upon the development of a
spin-based quantum processor. Magnetic fields generated in
ESR are difficult to localize on the nanometer scale. Without
g-factor control, or local magnetic field gradients, the spins
located in a quantum register would rotate at the same rate in
the presence of a global ESR field. The long-term goal is to be

able to drive selective single-spin rotations, without affecting
neighboring spins that are on average only 20–50 nm away.

Instead of using the spin-up and -down states of a single
electron, the qubit basis states can be represented by two (out
of four) two-electron spin states confined in a DQD.11 For a
qubit whose basis states are encoded in the singlet S and triplet
T0 spin states of a DQD, the two-electron exchange interaction
allows for fast single-qubit gates (hundreds of picoseconds).5

Recent experiments12,13 have also demonstrated the possibility
of realizing a conditional two-qubit gate. Within this two-spin
version of a qubit, the two-qubit gate realized in Ref. 5
can be interpreted as a single-qubit operation. However, the
exchange interaction only allows for rotations about a single
axis, whereas to generate arbitrary rotations one needs two
perpendicular rotation axes. The generation of a nuclear
magnetic field gradient14 provides rotations about a second,
noncollinear axis. While remarkable, this method also presents
some difficulties when it has to be extended to a large number
of qubits. It requires that the nuclear polarization is controlled
in each DQD to create the desired gradient field. An advantage
of this method is that the generation of the nuclear field gradient
reduces nuclear spin fluctuations, resulting in an increase in
the spin dephasing time.15

Recently, it has been proposed to use a two-spin basis
consisting of the singlet S and triplet T+ spin states.16–18

Quantum control of the S-T+ qubit relies on Landau-Zener-
Stückelberg-Majorana19–22 (LZSM) physics, which occurs in
the system when the S-T+ qubit is repeatedly swept through
the hyperfine mediated S-T+ anticrossing. This all-electrical
method also has the advantage of addressing individually each
quantum dot.

LZSM physics describing the passage of a two-level
quantum system through an anticrossing can be applied
to different fields of physics and chemistry.23 In quantum
information science, LZSM theory describes accurately the
observed interference fringes (Stückelberg oscillations) of
a superconducting qubit driven back and forth through
its anticrossing.24 The LZSM description also accurately
describes the coherent manipulation of a two-spin qubit
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encoded in the S and triplet T+ spin states, with dynamics
driven by repeated passages through a hyperfine-mediated
anticrossing.16,17 In self-assembled quantum dots, LZSM
theory has been used to design high-fidelity all-optical control
of spin-based qubits.25–27

In this paper, we develop a quantum master equation to
describe partial adiabatic passages between the spin singlet S
and triplet T+ states in the presence of both the fluctuating
Overhauser field and the fluctuating charge environment. With
our theory, we show charge dynamics can significantly hinder
LZSM interferometry of spin states. While most of the interest-
ing spin dynamics happens in the (1,1) charge configuration,
with one electron per dot, initialization and measurements
are done deep in the (2,0) charge configuration, where both
electrons are in the left dot. Here, (l,r) denotes the number
of electrons in the left and right dots. Crossing the (1,1)↔
(2,0) interdot charge transition necessarily involves charge
dynamics. Since superpositions of charge states dephase on
shorter time scales than superpositions of spin states, it is
essential to consider this fast effective decoherence mechanism
when spin and charge degrees of freedom become correlated
during spin-qubit evolution.28,29 In particular, we use our
formalism to analyze spin-charge dynamics associated with
detuning pulses that have a tunable level velocity, with a
high-level velocity away from the anticrossing and a slow-level
velocity in the vicinity of the anticrossing.18

The paper is organized as follows. We start by reviewing
standard Landau-Zener theory, which is valid for an infinitely
long ramp through an anticrossing with a constant level
velocity. In Sec. II, we review the solution of the finite-
time LZSM model, which can be used to model realistic
experiments, and we demonstrate within the scope of this
theory how fine tuning of the level velocity can be used to
increase the visibility of the quantum oscillations. Section III
focuses on the physical implementation of LZSM physics in
a two-electron spin qubit. We derive an effective Hamiltonian
describing the dynamics of the states in the vicinity of the
S-T+ anticrossing. Compared to previously derived effective
Hamiltonians,17 we include the effects of charge superposition
states in the spin-dependent anticrossing. The last part of the
section is devoted to the derivation of a master equation that
describes the evolution of the density matrix. In Sec. IV, we
first compare solutions of the master equation obtained with
experimental pulse profiles and measurements performed on
a GaAs double quantum dot. We then show theory results for
the singlet return probability for which we explore the effects
of charge-induced decoherence.

II. ADIABATIC CONTROL OF A QUANTUM TWO-LEVEL
SYSTEM

There are numerous problems in physics that deal with
the physics of two-level systems. The most common example
is Rabi’s formula,30 which describes the occupation of a
two-level system that is driven by a coherent field. In quantum
information science, Rabi oscillations are widely used, e.g.,
to manipulate an electron spin confined in a QD.31 Another
widely studied problem involving only two quantum levels is
adiabatic passage, which is commonly employed in nuclear
magnetic resonance.32 The physics of adiabatic passage can

FIG. 1. (Color online) (a) The Landau-Zener-Stückelberg-
Majorana (LZSM) problem. The LZSM model addresses the problem
of a two-level system that is swept through an anticrossing. It assumes
an infinitely long ramp (i.e., propagation from ti → −∞ to tf → ∞),
a constant coupling constant λ leading to a splitting 2 |λ| at t = 0,
and an energy difference between the levels that varies linearly with
time �E(t) = αt . Its main result gives the nonadiabatic transition
probability PLZSM. An extension of the model to finite times resolves
the problem of infinite energies and undefined phases. (b) Singlet
and triplet T+ energies in a DQD as a function of detuning ε,
where εi = ε(ti) and εs = ε(tf ). The two-electron DQD is a physical
realization of the LZSM model. Here, the hyperfine coupling of the
two spin states leads to a splitting �HF. (c) The LZSM model assumes
a constant level velocity α. In order to increase adiabaticity, one can
lower α, but in order to keep short pulses it is preferable to use multi
rise-time pulses. (d) Comparison of possible pulses that can be used
to manipulate the S-T+ qubit. In terms of total propagation time,
“double-hat” pulses are a good compromise between conventional
trapezoid and convolved pulses.

