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¡ Qubit Computation:

Time evolution of state | ⟩𝜓 𝑡 = 𝑒!"#$/ℏ| ⟩𝜓' = 𝑈| ⟩𝜓' → unitary transformation 

¡ Quantum Circuit Model:

→ 𝑈 can be constructed in approximation from a finite set of 

¡ 1 qubit operations 𝑈 ∈ 𝑆𝑈 2 and

¡ 2 qubit operations 𝑈 ∈ 𝑆𝑈 4

¡ Examples of two qubit gates, necessary for universality:

MOTIVATION

𝐶𝑁𝑂𝑇 𝑆𝑊𝐴𝑃

| ⟩𝜓 … … 𝑈| ⟩𝜓𝑈
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SUPERCONDUCTING QUBIT ARCHETYPES

5Superconducting Charge Qubit – Cooper-pair box
(Fig. 17.4a, Kockum A.F., Nori F. (2019) Quantum Bits with Josephson Junctions. Springer)

¡ The Charge Qubit (Cooper-Pair Box, CPB)

Fig. 1, You, J., Nori, F. Atomic physics and quantum optics using superconducting 
circuits.Nature 474, 589–597 (2011). https://doi.org/10.1038/nature10122
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¡ Hamiltonian:

charge energy: 𝐸! =
" # !

"(!"%!#)
; background charge: 𝑵𝒈 = 𝐶(

𝑼
"#

¡ Externally adjustable parameters:

1. Background charge: 𝑵𝒈 = 𝐶%
𝑼
'(

through gate voltage 𝑼

2. Josephson energy: 𝑬𝑱 𝚽𝒆𝒙𝒕 = 𝐸- cos(
𝚽𝒆𝒙𝒕
𝚽𝟎

𝜋)

¡ States: number of excess Cooper pairs on island

| ⟩0 = | ⟩𝑁

| ⟩1 = | ⟩𝑁 + 1

𝐻!"# = 𝐸! 𝑁 − 𝑁$
%
− 𝐸& cos(𝜃)

charge energy Josephson energy
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𝜃
CPB Potential (red) and two lowest states (blue solid)
(Srjmas, „Charge qubit potential”, 
https://commons.wikimedia.org/wiki/File:Charge_qubit_potential.svg)
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SUPERCONDUCTING QUBIT ARCHETYPES

7
Superconducting Flux Qubit – RF-SQUID
(Srjmas, „Flux qubit circuit“, https://commons.wikimedia.org/wiki/File:Flux_qubit_circuit.svg)

¡ The Flux Qubit (RF SQUID)

superconducting loop
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¡ Hamiltonian:

energy scales: 𝐸*, 𝐸!" =
" # !

"!"
, 𝐸+ =

,/!

"+

¡ Externally adjustable parameters:

1. External bias flux: 𝜱𝒆𝒙𝒕 through bias current 𝑰𝒃

2. Loop inductance: 𝑳 through coil ℓ and 𝑵

3. Josephson energy: 𝑬𝑱 𝚽𝑱 = 𝐸- cos(
𝚽𝑱

𝚽𝟎
𝜋)

¡ States: symmetrical and antisymmmetrical superposition of flux quanta

| ⟩0 =
1
2
| ⟩↺ + | ⟩↻

| ⟩1 =
1
2
| ⟩↺ − | ⟩↻

Charge on 𝐶!
Phase difference across J. j.

Flux Qubit Potential (red) and two lowest states (blue solid)
(Srjmas, „Flux qubit potential”, 
https://commons.wikimedia.org/wiki/File:Flux_qubit_potential.svg)

Potential
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SUPERCONDUCTING QUBIT ARCHETYPES
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Superconducting Charge Qubit – Cooper-pair box
(Fig. 17.4b, Kockum A.F., Nori F. (2019) Quantum Bits with Josephson Junctions. Springer)

¡ The Phase Qubit (Current Biased Josephson Junction, CBJJ)

𝐼! 𝐸" , 𝐶"

Fig. 1, You, J., Nori, F. Atomic physics and quantum optics using superconducting 
circuits.Nature 474, 589–597 (2011). https://doi.org/10.1038/nature10122
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𝐼!

𝐸" , 𝐶"
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¡ Hamiltonian:

¡ Externally adjustable parameters:

1. Bias current: 𝑰𝒃

2. Josephson energy: 𝑬𝑱 𝚽𝑱 = 𝐸- cos(
𝚽𝑱

𝚽𝟎
𝜋)

¡ States: Oscillations modes in superconducting loop

Charge on 𝐶! Phase difference across J. j.

