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ABSTRACT

We show that in bilayers of transition metal dichalcogenides (TMDCs) both intra-layer and inter-layer couplings
give important contributions to the Berry curvature in the K and −K valleys of the Brillouin zone. Because
of the inter-layer contribution the Berry curvature is stacking dependent and the commonly available 3R type
and 2H type bilayers have different and highly tunable Berry curvature properties. The Berry curvature leads
to valley Hall and spin Hall effects and we study them in 2H stacked bilayer MoS2. Interestingly, the Hall
conductivities may change sign as a function of the external electric field in this system which is reminiscent of
the properties of lattice Chern insulators.
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1. INTRODUCTION

Monolayers of group-VI transition metal dichalcogenides (TMDCs) exhibit circular optical dichroism, that is, the
valleys at the ±K point of the Brillouin zone (BZ) can be directly addressed by left or right circularly polarized
light.1–4 A related phenomenon,5,6 called the valley-Hall effect, has also been demonstrated7 in monolayer MoS2

and its origin can be traced to the chirality of the electronic Bloch bands.5,6, 8 However, the Berry curvature9

properties of bilayer TMDCs have received very limited attention so far.10 In light of recent reports11,12 on the
valley-Hall effect in bilayer MoS2, a better understanding of the Berry curvature properties would be important.
The purpose of this work is to analyze this topological property of bilayer TMDCs (BTMDCs) and how it can
affect the transport properties.

We will discuss in details the competition between the contributions towards Berry curvature of electron
bands in BTMDCs coming from the intrinsic properties of the monolayers and a part generated by the inter-layer
coupling. In this respect BTMDCs are markedly different from gapped bilayer graphene or monolayer TMDCs,
where only one of the contributions is finite.8,13 Importantly, the Berry curvature is tunable by moderately
strong external electric fields because of the inter-layer contribution. We also show that due to the differences
in the interlayer coupling the stacking of the monolayer constituents in BTMDCs affects the Berry curvature
and different stackings have Berry curvature properties. These topological differences can already be understood
if spin-orbit coupling (SOC) is neglected. Since the intrinsic SOC is very important in TMDCs, we will also
analyze the effect of SOC on the band structure and on the Berry curvature. The finite Berry curvature leads
to valley and spin Hall conductivities which depend on the stacking and on the presence/absence of inversion
symmetry in the system. Based on Ref. 19, we will focus on the Hall conductivities of 2H stacked bilayers. In
particular, we will show that the interplay of intrinsic SOC, the layer degree of freedom and an external electric
field can lead a sign change in the valley and spin Hall as a function of the external electric field in 2H stacked
BTMDCs.

Generally, the presence/absence of inter/intra-layer Berry curvature contributions and the effect of different
stacking is a relevant question for all layered materials, including, e.g., heterostructures of different mono-
layer TMDCs obtained by layer-by-layer growth14 or artificial alignment.15 Because of the recent experimental
progress,10–12,16–18 we will concentrate on bilayer MoS2 in the following, but many of our findings are equally
valid for other BTMDCs such as MoSe2, WS2, and WSe2.
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2. STACKING ORDER AND BAND STRUCTURE

2.1 2H and 3R bilayers

The most common stable phase of bulk TMDCS is the so-called 2H polytype, where the unit cell contains two
monolayer units and the bulk is inversion symmetric. Some layered TMDCs, among others MoS2, can also exist
in the 3R polytype, where the unit cell contains three monolayers and inversion symmetry is broken in the bulk.
Bilayer samples can be exfoliated from both bulk phases and we will refer to them as 2H and 3R stacked bilayers,
see Fig.1.

Figure 1. a) Schematic crystal structure of 3R stacked bilayer TMDCs in side view and in top view. b) Schematic
crystal structure of 2H stacked bilayer TMDCs in side view, and in top view. In a) and b) the monolayers are shown as
simple hexagonal lattices with two inequivalent sites, while a1 and a2 denote the lattice vectors. Adapted from Ref. 19
c©American Physical Society.