be found in a variety of systems, and several theoretical models
have been developed to describe different kinds of adiabatic
processes.33–42 There is, however, a particular description that
has proven to be applicable in many distinct fields of physics:
the Landau-Zener19,20 model. We refer to it in this paper
as the LZSM model since it was independently studied by
Stückelberg21 and Majorana.22

The Hamiltonian studied in the LZSM model describes a
system with two energy levels [see Fig. 1(a)] that are coupled
by an off-diagonal matrix element λ, H (t) = −(αt/2)σz +
λσx , where σz and σx are Pauli matrices, and α = d(E2(t) −
E1(t))/dt . The main result of the theory is the asymptotic
expression for the nonadiabatic transition probability when
the propagation lasts from ti = −∞ to tf = ∞:

PLZSM = e
−2πλ2

αh̄ . (1)

Here, we use a generalization of the LZSM model, known
as the finite-time LZSM model.43 It resolves the problem of
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the energy divergence when tf,i = ±∞, and in contrast to the
simple case it yields the relative phase between the states,
which is crucial for predicting the coherent time evolution of
any quantum system. Particularly, knowledge of the relative
phase is essential in LZSM interferometry21,23 in which
the system is driven back and forth across an anticrossing.
The driving generates quantum interference between states,
which is directly observable in the nonadiabatic (or adiabatic)
transition probability.

A. Finite-time Landau-Zener-Stückelberg-Majorana
propagator

The unitary evolution operator defined by the LZSM
Hamiltonian19–22

H (t) =
(−α

2 t λ

λ α
2 t

)
(2)

is given by43

U (tf, ti) =
(

u11(tf, ti) u12(tf, ti)
u21(tf, ti) u22(tf, ti)

)
, (3)

where 1 (2) refers to the states |0〉 (|1〉) with

u11(tf, ti) = u∗
22(tf, ti)

= �(1 − iη2)√
2π

[Diη2 (e
−iπ

4 τf )Diη2−1(e
3iπ
4 τi)

+Diη2 (e
3iπ
4 τf)Diη2−1(e− iπ

4 τi)] (4)

and

u12(tf, ti) = −u∗
21(tf, ti)

= �(1 − iη2)√
2πη

e
iπ
4 [−Diη2 (e

−iπ
4 τf)Diη2 (e

3iπ
4 τi)

+Diη2 (e
3iπ
4 τf)Diη2 (e− iπ

4 τi)]. (5)

Here, τ = √
α/h̄t is a dimensionless time, η = λ/

√
αh̄ is a

dimensionless coupling, �(z) is the gamma function,44 and
Dν(z) is the parabolic cylinder function.45 By definition, t = 0
is set at the anticrossing. The usual LZSM formula (1) is
retrieved from the modulus square of Eq. (4) when taking the
limit ti → −∞ and tf → ∞.

The LZSM propagator fully determines the partial adiabatic
dynamics of a quantum two-level system. In the case where the
two-level system encodes a qubit, Eq. (3) allows the design of
single-qubit operations. This method has been used to control
superconducting qubits23,24 and more recently to implement a
qubit encoded in the spin of a two-electron state.16,17 However,
since the spin states are weakly coupled, η < 1, it is hard to
achieve an equally weighted coherent superposition of spin
states and fully explore the entire qubit state space. In order to
achieve full control over the spin qubit, it would be necessary
to perform slower sweeps, i.e., to increase η by making α

smaller. However, the LZSM equation requires an exponential
increase in the propagation time in order to achieve a fully
adiabatic transition. In a real physical system, this method is
unpractical because the pulse duration needs to remain shorter
than the coherence time of the two-level system.

B. Observing finite-time effects

As demonstrated in Ref. 18, it is possible to use more
complex pulses to increase the balance of the populations
while keeping the manipulation time below the decoherence
times. The key idea relies on an observation based on the
finite-time LZSM model. For a slow-level velocity α, which
favors adiabatic passage, most of the population change occurs
in the vicinity of the anticrossing. It is therefore possible to use
detuning pulses that have a time-dependent level velocity. Let
us consider two types of pulses, as illustrated in Figs. 1(c) and
1(d). The first is a conventional linear pulse, which is standard
in LZSM theory. The second pulse profile consists of linear
detuning ramps in a fast-slow-fast rise-time sequence, which
we refer to as “double-hat” pulse. The unitary evolution of
such a general sequence can be written using Eq. (3) as

U (tf,ti) = Ufast2(tf, t2)Uslow(t2, t1)Ufast1(t1, ti)

=
(

ũ11(tf, ti) ũ12(tf, ti)
ũ21(tf, ti) ũ22(tf, ti)

)
. (6)

Here, t1 = ti + tfr1, t2 = ti + tfr1 + tsr, and tf = ti + tfr1 + tsr +
tfr2, where tfrj is the propagation time associated to the j th fast
sequence, and tsr corresponds to the slow sequence. We use
this notation to refer to the corresponding level velocities αj ,
dimensionless times τj , and dimensionless couplings ηj .

In addition to the already mentioned and studied advantages
“double-hat” pulses offer, they also provide sensitive means
to explore finite-time effects. These are in general neglected
when describing experiments because the more convenient
LZSM scattering approach23 has been sufficient to reproduce
experimental results.16,24 However, to implement high-fidelity
quantum gates, it will be necessary to accurately describe the
dynamics of the qubit and thus take into account finite-time
propagation.

In Fig. 2, we compare adiabatic transition probabilities
obtained with double-hat pulses and conventional trapezoid
pulses (cf. inset of Fig. 2). Here, an adiabatic transition refers
to a transition where the system remains in an instantaneous
energy eigenstate. The details of the leading edge (the trailing
edge is identical but reversed) of the double-hat pulse are
tfr1 = tfr2 = 0.1 ns, the starting position of the slow-level
velocity ramp is defined by the condition �Ei − �Ei,sr =
−2 μeV, where �Ei is the initial energy difference between
the uncoupled eigenstates and �Ei,sr the energy difference
at the beginning of the slow part of the pulse. We choose
αsr = 500 eVs−1 and λ = 70 neV. We impose the same total
propagation time on the linear pulse as for the double hat, from
which we obtain the level velocity αsi for the linear pulse

αsi = �Ef − �Ei

tfr1 + tfr2 + tsr
. (7)

The adiabatic transition probability Pa is plotted as a function
of �Ef . Here, �Ef indicates the energy difference between
the states when the pulse has reached its maximal amplitude.
Different values of �Ef are obtained by adding an offset
to �Ei, while keeping the length of pulse (thus αsi and the
different αj of the double hat) constant. Since we are interested
in finite-time effects, we impose �Ef < 0 for trapezoid pulses,
which reflects that the system is not detuned through the
anticrossing. This condition is relaxed for double-hat pulses,
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FIG. 2. (Color online) Comparison of the adiabatic transition
probability Pa for a double hat (orange) and a linear pulse (red) with
tw = 0 as a function of �Ef . (Inset) Pulse profiles used to obtain Pa.
The maximal offset for the single rise-time pulse is chosen such that
the system is never driven through the anticrossing (�E

single
f < 0).