Phase Qubit Potential (red) and two lowest states (blue solid)
(Srjmas, „Phase qubit potential”, 
https://commons.wikimedia.org/wiki/File:Phase_qubit_potential.svg)
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¡ Two capacitively coupled charge qubits:

¡ Qubit state given by charge on superconducting island

¡ Qubit charges on capacitor 𝐶. → coupling of charge states

CAPACITIVE COUPLING

by a Cooper-pair box11. The two charge states of the box, say j0l and
j1l, differing by one Cooper pair are coherently mixed by the
Josephson coupling, as has been confirmed experimentally12,13.
Quantum state manipulation of such a system can be done by
using a non-adiabatic pulse technique, and read-out can be per-
formed by a properly biased probe electrode5. Here we take one step
further on the way to implementation of quantum logic gates by
integrating two charge qubits and demonstrating their interaction.
The two charge qubits of our circuit are electrostatically coupled

by an on-chip capacitor (Fig. 1). The right qubit has a SQUID
(superconducting quantum interference device) geometry to allow
control of the Josephson coupling to its reservoir. Both qubits have a
common pulse gate but separate d.c. gates, probes and reservoirs.
The pulse gate has nominally equal coupling to each box. The
hamiltonian of the system in the two-qubit charge basis j00l, j10l,
j01l and j11l reads:

H ¼

E00 2 1
2EJ1 2 1

2EJ2 0

2 1
2EJ1 E10 0 2 1

2EJ2

2 1
2EJ2 0 E01 2 1

2EJ1

0 2 1
2EJ2 2 1

2EJ1 E11

2

666664

3

777775
ð1Þ

where En1n2 ¼ Ec1ðng1 2 n1Þ2 þ Ec2ðng2 2 n2Þ2 þ Emðng1 2 n1Þ%
ðng2 2 n2Þ is the total electrostatic energy of the system (n 1,
n2 ¼ 0, 1 is the number of excess Cooper pairs in the first and the
second box), E J1(E J2) is the Josephson coupling energy of the first
(second) box and the reservoir, Ec1;2 ¼ 4e2CS2;1=2ðCS1CS2 2C2

mÞ
are the effective Cooper-pair charging energies, and e is the charge
on the electron, CS1,2 are the sum of all capacitances connected to
the corresponding island including the coupling capacitance Cm

and ng1;2 ¼ ðCg1;2Vg1;2 þCpVpÞ=2e are the normalized charges
induced on the corresponding qubit by the d.c. and pulse gate
electrodes. The coupling energy Em depends not only on Cm, but
also on the total capacitance of the boxes: Em ¼ 4e2Cm=ðCS1CS2 2
C2
mÞ: Application of gate voltages allows us to control diagonal

elements of the hamiltonian of equation (1). The circuit was
fabricated to have the following relation between the characteristic
energies: EJ1;2 < Em , Ec1;2: This ensures coherent superposition of
the four charge states j00l, j01l, j10l and j11l around ng1 ¼ ng2 ¼
0:5;while other charge states are separated by large energy gaps. The
above condition justifies the use of a four-level approximation for
the description of the system. In our notation jn1n2l of the charge
states used throughout the text, n1 and n2 refer to the number of
excess Cooper pairs in the first and the second qubits, respectively.

In the absence of Josephson coupling, the ground-state charging
diagram (n1, n2) (ref. 14; Fig. 2a) consists of hexagonal cells whose
boundaries delimit two neighbouring charge states with degenerate
electrostatic energies. For example, points R and L in Fig. 2a

Figure 1 Two capacitively coupled charge qubits. a, Scanning electron micrograph of the
sample. The qubits were fabricated by electron-beam lithography and three-angle

evaporation of Al (light areas) on a SiNx insulating layer (dark) (see ref. 5 for fabrication

details). Two qubits are coupled by an additional coupling island overlapping both Cooper-

pair boxes. Although the coupling island has a finite tunnelling resistance (,10MQ) to the

boxes, we consider the coupling as purely capacitive (represented by a single capacitor in

the equivalent circuit) because all the tunnelling processes are completely blocked. The

estimated capacitance of the island to the ground is ,1 aF. b, Equivalent circuit of the
device. The parameters (see text for definitions) obtained from the d.c. measurements

are: C J1 ¼ 620aF; C J2 ¼ 460aF; C b1 ¼ 41aF; C b2 ¼ 50aF; C g1 ¼ 0:60aF; C g2 ¼
0:61aF; C p < 1aF and Cm ¼ 34aF; and the corresponding energies are E c1 ¼
484meV (117 GHz in frequency units), E c2 ¼ 628meV (152 GHz) and Em ¼ 65meV

(15.7 GHz). Josephson coupling energies, E J1 ¼ 55meV (13.4 GHz) and E J2 ¼ 38 meV

(9.1 GHz), were determined from the single qubit measurements described in the text.