2.2 k · p Hamiltonian in the ±K valleys

We will focus on the ±K valleys in the BZ because in bilayer MoS2 the band edge in the conduction band can
be found at these point.19 We will briefly discuss the Q valleys in Section 5, which are also important for the
electronic properties in e.g., bilayer WSe2. The main differences between the Berry curvature properties of 3R
and 2H bilayer TMDCs are orbital effects and therefore we neglect the SOC in the present Section, but we will
come back to its discussion in Sect. 4.

2.2.1 3R bilayers

3R bilayers are non-centrosymmetric (the symmetry of the crystal structure is described by the point group C3v)
and therefore one can expect interesting Berry curvature properties even if no external electric field is applied.
The following simplified k · p Hamiltonian can capture the most important the electronic properties at the ±K
point of the BZ:19

H3R
K =


εbcb γ3 q+ γcc q− 0
γ3 q− εbvb 0 γvv q−
γcc q+ 0 εtcb γ3q+

0 γvvq+ γ3q− εtvb

 (1)

Here q± = τqx ± iqy denotes the wavenumber measured from the K (or −K) point of the BZ and τ = ±1 is the
valley index. Higher order terms in q±, which appear in the k · p model of monolayer TMDCs20,21 have been
neglected here. The band-edge energies of the CB and VB in the bottom (top) layers are denoted by εbcb (εtcb)
and εbvb (εtvb). The layer index bottom (b) and top (t) are assigned to the bands based on the localization of the
corresponding Bloch-wave function to one of the layers. The definition of the layer index is shown in Fig. 1(c): in
the bottom monolayer the Mo atom does not have a S neighbour atom directly above it, while for the Mo atom
in the top layer there is a S atom neighbour belonging to the bottom monolayer. The effects of this difference
in the atomic environment of the two Mo atoms can be deduced from our DFT band structure calculations, i.e.,

that ε
(b)
cb (vb) > ε

(t)
cb (vb), see Ref. 19. One can define the band-edge energy differences δEcc = (εbcb − εtcb)/2 and

δEvv = (εbvb − εtvb)/2. Since the difference between δEcc and Evv is small it will be neglected in the following.
This approximation does not affect any of the main conclusions of the Berry curvature calculations. We denote
therefore by δEcc = δEvv := δEll the inter-layer band-edge energy difference and use the notation δEbg = Ebg/2
for half of the monolayer bandgap. We use γ3 for the intra-layer coupling of the CB and VB, and γcc (γvv) is
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the inter-layer couplings between the CBs (VBs) of the two monolayers. Estimates for these material parameters
can be found in Ref. 19.

2.2.2 2H bilayers

The k · p Hamiltonian for 2H stacked bilayer MoS2 which derives from the 2H polytype [see Fig. 1(b)] reads

H2H
K =


εcb + Ug γ3 q+ γcc q− 0
γ3 q− εvb + Ug 0 t⊥
γcc q+ 0 εcb − Ug γ3q−

0 t⊥ γ3q+ εvb − Ug

 (2)

where t⊥ is a momentum independent tunnelling amplitude between the VBs of the two layers and we included the
possibility of an inter-layer potential difference given by ±Ug, which can be induced by a substrate or an external
electric field. A similar model, which neglected the coupling between the CBs, was introduced in Refs.10,22 We
will show, however, that the coupling between the CBs gives an important contribution to the Berry curvature.
For Ug = 0 the system is inversion symmetric (the crystal symmetries are described by point group D3d). At
the ±K points the two CBs are degenerate, while the VBs are split due to the tunnelling amplitude t⊥ [see
Fig. 1(b)]. Away from the ±K points the CBs are also split, for small q wavenumbers this splitting is mainly
due to the interlayer coupling term γccq±. Estimates for the material parameters appearing in Eq. (2)can be
found in Ref. 19.