The maximal offset for double-hat pulses is determined by the
condition that the system cannot be driven with the slow component
of the pulse through the anticrossing (�Edh

sr < 0). For double-hat
pulses, the values of Pa between 0 < �Ef < 0.5 μeV originate from
the slow portion of the pulse, which brings the system close to the
anticrossing. In this range, the magnitude of Pa is not due to the
second fast rise-time portion of the pulse, which drives the system
through the anticrossing.

for which we impose �Ef < 0.5 μeV. This is equivalent, with
our choice of parameters, to letting the system be driven up to
the anticrossing with the slow component of the double hat.
This condition can be written as �Edh

sr < 0, i.e., the energy
difference at the end of the slow rise-time component is smaller
than 0.

Our results show for the trapezoid pulse what is expected
from a finite-time LZSM theory.43 There is a small probability
for an adiabatic transition if the system is detuned to close
proximity of the anticrossing. If one compares this result with
values of Pa obtained with the double hat, it seems that there
is no enhancement. Moreover, one would have a tendency
to associate values of Pa between 0 < �Ef < 0.5 μeV as
originating from the second fast-rise portion of the pulse,
which drives the system through the anticrossing. However,
for the particular double hat we are considering here, we
have Ufast2 ≈ 1. This means that the values of Pa in the range
0 < �Ef < 0.5 μeV are due to the system being brought close
to the anticrossing with the slow portion of the pulse, for which
η � 1. This is in contrast with trapezoid pulses, or any single
rise-time pulse, for which �Ef > 0 implies that most of the
magnitude of Pa comes from the system being driven through
the anticrossing.

To illustrate our last statement, in Fig. 3 we present a
comparison between Pa obtained with a double-hat pulse as
described previously and a “truncated double hat,” which is
missing the second fast detuning ramp (cf. inset Fig. 3). To
compare Pa between the two pulses, we choose the x axis
to describe �Ef at the end of the slow detuning pulse. We
shift the values obtained with a double hat along the x axis
by an amount �Efast2 = 0.5 μeV to compare between the two
different pulses. We clearly see that for both cases, Pa is nearly
identical.
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FIG. 3. (Color online) Comparison of the adiabatic transition
probability Pa for a double hat (orange) and a truncated double hat
(green), which is missing the second fast rise-time component, as a
function of �Ef at the end of the slow detuning pulse. (Inset) Pulse
profiles used to obtain Pa. The results obtained with a double hat are
shifted by an amount �Efast2 on the x axis to allow for comparison.
We conclude from these results that the state of the system is hardly
changed during the second fast detuning pulse.

III. ADIABATIC CONTROL OF A S-T+ QUBIT

In the following, we apply the previously developed ideas
to a physical implementation of a LZSM driven qubit. We
focus on the two-spin S-T+ implementation in a GaAs DQD
(Refs. 16 and 17) [see Fig. 1(b)]. Although the dynamics
of the system under double-hat pulses has already been
studied experimentally,18 there is still a need to gain a better
understanding of the charge-noise-induced spin dephasing. We
will show, among other things, that the measurement of finite-
time LZSM oscillations can provide a tool to qualitatively
access the strength of charge noise.

A. Double quantum dot spin states

The spin-preserving part of the Hamiltonian describing the
confinement of electrons in a DQD in the presence of an
external magnetic field can be written using a simple two-site
hopping model

H0 =
∑

i = 1,2
σ =↑ ,↓

(
εi + 1

2
g∗μBBσ

)
c
†
iσ ciσ + u

∑
i

c
†
i↑ci↑c

†
i↓ci↓

+ τ
∑

σ

(c†1σ c2σ + H.c.). (8)

The index i = 1, 2 labels the dot number and σ =↑ ,↓= ±1
the spin of the electron. We denote the energy of a single
confined electron by εi and the Zeeman energy associated with
its spin is given by g∗μBBσ/2, where g∗ denotes the effective
Landé g factor, μB the Bohr magneton, B the strength of the
external magnetic field. The operators ciσ and c

†
iσ describe,

respectively, the annihilation and creation of an electron in dot
i with spin σ . Two electrons occupying the same QD give
rise to an intradot Coulomb energy u. The last term of Eq. (8)
accounts for electron tunneling between the dots with strength
τ . We neglect the interdot Coulomb interaction because it only
produces a constant shift of the energy levels.

Since most recent experiments on a DQD system are
operated in a regime with at most two electrons, we can project
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FIG. 4. (Color online) Energy diagram for the relevant states in
the DQD as a function of ε. The spin states for the implementation
of the qubit are the hybridized singlet S and the triplet T+.

Eq. (8) into the subspace spanned by the charge configurations
(0,2), (2,0), and (1,1).5,14,16,46,47 The diagonalization of the
resulting Hamiltonian leads to six low-energy states which
are superpositions of the singlets S(0,2), S(2,0), and S(1,1)
as well as the triplets T0(1,1), T+(1,1), and T−(1,1). The
triplet states with two particles in the same dot must have
electrons occupying higher-energy orbitals due to the Pauli
principle. This results in a relatively high separation in energy
(∼400 μeV) from a singlet with both electrons occupying the
same dot.48 Consequently, the triplet states with two electrons
in the same dot can be safely neglected for the purpose of the
current study.