Probe junction tunnel resistance is equal to 31.6 MQ (left) and 34.5 MQ (right).

Superconducting energy gap is 210meV. Black bars denote Cooper-pair boxes. Vertical

rectangles containing a single line represent tunnel junctions without Josephson coupling;

horizontal, crossed rectangles represent Josephson tunnel junctions.
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Figure 2 Pulse operation of device. a, Ground-state charging diagram of the coupled

qubits as a function of the normalized gate charges n g1 and n g2. The number of Cooper

pairs n 1 and n 2 in the neighbouring cells differs by one. The electrostatic energies E n1n2

are degenerate at the boundaries. Points R and L correspond to energy degeneracy in the

first and the second qubit, respectively. Point X is doubly degenerate: E 00 ¼ E 11 and

E 10 ¼ E 01: Arrows show how pulses shift the system in the experiment. b, Energy
diagram of the system along the line ng1 ¼ ng2: Solid lines are the electrostatic energies
of the charge states j00l, j10l, j01l and j11l. Dashed lines are eigenenergies of the
hamiltonian equation (1). Far from co-resonance (point X in a), the system stays in j00l.
After the pulse brings the system to the co-resonance (solid arrow), the system starts to

evolve producing a superposed state jwðt Þl¼ c1j00lþ c2j10lþ c3j01lþ c4j11l:
The amplitudes jc ij (i ¼ 1, 2, 3, 4) remain ‘frozen’ after the pulse termination until the

resulting state decays into the ground state. The decay process indicated by grey arrows

contributes to the probe currents proportional to the probabilities, equation (3).
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by a Cooper-pair box11. The two charge states of the box, say j0l and
j1l, differing by one Cooper pair are coherently mixed by the
Josephson coupling, as has been confirmed experimentally12,13.
Quantum state manipulation of such a system can be done by
using a non-adiabatic pulse technique, and read-out can be per-
formed by a properly biased probe electrode5. Here we take one step
further on the way to implementation of quantum logic gates by
integrating two charge qubits and demonstrating their interaction.
The two charge qubits of our circuit are electrostatically coupled

by an on-chip capacitor (Fig. 1). The right qubit has a SQUID
(superconducting quantum interference device) geometry to allow
control of the Josephson coupling to its reservoir. Both qubits have a
common pulse gate but separate d.c. gates, probes and reservoirs.
The pulse gate has nominally equal coupling to each box. The
hamiltonian of the system in the two-qubit charge basis j00l, j10l,
j01l and j11l reads:

H ¼
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where En1n2 ¼ Ec1ðng1 2 n1Þ2 þ Ec2ðng2 2 n2Þ2 þ Emðng1 2 n1Þ%
ðng2 2 n2Þ is the total electrostatic energy of the system (n 1,
n2 ¼ 0, 1 is the number of excess Cooper pairs in the first and the
second box), E J1(E J2) is the Josephson coupling energy of the first
(second) box and the reservoir, Ec1;2 ¼ 4e2CS2;1=2ðCS1CS2 2C2

mÞ
are the effective Cooper-pair charging energies, and e is the charge
on the electron, CS1,2 are the sum of all capacitances connected to
the corresponding island including the coupling capacitance Cm

and ng1;2 ¼ ðCg1;2Vg1;2 þCpVpÞ=2e are the normalized charges
induced on the corresponding qubit by the d.c. and pulse gate
electrodes. The coupling energy Em depends not only on Cm, but
also on the total capacitance of the boxes: Em ¼ 4e2Cm=ðCS1CS2 2
C2
mÞ: Application of gate voltages allows us to control diagonal

elements of the hamiltonian of equation (1). The circuit was
fabricated to have the following relation between the characteristic
energies: EJ1;2 < Em , Ec1;2: This ensures coherent superposition of
the four charge states j00l, j01l, j10l and j11l around ng1 ¼ ng2 ¼
0:5;while other charge states are separated by large energy gaps. The
above condition justifies the use of a four-level approximation for
the description of the system. In our notation jn1n2l of the charge
states used throughout the text, n1 and n2 refer to the number of
excess Cooper pairs in the first and the second qubits, respectively.