3. BERRY CURVATURE OF BTMDCS

3.1 Numerical and analytical results

The Berry curvature of band n in a 2D material is defined by Ωz,n(k) = ∇k × i〈un,k|∇kun,k〉, where un,k is the
lattice-periodic part of the Bloch wave functions. In the envelope function approximation un,k can be calculated
from a k · p Hamiltonian valid around a certain k-space point. Using the k.p models introduced in Sections
2.2.1 and 2.2.2, in the ±K valleys the un,k functions are 4-spinors that can be obtained by e.g., numerically
diagonalizing H3R

K and H2H
K of Eqs. (1) and (2), respectively. We used these eigenstates and the approach

introduced by Ref. 23 to calculate the Berry curvature. The Ωz,n(k) obtained for 3R and 2H bilayers is shown
in Figures 2(a) and (b), respectively For comparison, we also show the Berry curvature that can be obtained
from a gapped-graphene model8 which approximately describes the band structure of individual monolayers in
the limiting case when all inter-layer coupling terms in Eqs. (1) and (2) are neglected. It is clear that the Berry
curvature of both types of bilayer is substantially different from the monolayer.

The role of the interlayer coupling in the results shown in Fig. 2, can be understood by using an approximation
for Ωz(k) which can make analytical calculations easier.19 Using this approach one finds that for 3R bilayers

Ω
(b)
z (Ω

(t)
z ) for the bottom (top) layer can be written as Ω

(b)
z ≈ Ω

(0)
z − Ω

(1,1)
z (Ω

(t)
z ≈ Ω

(0)
z + Ω

(1,1)
z ), where

Ω(0)
z (q) = ±τ

2

(
γ3

δEbg

)2
1(

1 +
(
γ3|q|
δEbg

)2
)3/2

, (3a)

Ω(1,1)
z (q) ≈ τ

(2δEll)2

λ1 ±
λ2(

1 +
(
γ3|q|
δEbg

)2
)1/2

,

 (3b)

Here |q| is the magnitude of q, λ1 = γ2
cc + γ2

vv, λ2 = γ2
cc − γ2

vv and the + (−) sign corresponds to the CB (VB).

Ω
(0)
z in Eq. (3a) is the well known result for a gapped-graphene two-band model,6,9 while Eq. (3b) is a correction

due to the inter-layer coupling.

In 2H bilayers, if both inversion and time reversal symmetries are simultaneously present, Ωz(q) vanishes.9

However, a finite inter-layer potential ±Ug breaks inversion symmetry, opens a gap in the CB at the ±K point,
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Figure 2. Comparison of numerical and analytical calculation of Ωz around the K point for a) 3R stacked, and b) 2H
stacked bilayer MoS2. � show the results for CBs, © for VBs. In a), brown colour corresponds to bands in the bottom
layer, purple to bands in the top layer, solid lines show the results of Eq. (3). Dashed lines indicate the Berry curvature

Ω
(0)
z of a monolayer, given by Eq. (3a). In b) brown colour corresponds to the layer at −Ug, purple to the layer at +Ug

potential, solid lines show the results of Eqs. (4a)-(4b) and (5), dashed lines indicate Ω
(0)
z,cb for the inter-layer contribution

given by Eq. (4a). In b) we used Ug = 10meV. The plotted range corresponds to around 10% of the Γ −K distance in
the BZ. Adapted from Ref. 19 c©American Physical Society.

and leads to a non-zero Ωz(q). One finds that in the CB the Berry curvature is given by Ωz,cb = Ω
(0)
z,cb + Ω

(1,1)
z,cb ,

where

Ω
(0)
z,cb(q) = ∓τ

2

γ2
ccUg(

U2
g + (γcc|q|)2

)3/2
(4a)

is due to the inter-layer coupling of the CBs. The second contribution reads

Ω
(1,1)
z,cb (q) ≈ ±τ

2

(
γ3

δEbg

)2

λ3
Ug(

U2
g + (γcc|q|)2

)1/2
, (4b)

where, using the notation ε̃vb =
√
t2⊥ + U2

g , the constant λ3 is given by λ3 = 1+ 3
4

(
ε̃vb

δEbg

)2

. Ω
(1,1)
z,cb (q) is non-zero

even if we set γcc = 0, i.e., this term describes a Berry curvature contribution due to the intra-layer coupling of

the CB and the VB. For the VB one finds that Ω
(0)
z,vb = 0 and the first non-zero term is