An energy-level diagram is shown in Fig. 4, where we
plot the energies of the relevant two-electron spin states as
a function of detuning ε = ε1 − ε2. The degeneracy of the
singlets S(1,1) and S(2,0) at ε = u, as well as between S(1,1)
and S(0,2) at ε = −u, is lifted due to tunneling, which results
in a splitting of the levels by 2

√
2τ . The degeneracy between

the spin singlet S and spin triplet T0 is lifted due to the exchange
interaction.49 This property has allowed the encoding of a spin
qubit in these two spin states and its manipulation via the
exchange interaction.5

Here, we concentrate on a particular value of detuning that
we have denoted by εc in the energy-level diagram. This point
corresponds to the crossing of the singlet state with the triplet
T+ state and is special because there is an anticrossing due
to the hyperfine interaction between the electron spins and
nuclear spins of the host material. It has been demonstrated
experimentally16 and theoretically17 that coherent control of
the S-T+ qubit can be achieved by detuning the system from
an initially prepared S(2,0) through the hyperfine-mediated
anticrossing.

The hyperfine interaction is described by the effective
Hamiltonian

HHF = S1 · h1 + S2 · h2 (9)

between the electron spin Si and the effective magnetic
fields hi that are generated by the nuclear spins I i in dot
i. The Overhauser field operators hi = ∑ni

k=1 Ak
i Ik

i describe
the nuclear spin bath. Here, ni is the number of nuclei in dot
i and Ak

i = vikν0 |ψi(rk)|2 is the hyperfine coupling constant
with the kth nucleus in dot i, with ψi(rk) the electron wave
function, ν0 the volume of the unit cell, and vik the hyperfine
coupling strength. A more convenient form of the hyperfine
interaction is obtained by introducing the spin ladder operators

S±
i = Sx

i ± iSy

i and h±
i = hx

i ± ihy

i , which yield

HHF = 1

2

∑
i

(
2Sz

i h
z
i + S+

i h−
i + S−

i h+
i

)
. (10)

The longitudinal part of HHF is diagonal and its contribution
will add to the energy of the triplet state. The transverse part

H⊥
HF = 1

2

∑
i

(S+
i h−

i + S−
i h+

i ) (11)

generates the so-called flip-flop process that results in an
energy gap at εc and allows for mixing of the S and T+ spin
states.8,9,15

B. S-T+ effective Hamiltonian

In this section, we derive an effective 2 × 2 Hamiltonian
that describes the dynamics of the S-T+ spin states near
the hyperfine-induced anticrossing. Before doing so, we start
by making a few considerations based on LZSM theory to
determine which states play a negligible role in the dynamics.
Since Eq. (8) describes a series of anticrossings, it is possible to
use the results of Refs. 50 and 51 where a formula for the nona-
diabatic transition probability of a multiple crossings LZSM
model has been derived. It was shown that for well-separated
anticrossings,51 we have Pk = ∏k

j=1 exp(−2πλ2
j /h̄αj ), where

Pk is the nonadiabatic transition probability after the kth
anticrossing. This formula is a product of k LZSM proba-
bilities, which reflects the independence between the set of
anticrossings.

This model can directly be applied to the DQD system for
magnetic fields on the order of a few hundreds of mT, where
the charge anticrossing and both of the hyperfine-induced
anticrossings (T+ and T−) are well separated. Here, we
demonstrate that if the system is initialized in the singlet
S(2,0), then the detuning pulses allowing for mixing of
the lowest-energy hybridized singlet state and triplet T+
cannot populate the higher-energy hybridized singlet state
and consequently the triplet T−. Let us consider that the
hyperfine coupling strength is on the order of a hundred
nanoelectron volts λHF = 100 neV. This value is consistent
with experimental findings. In Ref. 16, a strength of 60 neV has
been reported. For our choice of λHF, we find PLZSM = 0.5 for
α  138 eVs−1. This would correspond to an equally weighted
superposition of the qubit states. However, this is only true if
there is no population transfer to the higher hybridized singlet
level as predicted by the equation for Pk . By evaluating the
population transfer between S(2,0) and S(1,1) with the LZSM
formula for α = 138 eVs−1 and λcharge = √

2τ  7.1 μeV,
we find PLZSM  0, within the numerical precision of our
calculation, which indicates that there is no population transfer.

From the previous considerations, we have shown that it
is safe to neglect the higher-energy hybridized singlet state as
well as the triplet T−, but the importance of T0 remains to
be determined. Here, we rely on recent experimental results47

which demonstrate that only a certain type of detuning pulses
lead to mixing between T+, T0, and the ground-state singlet.
Moreover, as the results of Ref. 47 indicate, it is possible
to identify in interference patterns the presence of T0 in the
dynamics.52
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Finally, we conclude that it is possible to restrict the Hilbert
space to two states: T+(1,1) and the lowest-energy hybridized
singlet S. In order to derive an analytical expression for the
latter, we start by considering the projection of Eq. (8) onto
the states T+(1,1), S(1,1), and S(2,0). We find

H0(ε) =
⎛
⎝g∗μBB 0 0

0 0
√

2τ

0
√

2τ u − ε

⎞
⎠. (12)

The diagonalization of Eq. (12) yields two hybridized
singlets and the triplet state T+:

|S〉 = c(ε)|S(1,1)〉 +
√

1 − c(ε)2|S(2,0)〉, (13)

|S′〉 = c′(ε)|S(1,1)〉 +
√

1 − c′(ε)2|S(2,0)〉, (14)

|T〉 = |T+(1,1)〉, (15)

with respective energies

ES(ε) = 1
2 [u − ε −

√
8τ 2 + (u − ε)2], (16)

ES′(ε) = 1
2 [u − ε +

√
8τ 2 + (u − ε)2], (17)

ET = g∗μBB. (18)

The charge admixture coefficients c(ε) and c′(ε) are

c(ε) = ε − u −
√

8τ 2 + (u − ε)2√
8τ 2 + [−ε + u +

√
8τ 2 + (ε − u)2]2

, (19)

c′(ε) = ε − u +
√

8τ 2 + (u − ε)2√
8τ 2 + [ε − u +

√
8τ 2 + (ε − u)2]2

. (20)

We can now make the following basis change:

T (ε) =
⎛
⎝ 1 0 0

0 c(ε) c′(ε)
0

√
1 − c2(ε)

√
1 − c′2(ε)

⎞
⎠, (21)

such that

H
diag
0 (ε) = T (ε)†H0(ε)T (ε)

=
⎛
⎝g∗μBB 0 0

0 ES 0
0 0 ES′

⎞
⎠. (22)