In the absence of Josephson coupling, the ground-state charging
diagram (n1, n2) (ref. 14; Fig. 2a) consists of hexagonal cells whose
boundaries delimit two neighbouring charge states with degenerate
electrostatic energies. For example, points R and L in Fig. 2a

Figure 1 Two capacitively coupled charge qubits. a, Scanning electron micrograph of the
sample. The qubits were fabricated by electron-beam lithography and three-angle

evaporation of Al (light areas) on a SiNx insulating layer (dark) (see ref. 5 for fabrication

details). Two qubits are coupled by an additional coupling island overlapping both Cooper-

pair boxes. Although the coupling island has a finite tunnelling resistance (,10MQ) to the

boxes, we consider the coupling as purely capacitive (represented by a single capacitor in

the equivalent circuit) because all the tunnelling processes are completely blocked. The

estimated capacitance of the island to the ground is ,1 aF. b, Equivalent circuit of the
device. The parameters (see text for definitions) obtained from the d.c. measurements

are: C J1 ¼ 620aF; C J2 ¼ 460aF; C b1 ¼ 41aF; C b2 ¼ 50aF; C g1 ¼ 0:60aF; C g2 ¼
0:61aF; C p < 1aF and Cm ¼ 34aF; and the corresponding energies are E c1 ¼
484meV (117 GHz in frequency units), E c2 ¼ 628meV (152 GHz) and Em ¼ 65meV

(15.7 GHz). Josephson coupling energies, E J1 ¼ 55meV (13.4 GHz) and E J2 ¼ 38 meV

(9.1 GHz), were determined from the single qubit measurements described in the text.

Probe junction tunnel resistance is equal to 31.6 MQ (left) and 34.5 MQ (right).

Superconducting energy gap is 210meV. Black bars denote Cooper-pair boxes. Vertical

rectangles containing a single line represent tunnel junctions without Josephson coupling;

horizontal, crossed rectangles represent Josephson tunnel junctions.
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Figure 2 Pulse operation of device. a, Ground-state charging diagram of the coupled

qubits as a function of the normalized gate charges n g1 and n g2. The number of Cooper

pairs n 1 and n 2 in the neighbouring cells differs by one. The electrostatic energies E n1n2

are degenerate at the boundaries. Points R and L correspond to energy degeneracy in the

first and the second qubit, respectively. Point X is doubly degenerate: E 00 ¼ E 11 and

E 10 ¼ E 01: Arrows show how pulses shift the system in the experiment. b, Energy
diagram of the system along the line ng1 ¼ ng2: Solid lines are the electrostatic energies
of the charge states j00l, j10l, j01l and j11l. Dashed lines are eigenenergies of the
hamiltonian equation (1). Far from co-resonance (point X in a), the system stays in j00l.
After the pulse brings the system to the co-resonance (solid arrow), the system starts to

evolve producing a superposed state jwðt Þl¼ c1j00lþ c2j10lþ c3j01lþ c4j11l:
The amplitudes jc ij (i ¼ 1, 2, 3, 4) remain ‘frozen’ after the pulse termination until the

resulting state decays into the ground state. The decay process indicated by grey arrows

contributes to the probe currents proportional to the probabilities, equation (3).
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Pashkin, Y., Yamamoto, T., Astafiev, O. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003). https://doi.org/10.1038/nature01365

Figure 1: Experiment setup – two coupled charge qubits 11
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¡ Hamiltonian:

→ gate voltages allow control over diagonal terms

Josephson coupling → coherent superpositions of at 𝑛%1,' = 0.5

total electrostatic energy:

normalised charges on qubit
(induced by d.c. and pulse gate electrodes)

effective C. p. charging energies coupling energy

Pashkin, Y., Yamamoto, T., Astafiev, O. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003). https://doi.org/10.1038/nature01365
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by a Cooper-pair box11. The two charge states of the box, say j0l and
j1l, differing by one Cooper pair are coherently mixed by the
Josephson coupling, as has been confirmed experimentally12,13.
Quantum state manipulation of such a system can be done by
using a non-adiabatic pulse technique, and read-out can be per-
formed by a properly biased probe electrode5. Here we take one step
further on the way to implementation of quantum logic gates by
integrating two charge qubits and demonstrating their interaction.
The two charge qubits of our circuit are electrostatically coupled

by an on-chip capacitor (Fig. 1). The right qubit has a SQUID
(superconducting quantum interference device) geometry to allow
control of the Josephson coupling to its reservoir. Both qubits have a
common pulse gate but separate d.c. gates, probes and reservoirs.
The pulse gate has nominally equal coupling to each box. The
hamiltonian of the system in the two-qubit charge basis j00l, j10l,
j01l and j11l reads:

H ¼

E00 2 1
2EJ1 2 1

2EJ2 0

2 1
2EJ1 E10 0 2 1

2EJ2

2 1
2EJ2 0 E01 2 1

2EJ1

0 2 1
2EJ2 2 1

2EJ1 E11

2

666664

3

777775
ð1Þ

where En1n2 ¼ Ec1ðng1 2 n1Þ2 þ Ec2ðng2 2 n2Þ2 þ Emðng1 2 n1Þ%
ðng2 2 n2Þ is the total electrostatic energy of the system (n 1,
n2 ¼ 0, 1 is the number of excess Cooper pairs in the first and the
second box), E J1(E J2) is the Josephson coupling energy of the first
(second) box and the reservoir, Ec1;2 ¼ 4e2CS2;1=2ðCS1CS2 2C2

mÞ
are the effective Cooper-pair charging energies, and e is the charge
on the electron, CS1,2 are the sum of all capacitances connected to
the corresponding island including the coupling capacitance Cm

and ng1;2 ¼ ðCg1;2Vg1;2 þCpVpÞ=2e are the normalized charges
induced on the corresponding qubit by the d.c. and pulse gate
electrodes. The coupling energy Em depends not only on Cm, but
also on the total capacitance of the boxes: Em ¼ 4e2Cm=ðCS1CS2 2
C2
mÞ: Application of gate voltages allows us to control diagonal

elements of the hamiltonian of equation (1). The circuit was
fabricated to have the following relation between the characteristic
energies: EJ1;2 < Em , Ec1;2: This ensures coherent superposition of
the four charge states j00l, j01l, j10l and j11l around ng1 ¼ ng2 ¼
0:5;while other charge states are separated by large energy gaps. The
above condition justifies the use of a four-level approximation for
the description of the system. In our notation jn1n2l of the charge
states used throughout the text, n1 and n2 refer to the number of
excess Cooper pairs in the first and the second qubits, respectively.

In the absence of Josephson coupling, the ground-state charging
diagram (n1, n2) (ref. 14; Fig. 2a) consists of hexagonal cells whose
boundaries delimit two neighbouring charge states with degenerate
electrostatic energies. For example, points R and L in Fig. 2a

Figure 1 Two capacitively coupled charge qubits. a, Scanning electron micrograph of the
sample. The qubits were fabricated by electron-beam lithography and three-angle

evaporation of Al (light areas) on a SiNx insulating layer (dark) (see ref. 5 for fabrication

details). Two qubits are coupled by an additional coupling island overlapping both Cooper-

pair boxes. Although the coupling island has a finite tunnelling resistance (,10MQ) to the

boxes, we consider the coupling as purely capacitive (represented by a single capacitor in

the equivalent circuit) because all the tunnelling processes are completely blocked. The

estimated capacitance of the island to the ground is ,1 aF. b, Equivalent circuit of the
device. The parameters (see text for definitions) obtained from the d.c. measurements

are: C J1 ¼ 620aF; C J2 ¼ 460aF; C b1 ¼ 41aF; C b2 ¼ 50aF; C g1 ¼ 0:60aF; C g2 ¼
0:61aF; C p < 1aF and Cm ¼ 34aF; and the corresponding energies are E c1 ¼
484meV (117 GHz in frequency units), E c2 ¼ 628meV (152 GHz) and Em ¼ 65meV

(15.7 GHz). Josephson coupling energies, E J1 ¼ 55meV (13.4 GHz) and E J2 ¼ 38 meV

(9.1 GHz), were determined from the single qubit measurements described in the text.

Probe junction tunnel resistance is equal to 31.6 MQ (left) and 34.5 MQ (right).

Superconducting energy gap is 210meV. Black bars denote Cooper-pair boxes. Vertical

rectangles containing a single line represent tunnel junctions without Josephson coupling;

horizontal, crossed rectangles represent Josephson tunnel junctions.
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Figure 2 Pulse operation of device. a, Ground-state charging diagram of the coupled

qubits as a function of the normalized gate charges n g1 and n g2. The number of Cooper

pairs n 1 and n 2 in the neighbouring cells differs by one. The electrostatic energies E n1n2

are degenerate at the boundaries. Points R and L correspond to energy degeneracy in the

first and the second qubit, respectively. Point X is doubly degenerate: E 00 ¼ E 11 and