Ω
(1,1)
z,vb = ∓2τ

γ2
3Ug

ε̃vb(Ebg ∓ ε̃vb)2
, (5)

which is in agreement with Ref. 10 for ε̃vb � Ebg. The upper (lower) sign in Eqs. (4a)-(4b) and (5) corresponds
to the bands that have larger weight in the layer at +Ug (−Ug) potential. One can note that the inter-layer

(Ω
(0)
z,cb) and intra-layer (Ω

(1,1)
z,cb ) contributions have opposite sign in each valley. As shown in Figs. 2(a) and (b),

our numerical calculations are in good agreement with the analytical results of Eqs. (3) and Eqs. (4)-(5).

3.2 Discussion

The comparison of Figs. 2(a) and 2(b) reveals several important differences between the Berry curvature prop-
erties of the two stacking type of BTMDCs. Considering first the 3R bilayers, the Berry curvature is essentially
layer-coupled both in the VB and in the CB: it is significantly larger in the CB of the top layer than of the bottom
layer, while the converse is true for the VBs [see Fig. 2(a)]. In the CB of the bottom and top layers one finds for

q = 0 that Ωz,cb = Ω
(0)
z,cb + Ω

(1,1)
z,cb = τ

2 [(γ3/δEbg)
2 ∓ (γcc/δEll)

2], where − (+) sign is for the bottom (top) layer.
This expression shows that i) both intra-layer and inter-layer coupling contribute to the Berry curvature, and (ii)
the two contributions can either reinforce or weaken each other. The effect of the inter-layer coupling is clearly
visible: it reduces Ωz,cb for the bottom layer and enhances it for the top layer. A similar but opposite effect takes
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place in the VB as well, where Ωz,vb = − τ2 [(γ3/δEbg)
2± (γvv/δEll)

2]. One can show that the intra-layer and the

inter-layer contributions are of similar magnitude.19 Moreover, Ω
(1,1)
z and hence the total Berry curvature may

be tunable by an external electric field which would change δEll.

For 2H bilayers, on the other hand, the Berry curvature is CB-coupled : it is much larger in the CB than in the
VB [see Fig. 2(b)]. This can be understood from Eqs. (4a) and (4b): for small q values, such that γcc|q| << Ug

the main contribution to Ωz,cb comes from the inter-layer term Ω
(0)
z,cb and can be quite large for small Ug values.

Similarly to 3R bilayers, therefore, Ωz,cb is gate tunable. In contrast, using Eq. (5) we expect that the Berry
curvature for realistic parameters, albeit gate tunable, will be rather small in the VB.

4. SPIN AND VALLEY HALL EFFECTS

Due to the Berry curvature, if an in-plane electric field is applied, the charge carriers will acquire a transverse
anomalous velocity component9 which gives rise to an intrinsic contribution to the Hall conductivity.24 Here we
will focus on 2H stacked bilayers, the corresponding effects in 3R bilayers are discussed in Ref. 19. We start with
the discussion of the intrinsic spin-orbit coupling in 2H bilayers.