We add now to the Hamiltonian defined in Eq. (12) the
hyperfine interaction defined in Eq. (9). Since we are not
interested in describing the nuclear spin dynamics, but its effect
on the two-spin states S and T+, we can model the action of the
Overhauser field operators by introducing a classical stochastic
variable which accounts for fluctuations in the nuclear spin
ensemble.8,9,15 By setting

hi = g∗μBBn,i , (23)

we can interpret Bn,i as the effective random magnetic field
acting on Si . Under normal experimental conditions we have
kBT � gnμnB, where gn and μn are the nuclear g factor and
magneton. The nuclear spins can, in this limit, be assumed to
be completely unpolarized, resulting in a Gaussian distribution

of nuclear fields8,9,15

p(Bn, i) = 1√
2πσ

e
− B2

n, i

2δ2 , (24)

with δ = A/g∗μB
√

n, the hyperfine coupling constant A ≈
90 μeV, and the approximate number of nuclei overlapping
with the electronic wave function n ≈ 105–106. By defining
B±

n, i = Bx
n, i ± iBy

n, i , the hyperfine Hamiltonian can be written
by analogy with Eq. (10) as

HHF = 1

2

∑
i

(
2Sz

i B
z
n,i + S+

i B−
n,i + S−

i B+
n,i

)
. (25)

The longitudinal part of HHF can be included in the energy
of the triplet state g∗μBB → g∗μB(B + Bz

n,1 + Bz
n,2), while

the transverse part

H⊥
HF = 1

2

∑
i

(S+
i B−

n,i + S−
i B+

n,i) (26)

mixes the spin states |S〉 and |T〉. We therefore find that the full
Hamiltonian, in the {T+(1,1),S(1,1),S(2,0)} basis, describing
the dynamics of the singlet S and triplet T+ near the hyperfine
anticrossing, is given by

HS-T+ (ε) =
⎛
⎝g∗μBB̃ λ 0

λ 0
√

2τ

0
√

2τ (u − ε)

⎞
⎠, (27)

where B̃ = B + Bz
n,1 + Bz

n,2 and

λ = 〈S(1,1)|H⊥
HF|T+(1,1)〉 = g∗μB(B−

n,2 − B−
n,1)/2

√
2.

(28)

In the basis that diagonalizes Eq. (12), the Hamiltonian defined
in Eq. (27) reads as

H̃S-T+ (ε) =
⎛
⎝g∗μBB̃ c(ε)λ c′(ε)λ

c(ε)λ ES(ε) 0
c′(ε)λ 0 ES′(ε)

⎞
⎠. (29)

The projection of Eq. (29) onto the Hilbert space spanned by
{|S〉,|T〉} leads to the effective 2 × 2 Hamiltonian describing
the dynamics at the singlet-triplet T+ anticrossing. Taking into
account that the detuning is time dependent ε = ε(t), we finally
obtain

H (t) = ES[ε(t)]|S〉〈S| + ẼT|T〉〈T|+f [ε(t)] (|S〉〈T| + H.c.) ,

(30)

where ES is defined in Eq. (16) and ẼT = g∗μBB̃. This
effective Hamiltonian differs from previous derivations17,53 in
the coupling f (t) = c[ε(t)]λ, which is time dependent. Here,
c[ε(t)] and λ are given in Eqs. (19) and (28). As it can be
seen from the functional form of f (t), the effective coupling
strength between the spin states depends on the charge state
(Fig. 5). This result is rather natural since the matrix element
between S and T+ goes to zero when the detuning is such
that S = S(2,0) and T+ = T+(1,1), i.e., 〈S|H⊥

HF|T+〉 → 0 for
ε � u. It also implies that the physics described by Eq. (30)
goes beyond standard LZSM theory with a constant coupling.
However, since both Hamiltonians describe adiabatic passage
through an anticrossing, we can assume that the dynamics is
qualitatively similar. We can therefore expect that our previous
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FIG. 5. (Color online) The effective hyperfine-mediated coupling
between |S〉 and |T〉 is a function of detuning. This is a consequence
of the state |S〉 being a superposition of different charge states.

discussion about enhancement of adiabaticity based on LZSM
physics remains valid. Furthermore, due to the peculiar form
of f (t) (cf. Fig. 5), we can assume that it is possible to observe
finite-time interferometry phenomena in close vicinity of the
anticrossing.

C. Master equation

In order to compare our theory with experimental measure-
ments, it is not sufficient to solve the Hamiltonian dynamics
provided by Eq. (30) because some important phenomena that
can influence the outcome of the experiment are not taken
into account. Among these are spin relaxation due to phonon-

assisted hyperfine interaction54 and charge fluctuations that
lead to dephasing of the qubit states.55 These phenomena can
be taken into account in a quantum master-equation formalism
for the density matrix. In the Lindblad formalism,56,57 the time
evolution can be expressed as

ρ̇ = − i

h̄
[H,ρ] + 1

2

N2−1∑
j=1

([Ljρ,L
†
j ] + [Lj ,ρL

†
j ]). (31)

The operators Lj are called Lindblad operators56,57 and they
describe the dissipative effect of the environment on the system
in the Born-Markov approximation, which consists of two as-
sumptions that lead to Eq. (31). The Born approximation sup-
poses a weak coupling between the system and the bath, while
the Markov approximation neglects any type of bath memory
effects during the system evolution. To fully describe the effect
of the environment, one needs N2 − 1 operators where N is the
dimension of the system’s Hilbert space.56,57 For the case of
a two-level system, the Lindblad operators are L1 = √

�−σ−,
L2 = √

�+σ+, and L3 = √
�ϕσz, where σ− and σ+ are spin

ladder operators and σz is the z Pauli matrix. They respectively
describe relaxation from the excited state to the ground state
with rate �−, relaxation from the ground state to the excited
state with rate �+, and pure dephasing with rate �ϕ .