E 10 ¼ E 01: Arrows show how pulses shift the system in the experiment. b, Energy
diagram of the system along the line ng1 ¼ ng2: Solid lines are the electrostatic energies
of the charge states j00l, j10l, j01l and j11l. Dashed lines are eigenenergies of the
hamiltonian equation (1). Far from co-resonance (point X in a), the system stays in j00l.
After the pulse brings the system to the co-resonance (solid arrow), the system starts to

evolve producing a superposed state jwðt Þl¼ c1j00lþ c2j10lþ c3j01lþ c4j11l:
The amplitudes jc ij (i ¼ 1, 2, 3, 4) remain ‘frozen’ after the pulse termination until the

resulting state decays into the ground state. The decay process indicated by grey arrows

contributes to the probe currents proportional to the probabilities, equation (3).
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¡ In absence of Josephson coupling:

¡ Hexagonal boundaries between states

¡ R and L – degeneracy between neighbouring states

¡ System will oscillate between neighbouring states

¡ 𝒏𝒈𝟏, 𝒏𝒈𝟐inside cell → system will remain in cells’ state

¡ Pulse gate shifts system along 45° line (black arrows)

¡ With small Josephson coupling:

Ø States become superposed on boundaries!

¡ Co-resonance point X with 𝒏𝒈𝟏 = 𝒏𝒈𝟐 = 𝟎. 𝟓

Ø Double degeneracy

Ø Superposition of all charge states 

Pashkin, Y., Yamamoto, T., Astafiev, O. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003). https://doi.org/10.1038/nature01365

by a Cooper-pair box11. The two charge states of the box, say j0l and
j1l, differing by one Cooper pair are coherently mixed by the
Josephson coupling, as has been confirmed experimentally12,13.
Quantum state manipulation of such a system can be done by
using a non-adiabatic pulse technique, and read-out can be per-
formed by a properly biased probe electrode5. Here we take one step
further on the way to implementation of quantum logic gates by
integrating two charge qubits and demonstrating their interaction.
The two charge qubits of our circuit are electrostatically coupled

by an on-chip capacitor (Fig. 1). The right qubit has a SQUID
(superconducting quantum interference device) geometry to allow
control of the Josephson coupling to its reservoir. Both qubits have a
common pulse gate but separate d.c. gates, probes and reservoirs.
The pulse gate has nominally equal coupling to each box. The
hamiltonian of the system in the two-qubit charge basis j00l, j10l,
j01l and j11l reads:
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where En1n2 ¼ Ec1ðng1 2 n1Þ2 þ Ec2ðng2 2 n2Þ2 þ Emðng1 2 n1Þ%
ðng2 2 n2Þ is the total electrostatic energy of the system (n 1,
n2 ¼ 0, 1 is the number of excess Cooper pairs in the first and the
second box), E J1(E J2) is the Josephson coupling energy of the first
(second) box and the reservoir, Ec1;2 ¼ 4e2CS2;1=2ðCS1CS2 2C2

mÞ
are the effective Cooper-pair charging energies, and e is the charge
on the electron, CS1,2 are the sum of all capacitances connected to
the corresponding island including the coupling capacitance Cm

and ng1;2 ¼ ðCg1;2Vg1;2 þCpVpÞ=2e are the normalized charges
induced on the corresponding qubit by the d.c. and pulse gate
electrodes. The coupling energy Em depends not only on Cm, but
also on the total capacitance of the boxes: Em ¼ 4e2Cm=ðCS1CS2 2
C2
mÞ: Application of gate voltages allows us to control diagonal

elements of the hamiltonian of equation (1). The circuit was
fabricated to have the following relation between the characteristic
energies: EJ1;2 < Em , Ec1;2: This ensures coherent superposition of
the four charge states j00l, j01l, j10l and j11l around ng1 ¼ ng2 ¼
0:5;while other charge states are separated by large energy gaps. The
above condition justifies the use of a four-level approximation for
the description of the system. In our notation jn1n2l of the charge
states used throughout the text, n1 and n2 refer to the number of
excess Cooper pairs in the first and the second qubits, respectively.

In the absence of Josephson coupling, the ground-state charging
diagram (n1, n2) (ref. 14; Fig. 2a) consists of hexagonal cells whose
boundaries delimit two neighbouring charge states with degenerate
electrostatic energies. For example, points R and L in Fig. 2a

Figure 1 Two capacitively coupled charge qubits. a, Scanning electron micrograph of the
sample. The qubits were fabricated by electron-beam lithography and three-angle

evaporation of Al (light areas) on a SiNx insulating layer (dark) (see ref. 5 for fabrication

details). Two qubits are coupled by an additional coupling island overlapping both Cooper-

pair boxes. Although the coupling island has a finite tunnelling resistance (,10MQ) to the

boxes, we consider the coupling as purely capacitive (represented by a single capacitor in

the equivalent circuit) because all the tunnelling processes are completely blocked. The

estimated capacitance of the island to the ground is ,1 aF. b, Equivalent circuit of the
device. The parameters (see text for definitions) obtained from the d.c. measurements

are: C J1 ¼ 620aF; C J2 ¼ 460aF; C b1 ¼ 41aF; C b2 ¼ 50aF; C g1 ¼ 0:60aF; C g2 ¼
0:61aF; C p < 1aF and Cm ¼ 34aF; and the corresponding energies are E c1 ¼
484meV (117 GHz in frequency units), E c2 ¼ 628meV (152 GHz) and Em ¼ 65meV