4.1 Spin-orbit coupling

Generally, the SOC in BTMDCs is more complex than in monolayers. Because of the recent experimental
activity11,12 we will focus on bilayer MoS2. Our DFT calculations19 suggest that for bilayer MoS2 it is sufficient
to take into account only the intrinsic SOC of the constituent monolayers and one can neglect interlayer SOC
terms, which are allowed by symmetry considerations.
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Figure 3. SOC effects in the band structure of 2H bilayer MoS2. a) DFT band structure calculations along the Γ−K−M−Γ
line of the BZ for 2H bilayer. b) If the SOC is neglected (noSOC), the two lowest energy CB are degenerate at the ±K
points and weakly split away from the ±K points due to the inter-layer coupling. The energy splitting of the two highest
energy VBs is 2t⊥. Both layers contribute with equal weight to each of the bands. b) When SOC is taken into account,
in the CB there are two two-fold degenerate and spin-unpolarized bands separated by an energy 2∆cb at the ±K point.
A combined layer and spin index can be assigned to each of the four CB bands at the ±K point, away from the ±K
points both layers contribute to each of the bands, but with different weights. In the VB both layers contribute to each
of the bands, even at the ±K points. Only if ∆vb � t⊥ do the bands become approximately layer polarized.22 The
spin-polarization of the bands in the −K valley can be obtained by taking the time reversed states. Adapted from Ref. 19
c©American Physical Society.

The band structure of 2H bilayer MoS2 obtained from DFT calculations is shown in Fig.3(a). If SOC is
neglected and inversion symmetry is not broken, the CB is doubly degenerate, while the VB is non-degenerate
in the ±K point [Fig. 1(b)]. If now spin is taken into account but SOC is neglected, this would mean a four-
fold degeneracy of the CB. However, the SOC partially lifts this four-fold degeneracy and leads to two two-fold
degenerate levels, see Fig. 3(c). The remaining spin-degeneracy of the levels is due to the inversion symmetry.
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The SOC of 2H bilayers can be described by the Hamiltonian H2H
so,cb = ∆cbτzσzsz (H2H

so,vb = ∆vbτzσzsz) in the
CB (VB) of the bilayer. Here the Pauli matrix σz indicates that within a given valley the SOC has a different
sign22 in the two layers: this can be understood from the fact that the layers are rotated by 180◦ with respect
to each other. At each energy there will be a ↑ and a ↓ polarized band, see Fig. 3(c). In the CB the splitting
between the two-fold degenerate levels is essentially given by the SOC strength 2∆cb of monolayer TMDCs. In
the VB the main effect of the SOC is to increase the energy splitting of the two highest bands from 2t⊥ to
2
√

∆2
vb + t2⊥.

4.2 Spin and Valley Hall effects

We now discuss how the Berry curvature affects the valley and spin Hall conductivities in 2H bilayer MoS2

because it turns out that this system may host a particularly interesting scenario. The valley and spin Hall
conductivities for 3R bilayer are discussed in Ref. 19. Since few-layer MoS2 on dielectric substrate is often found
to be n-doped,25 we will focus on the valley Hall effects in the CB. Although the Q and K valleys are nearly
degenerate, in our DFT calculations the band edge in the CB is at the ±K point. Therefore we can use the
results obtained in Sect. 3. The relevance of the Q point valleys in the CB will be briefly discussed in Section 5.

We may define the valley Hall conductivity σv,H of band n as8,24

σn,v,H =
e2

~

∫
dq

(2π)2

[
f↑n(q)Ω↑z,n(q) + f↓n(q)Ω↓z,n(q)

]
(6)

where f↑,↓n (q) is the Fermi-Dirac distribution function. Similarly, the spin Hall conductivity can be defined as

σn,s,H =

∫
dq

(2π)2

[
f↑n(q)Ω↑z,n(q)− f↓n(q)Ω↓z,n(q)

]
. (7)

Since we only study the valley Hall effects in the CB, we neglect the band index n in the following. The valley
and spin Hall conductivities for 3R bilayer are discussed in Ref. 19.