By substituting Eq. (30) into (31) and using the expression
of the Lindblad operators, the first-order differential equation
for the S-T+ density matrix can be written as

⎛
⎜⎝

ρ̇11

ρ̇12

ρ̇21

ρ̇22

⎞
⎟⎠ =

⎛
⎜⎜⎝

−�+ i
h̄
f (t) − i

h̄
f (t) �−

i
h̄
f (t) − i

h̄
[ES(t) − ẼT] − 1

2 (�+ + �− + 4�ϕ) 0 − i
h̄
f (t)

− i
h̄
f (t) 0 i

h̄
[ES(t) − ẼT] − 1

2 (�+ + �− + 4�ϕ) i
h̄
f (t)

�+ − i
h̄
f (t) i

h̄
f (t) −�−

⎞
⎟⎟⎠

×

⎛
⎜⎝

ρ11

ρ12

ρ21

ρ22

⎞
⎟⎠. (32)

This system of four coupled ordinary differential complex
equations can be reduced to a system of three coupled ordinary
differential equations (Bloch equations) by introducing new
real variables defined by

x = ρ12 + ρ21, y = i (ρ12 − ρ21) , z = ρ11 − ρ22. (33)

This set of variables is completed by the conservation of
probability condition

ρ11 + ρ22 = 1. (34)

Substituting Eqs. (33) and (34) into (32), one finds the system
of ordinary differential equations for the new variables

ẋ = −ES − ẼT

h̄
y − 1

2
(�+ + �−) x − 2�ϕx, (35)

ẏ = ES − ẼT

h̄
x − 2

f

h̄
z − 1

2
(�+ + �−) y − 2�ϕy, (36)

ż = 2
f

h̄
y − (�+ + �−) z + �− − �+. (37)

Here, we assume that relaxation occurs through phonon-
assisted hyperfine interaction. Since we are dealing with
small energy transfers, we consider only piezophonons.58 The
Hamiltonian describing the coupling between the logical qubit
states [i.e., the instantaneous energy eigenstates of Eq. (30)]
and the phonons is given by Hqp = σz ⊗ Uph, with

Uph(r,t) =
∑
ν,q

√
h̄

2ρων,q
Aν,q[ei(q·r−ων,q t)b†ν,q + H.c.], (38)
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FIG. 6. (Color online) (a) Relaxation rate �1(ε) obtained for
B = 100 mT. Here, we consider hyperfine-mediated flip-flops of the
electron spin accompanied by emission or absorption of phonons.
The relaxation rate is maximal for ε = εc where |Ed

S (ε) − Ed
T| �

kBT . This results in a strong mixing of the spin states due to
thermal fluctuations. (b) Charge-noise-induced dephasing rate �2(ε).
The dephasing rate is assumed to have a functional dependence
proportional to 1 − c(ε)2 to ensure that dephasing related to charge
noise is weaker when the system is in a (1,1) charge configuration.

and σz is the pseudospin z-Pauli matrix for |S〉 and |T〉. Here,
b
†
ν,q (bν,q) creates (annihilates) a phonon with polarization ν

and wave vector q. Aν,q is the effective piezoelectric modulus,
which depends only on the direction of q.

The rates �+ and �− can be derived using Redfield
theory.59,60 We have

�± = 4 |〈0|σz|1〉|2 J±(ω), (39)

where |0〉 and |1〉 are the qubit states [i.e., in our case the
eigenstates of Eq. (30)], ω the angular frequency defined by
the difference in energy of the qubit states, and the spectral
densities J±(ω) are defined by

J±(ω) =
∫ ∞

0
dt e∓iωt 〈Uph(r,0)Uph(r,t)〉. (40)

Here, 〈· · ·〉 = Tr
[· · · ρph

]
with ρph the density matrix of the

phonon bath at thermal equilibrium.
The evaluation of Eq. (40) leads to

J+(ω) =
∑

ν

3〈A2〉
4π2ρc3

νh̄
ωn(ω) (41)

and

J−(ω) =
∑

ν

3〈A2〉
4π2ρc3

νh̄
ω[1 + n(ω)], (42)

with cν the sound velocity and n(ω) the Bose-Einstein
occupation number n(ω) = [exp(βh̄ω) − 1]−1, where β =
1/kBT . kB is the Boltzmann’s constant and T is the phonon
bath temperature, and 〈A2〉 denotes an average piezoelectric
modulus. In the following, we denote the result of the sum
over ν by γ0.

Since �+ and �− can be related to each other by considering
the limiting case of thermal equilibrium, Eqs. (37) can be
simplified to include only two independent rates. If the system
reaches thermal equilibrium then the detailed balance equation
ρ th

11�+ = ρ th
22�− holds. Moreover, the populations are given

by the canonical ensemble ρ th
ii = exp(−βEi)/Z, with Z the

partition function. This yields

�+
�−

= ρ th
22

ρ th
11

= e−βh̄ω, (43)

where we used h̄ω =
√

[ES(ε) − ẼT]2 + 4f 2(ε), which is the
energy difference between the eigenstates of Eq. (30).

Combining the results of Eqs. (39) and (41)–(43), we find
that

�1(ε) = �+ + �− = γ0
f 2(ε)

h̄2ω
coth

(
h̄ω

2kBT

)
. (44)

This function is plotted against ε in Fig. 6(a), and has a peak
at ε = εc where h̄ω � kBT resulting in a strong mixing of the
states due to thermal fluctuations.

Pure dephasing can originate from orbital effects. In our
current description of the problem, we have neglected that the
wave functions of the singlet |S(2,0)〉 and triplet |T+(1,1)〉
couple differently to the background charge environment due
to their different charge configurations. Thus, a superposition
state of the form |ψ〉 = α|S(2,0)〉 + β|T+(1,1)〉 is sensitive to
background charge fluctuations (charge noise), which leads to
dephasing of the state |ψ〉.8,55 If the qubit is in a superposition
with the same charge state |ϕ〉 = α|S(1,1)〉 + β|T+(1,1)〉, then
the effects of charge noise are assumed to become weaker.
Therefore, we choose to write the charge-induced dephasing
as

�ϕ(ε) = γ2[1 − |c(ε)|2], (45)

where γ2 is the charge noise rate. In Fig. 6, we plot the rates
�1(ε) and �ϕ(ε).