(15.7 GHz). Josephson coupling energies, E J1 ¼ 55meV (13.4 GHz) and E J2 ¼ 38 meV

(9.1 GHz), were determined from the single qubit measurements described in the text.

Probe junction tunnel resistance is equal to 31.6 MQ (left) and 34.5 MQ (right).

Superconducting energy gap is 210meV. Black bars denote Cooper-pair boxes. Vertical

rectangles containing a single line represent tunnel junctions without Josephson coupling;

horizontal, crossed rectangles represent Josephson tunnel junctions.
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Figure 2 Pulse operation of device. a, Ground-state charging diagram of the coupled

qubits as a function of the normalized gate charges n g1 and n g2. The number of Cooper

pairs n 1 and n 2 in the neighbouring cells differs by one. The electrostatic energies E n1n2

are degenerate at the boundaries. Points R and L correspond to energy degeneracy in the

first and the second qubit, respectively. Point X is doubly degenerate: E 00 ¼ E 11 and

E 10 ¼ E 01: Arrows show how pulses shift the system in the experiment. b, Energy
diagram of the system along the line ng1 ¼ ng2: Solid lines are the electrostatic energies
of the charge states j00l, j10l, j01l and j11l. Dashed lines are eigenenergies of the
hamiltonian equation (1). Far from co-resonance (point X in a), the system stays in j00l.
After the pulse brings the system to the co-resonance (solid arrow), the system starts to

evolve producing a superposed state jwðt Þl¼ c1j00lþ c2j10lþ c3j01lþ c4j11l:
The amplitudes jc ij (i ¼ 1, 2, 3, 4) remain ‘frozen’ after the pulse termination until the

resulting state decays into the ground state. The decay process indicated by grey arrows

contributes to the probe currents proportional to the probabilities, equation (3).
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¡ Idea of the experiment:

1. Prepare system in |0 ⟩0

2. Start applying pulse → system at co-resonance point X 
in  

3. Stop applying pulse → system ‘frozen’ in superposition

4. System decays to |0 ⟩0 emitting quasi particles

¡ Readout scheme:

¡ Measuring probe currents 𝑰𝟏, 𝑰𝟐 in proportion to probability of 
each qubit having a C. p. on it:

¡ Time evolution of probabilities:

Pashkin, Y., Yamamoto, T., Astafiev, O. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003). https://doi.org/10.1038/nature01365

by a Cooper-pair box11. The two charge states of the box, say j0l and
j1l, differing by one Cooper pair are coherently mixed by the
Josephson coupling, as has been confirmed experimentally12,13.
Quantum state manipulation of such a system can be done by
using a non-adiabatic pulse technique, and read-out can be per-
formed by a properly biased probe electrode5. Here we take one step
further on the way to implementation of quantum logic gates by
integrating two charge qubits and demonstrating their interaction.
The two charge qubits of our circuit are electrostatically coupled

by an on-chip capacitor (Fig. 1). The right qubit has a SQUID
(superconducting quantum interference device) geometry to allow
control of the Josephson coupling to its reservoir. Both qubits have a
common pulse gate but separate d.c. gates, probes and reservoirs.
The pulse gate has nominally equal coupling to each box. The
hamiltonian of the system in the two-qubit charge basis j00l, j10l,
j01l and j11l reads:

H ¼

E00 2 1
2EJ1 2 1

2EJ2 0

2 1
2EJ1 E10 0 2 1

2EJ2

2 1
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2EJ1
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where En1n2 ¼ Ec1ðng1 2 n1Þ2 þ Ec2ðng2 2 n2Þ2 þ Emðng1 2 n1Þ%
ðng2 2 n2Þ is the total electrostatic energy of the system (n 1,
n2 ¼ 0, 1 is the number of excess Cooper pairs in the first and the
second box), E J1(E J2) is the Josephson coupling energy of the first
(second) box and the reservoir, Ec1;2 ¼ 4e2CS2;1=2ðCS1CS2 2C2

mÞ
are the effective Cooper-pair charging energies, and e is the charge
on the electron, CS1,2 are the sum of all capacitances connected to
the corresponding island including the coupling capacitance Cm