Let us start with the Ug = 0 case. If the SOC is neglected then, as shown in Sect. 3, the Berry curvature
is zero. If the SOC is taken into account then one can show that it leads to a finite Berry curvature even for
Ug = 0. The corresponding formulas can be obtained from Eqs. (4a), (4b) by making the substitution Ug → ∆cb

and using ε̃vb =
√

∆2
vb + t2⊥ in the expression for λ̃3. One can label Ωz by a spin index s =↑, ↓ and write

Ω↑z,cb = Ω
(0)
z,cb + Ω

(1,1)
z,cb , where the upper (lower) sign appearing in Eqs. (4a) and (4b) corresponds to the band

at energy εcb + τ∆cb (εcb − τ∆cb) for q = 0. Regarding the ↓ bands, one finds Ω↓z,cb = −Ω↑z,cb. Since inversion

symmetry is not broken and therefore each band is spin-degenerate, f↓n(q) = f↑n(q). On the other hand, one
finds that Ω↑z(q) = −Ω↓z(q) and therefore σ2H

v,H vanishes in this limit. However, Ω↑z(q) − Ω↓z(q), and hence σs,H
are non-zero. This is allowed because both the (in-plane) electric field and the spin current transform in the
same way under time-reversal and inversion symmetries.26

In general, for Ug > 0 both σ2H
v,H and σ2H

s,H will be finite. As a first step we discuss qualitatively the evolution
of the band structure as a function of Ug. The finite interlayer potential difference leads to the breaking of
inversion symmetry and splitting of the spin-degenerate bands, as shown in Figs. 4(a) and 4(b). Each band can
be labelled by a spin index ↑, ↓ and by the index ± depending on whether the band edge is at ±Ug potential
for q = 0. Next, when Ug = ∆cb [Fig. 4(c)] the (+, ↓) and (−, ↓) bands become degenerate. This degeneracy

is lifted as we further increase Ug [Fig. 4(d)]. As we will show below, the contribution σ
(0)
v,H (σ

(0)
s,H) to the total

valley Hall (spin Hall) conductivity, which is due to the inter-layer coupling (see the discussion below Eq. 4a),
changes sign as we pass from Ug < ∆cb to Ug > ∆cb. At the −K point, by time reversal symmetry, the (↑,+)
and (↑,−) bands can become degenerate as a function of Ug.

In the following we will assume that EF > 2(Ug + ∆cb) for all Ug values considered, i.e., EF is large enough
so that both layers and all four low-energy CBs are occupied and contribute to the valley and spin Hall effects.
In MoS2, given the relatively small ∆cb ≈ 3meV value of the SOC, we expect that this situation is realistic.
However, in other 2H-BTMDCs where the SOC constant ∆cb can be substantially larger than in MoS2, not
all four CBs would be necessarily occupied. Moreover, we assume that Ug ≶ ∆cb and that EF ∼ few tens of
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Figure 4. Schematic evolution of the four low-energy CB bands as a function of the inter-layer potential Ug at the K
point of the BZ. Spin-degenerate bands are shown with purple, ↑ polarized with red and ↓ polarized with blue. Solid line
corresponds to bands at +Ug, dashed line to bands at −Ug potential. Adapted from Ref. 19 c©American Physical Society.

meV. The case Ug = ∆cb requires slightly different considerations and is discussed in Ref. 19. Under the above
assumptions and after summing up the contributions of all four bands shown in Fig. 4, one finds that

σ2H
v,H ≈ τ

e2

~

[
εcc
2π

Ug
U2
g −∆2

cb

− ρ2dUg

(
γ3

δEbg

)2

λ4(Ug)

]
, (8)

and

σ2H
s,H ≈ −

[
εcc
2π

∆cb

U2
g −∆2

cb

+ ρ2d∆cb

(
γ3

δEbg

)2

λ4(Ug).