Finally, the Bloch equations, written in a matrix form,
and describing the dynamics around the S-T+ anticrossing,
are

h̄

⎛
⎝ ẋ

ẏ

ż

⎞
⎠ =

⎛
⎝− 1

2h̄{�1[ε(t)] + 4�ϕ[ε(t)]} −ES[ε(t)] + ẼT 0
ES[ε(t)] − ẼT − 1

2h̄{�1[ε(t)] + 2�ϕ[ε(t)]} −2λc[ε(t)]
0 2λc[ε(t)] −h̄�1[ε(t)]

⎞
⎠

⎛
⎝x

y

z

⎞
⎠ ± h̄

⎛
⎝ 0

0
γ1

⎞
⎠. (46)
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The different signs in front of the inhomogeneous term come
from the fact that the states |S〉 and |T〉 exchange their roles
as ground and excited states of the system at ε = εc. The
spontaneous relaxation rate γ1 is given by

γ1 = γ0
f 2(ε)

h̄2ω
. (47)

IV. RESULTS

In the following, we first present a comparison between
experimental and theory results obtained with experimental
pulse profiles, which were measured at the output port of the
waveform generator, and experimentally determined ES(ε)
and c(ε). We then show further theory results for which we
study the effect of charge dynamics and phonon-mediated
hyperfine relaxation. For this purpose, we have solved
Eq. (46) for different γ0’s and γ2’s.

The singlet return probability is obtained by solving
Eq. (46) for different realizations of λ. The average value
of PS is then calculated according to

PS = 1

N

N∑
i=1

1

2
(1 + z(i)), (48)

where z(i) is the ith solution of z(t) in Eq. (46).

A. Experimental observation of finite-time effects

We consider a double-hat detuning pulse whose profile is
shown in the inset of Fig. 7(a). The leading edge has a rise time
of 0.1 ns and an amplitude A1f , which is followed by a slow
ramp with rise time tslow and amplitude As = −0.065 meV.
A 0.1 ns rise-time pulse shifts the detuning to its maximal
value of −0.39 meV, where the detuning is held constant for
a time interval tw. The trailing edge of the pulse is simply
the reverse of the leading edge. The conversion between gate
voltage and energy is performed using the measured lever arm
∼0.13 meV/mV.29,61 In Fig. 7, we compare experiment and
theory for tslow = 4 ns, A1f = −0.26 meV.

FIG. 7. (Color online) (a) Measurements of PS as a function of tw
and εs for A1f = −0.26 meV, tslow = 4 ns, and B = 55 mT. Double-
hat pulses allow the observation of nonadiabatic transitions when
the system is driven slowly to close proximity of the anticrossing.
(b) Theoretical predictions obtained using a pulse profile obtained
at the output of the waveform generator and parameters from (a).
(c) PS plotted as a function of B and εs for tw = 20 ns reveals
the spin funnel. Parameters are A1f = −0.26 meV and tslow = 4 ns.
(d) Theoretical calculations for the same parameters as in (c).

PS is plotted as a function of tw and εs for B = 55 mT in
Figs. 7(a) and 7(b). A “spin funnel” that is obtained using the
spectroscopy method developed in Ref. 5 with a waiting time
tw = 20 ns is shown in Fig. 7(c) along with the corresponding
theory plot in Fig. 7(d). Since the experimental cycles have a
short period of 5 μs, there is a buildup of nuclear polarization
that generates a gradient field.14 To take this into account in our
model, we add a mean to the nuclear field distributions (24). It
is sufficient to consider only a mean ξx

1 for Bx
n,1 because only

the magnitude of the gradient field plays a role in the dynamics.
This can be easily understood by considering a rotation about
the z axis of the coordinate system that brings the x axis to
coincide with the direction of B⊥

n,2 − B⊥
n,1. Parameters used in

the theory panels are δ = 1 mT, ξx
1 = 10 mT, γ0 = 10−2, and

γ2 = 108 s−1.
Both the experimental results and numerical simulations

show enhanced interference visibility within the region be-
tween εs ∼−0.19 meV and ∼−0.29 meV. This region should
correspond to values of PS determined by the slow rise-time
component of the pulse, as demonstrated in Ref. 18. The
position of the anticrossing is located at ∼−0.14 meV from
the data shown in Figs. 7(a) and 7(c). Moreover, since A1f =
−0.26 meV, As = −0.065 meV, and the maximal pulse am-
plitude is −0.39 meV, the high-contrast region should be
located between −0.21 and −0.27 meV, in good agreement
with our results.

As discussed in Sec. II B, the visibility of the oscillation
pattern contained between εs ∼−0.14 meV and ∼−0.21 meV
cannot result from the second fast rise-time portion of the
pulse. Although it drives the system through the anticrossing,
the level velocity is too high to allow for large-magnitude
nonadiabatic transition probabilities. Thus, as we showed in
Figs. 2 and 3 by considering a finite-time LZSM model, we are
able to observe a nonadiabatic transition event due to a slow-
level velocity pulse that brings the system to close vicinity of
the anticrossing, but without driving it through.

To ensure that we are observing finite-time effects, we
consider a second double-hat pulse that has a different A1f ,
which changes the relative starting and stopping position of
the slow rise-time component of the pulse. As a consequence,

FIG. 8. (Color online) Experimentally [(a) and (c)] and theoret-
ically [(b) and (d)] obtained LZSM interference patterns and spin
funnels. Here, A1f = −0.29 meV, tslow = 4 ns, and B = 55 mT. The
waiting time for the spin funnel is tw = 20 ns. The interference
patterns differ from results presented in Fig. 7, indicating that the
evolution of the system is not only sensitive to the level velocity, but
also the time at which the change in level velocity happens.
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the relative propagation times ti and tf , which are defined by
setting t = 0 at the anticrossing, are also modified.

We consider a second pulse with A1f = −0.29 meV, for
which the results are presented in Fig. 8. First, we observe
that the high-contrast region is shifted towards more pos-
itive detunings, as expected. Second, we notice the overall
difference between the interference pattern in Figs. 7 and 8,
panels (a) and (b). This dissimilarity can only be explained
by different phase accumulation due to distinct ti and tf . In
the usual scattering description of LZSM interferometry, the
transition probability only depends on the level velocity at the
anticrossing and on the coupling strength. But here, these two
quantities have remained unchanged. These results show the
importance of using finite-time models to describe adiabatic
passage experiments.

We also anticipate, for LZSM driven qubits, the possibility
to manipulate the states by keeping a constant driving and
instead change the relative starting and stopping positions of
the detuning pulse.