]
(9)

Here εcc = 2meff

~2 γ2
cc, ρ2d = meff/2π~2 is the two-dimensional density of states per spin and valley, and λ4(Ug) =(

1 + 3
4

∆2
vb+t2⊥+U2

g

δE2
bg

)
. One can see that σ2H

v,H vanishes for Ug → 0, but σ2H
s,H remains finite. When Ug is of the

order of ∆cb, the first term on the r.h.s of Eqs. (8) and (9), which is related to the inter-layer contribution to
the Berry curvature, is larger than the second term. Moreover, this term changes sign as Ug is changed from
Ug < ∆cb to Ug > ∆cb and we expect that this leads to a sign change in σ2H

v,H and σ2H
s,H . It is interesting to

note that in lattice Chern insulators such a sign change of the off-diagonal conductivity was associated with a
topological transition.27,28 In our case the sign change of σ2H

v,H and σ2H
s,H happens as the ↓ (↑) bands first become

degenerate at the K (−K) point and then the degeneracy is lifted again as the electric field is increased further.
However, the true band gap of the system, between the valence and conduction bands, does not close. Nor does
the gap close and re-open for the (↑,+) and (↑,−) bands. Therefore i) σ2H

v,H and σ2H
s,H are not quantized, and ii)

those contributions to σ2H
v,H and σ2H

s,H which are related to the intra-layer coupling of the CBs and the VBs do
not change sign as a function of Ug.

5. THE Q VALLEYS

As one can see in Fig. 3 the local minimum of the CB at the Q point of the BZ is almost degenerate with the K
valley, especially for 2H stacking. In our DFT band structure calculations19 the band edge is at the K point for
both stackings and the Q valleys would only be populated for a relatively strong n-doping.

Irrespective of the exact value of δEQK , i.e., the energy difference between the bottom of the Q and the
K valleys, it is of interest to understand if the six Q valleys can affect the valley Hall conductivity described
in Sect. 4 because strain or interaction with a substrate may also affect energy difference between the bottom
of the K and Q valleys. The calculations of Ref. 29 indicate that the Berry curvature is very small at the Q
point of monolayer TMDCs, therefore it is only the inter-layer contribution that needs to be considered. We find
that, generally, the Berry curvature should be significantly smaller in the Q valley than in the K valley19 for
bilayer MoS2. This is mainly because the bands are split by a momentum independent tunnelling amplitude t⊥,Q
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which is much larger than the energy scale for momentum dependent coupling and the intra-layer spin-splitting.
Therefore, as long as inter-valley scattering between the K and Q valleys is not strong, the Q valleys should have
only a minor effect on the valley Hall and spin Hall conductivities. Moreover, since the intra-layer spin-orbit
coupling ∆Q is one order of magnitude larger than ∆cb at the K point, we do not expect that in double gated
devices a topological transition similar to the one at the K point can take place.

6. DISCUSSION AND SUMMARY

Given an inter-layer distance of d = 2.975Å in 2H bilayer MoS2, a displacement field of 0.04 eV/Å would lead to
an inter-layer potential difference Ug ≈ 13 meV. This would give a roughly two-fold increase of Ωz,cb with respect
to the monolayer value. Thus we think that the Berry curvature is more easily tunable in bilayer TMDCs than in
monolayers, where large electric fields would be needed to change the band gap and hence the Berry curvature.

In addition to the measurement of σv,H and σs,H , the Berry curvature may be investigated by optical methods.
One can make use of the selection rules for circularly polarized light for intra-layer excitonic transitions at the
±K point. As it was shown in Refs.30,31 for monolayer TMDCs, the Berry curvature acts as a momentum-space
magnetic field and therefore it can split the energies of excitons that have non-zero angular momentum number.
By extending this argument to bilayers, one may expect that the Berry curvature should lead to a splitting
of intra-layer excited excitonic states with non-zero angular momentum number and the effect would be more
pronounced, especially in 2H bilayers, than in monolayers.

In summary, we have studied the Berry curvature properties and the corresponding valley Hall conductivities
of bilayer MoS2. We have considered both 3R and 2H stacked bilayers and found intra-layer as well as inter-layer
contributions to the Berry curvature. In 2H bilayers the interplay of SOC and finite interlayer potential can lead
to a change in the sign of the valley and spin Hall conductivities. Our work highlights the role of the stacking,
intra- and interlayer couplings on certain topological properties and can be relevant to a wide range of van der
Waals materials.
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