B. Effects of phonon-mediated hyperfine relaxation and
charge-induced dephasing

In this section, we consider a detuning pulse ε(t) with
an amplitude of εs − εi = 0.2 meV. The pulse reaches an
amplitude of 0.12 meV in 0.1 ns, it is then slowed down
until it reaches an amplitude of 0.1325 meV, and finally
it is brought to its maximal amplitude in 0.1 ns. The rise
time tslow of the slow part of the pulse can be tuned freely.
Here, we compute PS for tslow = 8 ns. In Figs. 9(a)–9(d), we
present the singlet return probability as a function of εs and
waiting time tw for B = 100 mT, u = 4 meV, τ = 5 μeV, and
different values of γ0 and γ2. The interference fringes are
characterized, for εs < εc, by three distinct regions showing
an alternate oscillation amplitude for PS. The darker regions
coincide with detunings for which the passage through the
anticrossing happened during one of the fast rise times of ε(t).
Similarly, the bright region between εs  3.900–3.915 meV
coincides with a passage through the anticrossing with
the slow rise-time portion of the detuning pulse. Exper-
imentally measured interference patterns exhibit identical
behavior.

Our results also clearly show coherent evolution of the qubit
for εs > εc [Fig. 9(e), blue and purple trace, γ2 = 108 s−1].
This corresponds to the case where the system is not detuned
through the anticrossing. It indicates that it is possible to design
complex pulses that can directly influence the competition
between LZSM physics and charge noise. However, this is
conditional on the dephasing time scale associated with charge
noise. We notice that if γ2 = 109 s−1, then it is impossible to
identify any coherent behavior [green and red traces, Fig. 9(e)].

Our results indicate that charge noise strongly affects the
dynamics while spin relaxation only has a moderate effect.
Although this behavior can be identified when comparing
Fig. 9(a) with Figs. 9(b) and 9(c), it is best seen in
Fig. 9(f) when comparing traces. An increase in the noise rate
γ2 leads to a substantial decrease of the oscillation visibility
(blue and green traces). On the other hand, the visibility is
only slightly diminished when relaxation is enhanced (blue
and purple traces).

FIG. 9. (Color online) Singlet return probability PS as a function
of the waiting time tw and final position εs obtained for a double-hat
detuning pulse. Pulse details are given in the text. Here, we have
set B = 100 mT, u = 4 meV, and τ = 5 μeV for all plots. The
parameters γ0 and γ2 are (a) γ0 = 10−2, γ2 = 108 s−1, (b) γ0 = 10−2,
γ2 = 109 s−1, (c) γ0 = 10−1, γ2 = 108 s−1, and (d) γ0 = 10−1 s−1,
γ2 = 109 s−1. Figures (e) and (f) show cuts for case (a) in blue,
(b) in dark green, (c) in purple, and (d) in dark red. The cuts are
respectively taken before the anticrossing at εs = 3.987 meV and
after at εs = 3.908 meV.

Here, charge noise has a drastic effect on spin dynamics.
Since it leads to strong dephasing of the logical qubit
states when spin and charge degrees of freedom are corre-
lated, it results in a competition mechanism against LZSM
interferometry.62–67 Since the hyperfine-mediated anticrossing
is close to the charge anticrossing for reasonable values of B,
charge noise also affects the dynamics during the passage
through the anticrossing. As a result, the efficiency of the
LZSM mechanism to create a coherent superposition or to
produce coherent interferences is hindered, and thus the
optimal state populations are not reached. This behavior can
be identified in Fig. 9(f) when comparing traces obtained with
the same relaxation rate, but different charge-noise rates (i.e.,
blue with green trace and purple with red trace). We clearly
identify that the oscillation’s visibility is smaller for larger
values of γ2.

Energy relaxation processes have a weaker influence on
spin dynamics than dephasing due to their dependence on
the energy difference between the eigenstates of the system.
These become important only when the system is held in close
vicinity of the anticrossing, where relaxation is maximum [cf.
Fig. 6(a)].

These results suggest that inhomogeneous dephasing due to
nuclear spin fluctuations is not the only physical process that
limits the coherence of a two-spin-based qubit, but also that
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charge noise plays a major role. This is an important result
for future devices made out of Si/SiGe which are reaching
a maturity level comparable to GaAs.68–70 Silicon-based
devices are very interesting candidates for spin-based quantum
computing because the only stable isotope (29Si) possessing a
nuclear spin (I = 1

2 ) has relatively low abundance ≈5%. Thus,
hyperfine-induced decoherence is weaker than in GaAs-based
nanostructures.68

Consequently, we distinguish three time scales that govern
the physics of partial spin adiabatic passage in DQDs. There
is the rise time of the detuning pulse, the decoherence time
T ∗

2 , and Tϕ associated with charge-noise-induced dephasing.
Ideally, we would like to have rise times shorter than Tϕ to
preserve any spin superposition state. But, this would render
adiabatic transitions unlikely and therefore seriously hinder
manipulation of the qubit. “Double-hat” pulses partially solve
the problem, but for an even better result, it would be necessary
to increase the coupling between the qubit states. In GaAs
double quantum dots, it is possible to prepare a nuclear gradient
field to enhance the hyperfine coupling,14 with the advantage
of extending T ∗

2 . In almost nuclear spin free systems (Si- or C-
based DQDs), it is possible to use micromagnets to artificially
induce a coupling between the S-T+ qubit states.71

V. CONCLUSIONS

We have developed a master-equation formalism to study
the dynamics of a S-T+ qubit in the vicinity of the hyperfine-
mediated anticrossing. In comparison with previous theories
that only included decoherence due to the hyperfine interaction
with nuclear spins, we also include phonon-mediated hyperfine

spin relaxation and spin dephasing due to charge noise.
We have also derived an effective two-level spin-charge
Hamiltonian. In addition to previous theories, we take into
account the charge degree of freedom. This property originates
from the lowest-energy singlet state |S〉 being a superposition
of different charge configurations. Although the effective
coupling between the S-T+ qubit states is time dependent,
its form still allows us to approximately reason in terms of
LZSM physics.

With our formalism, we have compared results for different
values of γ0 and γ2. Our findings suggest that LZSM spin
interferometry is largely inhibited by charge dynamics, and
thus charge coherence has to be treated on equal footing
with spin coherence. We have indeed demonstrated that
the visibility of the coherent oscillations of a spin qubit is
sensitive to the time scale associated with charge-induced spin
dephasing. We have also shown that this interplay between
charge and spin can prevent the observation of finite-time
oscillations. Interestingly, this could lead to the development of
an experimental protocol to measure the time scale associated
with charge decoherence.
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