and ng1;2 ¼ ðCg1;2Vg1;2 þCpVpÞ=2e are the normalized charges
induced on the corresponding qubit by the d.c. and pulse gate
electrodes. The coupling energy Em depends not only on Cm, but
also on the total capacitance of the boxes: Em ¼ 4e2Cm=ðCS1CS2 2
C2
mÞ: Application of gate voltages allows us to control diagonal

elements of the hamiltonian of equation (1). The circuit was
fabricated to have the following relation between the characteristic
energies: EJ1;2 < Em , Ec1;2: This ensures coherent superposition of
the four charge states j00l, j01l, j10l and j11l around ng1 ¼ ng2 ¼
0:5;while other charge states are separated by large energy gaps. The
above condition justifies the use of a four-level approximation for
the description of the system. In our notation jn1n2l of the charge
states used throughout the text, n1 and n2 refer to the number of
excess Cooper pairs in the first and the second qubits, respectively.

In the absence of Josephson coupling, the ground-state charging
diagram (n1, n2) (ref. 14; Fig. 2a) consists of hexagonal cells whose
boundaries delimit two neighbouring charge states with degenerate
electrostatic energies. For example, points R and L in Fig. 2a

Figure 1 Two capacitively coupled charge qubits. a, Scanning electron micrograph of the
sample. The qubits were fabricated by electron-beam lithography and three-angle

evaporation of Al (light areas) on a SiNx insulating layer (dark) (see ref. 5 for fabrication

details). Two qubits are coupled by an additional coupling island overlapping both Cooper-

pair boxes. Although the coupling island has a finite tunnelling resistance (,10MQ) to the

boxes, we consider the coupling as purely capacitive (represented by a single capacitor in

the equivalent circuit) because all the tunnelling processes are completely blocked. The

estimated capacitance of the island to the ground is ,1 aF. b, Equivalent circuit of the
device. The parameters (see text for definitions) obtained from the d.c. measurements

are: C J1 ¼ 620aF; C J2 ¼ 460aF; C b1 ¼ 41aF; C b2 ¼ 50aF; C g1 ¼ 0:60aF; C g2 ¼
0:61aF; C p < 1aF and Cm ¼ 34aF; and the corresponding energies are E c1 ¼
484meV (117 GHz in frequency units), E c2 ¼ 628meV (152 GHz) and Em ¼ 65meV

(15.7 GHz). Josephson coupling energies, E J1 ¼ 55meV (13.4 GHz) and E J2 ¼ 38 meV

(9.1 GHz), were determined from the single qubit measurements described in the text.

Probe junction tunnel resistance is equal to 31.6 MQ (left) and 34.5 MQ (right).

Superconducting energy gap is 210meV. Black bars denote Cooper-pair boxes. Vertical

rectangles containing a single line represent tunnel junctions without Josephson coupling;

horizontal, crossed rectangles represent Josephson tunnel junctions.
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Figure 2 Pulse operation of device. a, Ground-state charging diagram of the coupled

qubits as a function of the normalized gate charges n g1 and n g2. The number of Cooper

pairs n 1 and n 2 in the neighbouring cells differs by one. The electrostatic energies E n1n2

are degenerate at the boundaries. Points R and L correspond to energy degeneracy in the

first and the second qubit, respectively. Point X is doubly degenerate: E 00 ¼ E 11 and

E 10 ¼ E 01: Arrows show how pulses shift the system in the experiment. b, Energy
diagram of the system along the line ng1 ¼ ng2: Solid lines are the electrostatic energies
of the charge states j00l, j10l, j01l and j11l. Dashed lines are eigenenergies of the
hamiltonian equation (1). Far from co-resonance (point X in a), the system stays in j00l.
After the pulse brings the system to the co-resonance (solid arrow), the system starts to

evolve producing a superposed state jwðt Þl¼ c1j00lþ c2j10lþ c3j01lþ c4j11l:
The amplitudes jc ij (i ¼ 1, 2, 3, 4) remain ‘frozen’ after the pulse termination until the

resulting state decays into the ground state. The decay process indicated by grey arrows

contributes to the probe currents proportional to the probabilities, equation (3).

letters to nature

NATURE |VOL 421 | 20 FEBRUARY 2003 | www.nature.com/nature824 © 2003        Nature  Publishing Group

Figure 2b: energy diagram along 𝒏𝒈𝟏 = 𝒏𝒈𝟐-line 
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by a Cooper-pair box11. The two charge states of the box, say j0l and
j1l, differing by one Cooper pair are coherently mixed by the
Josephson coupling, as has been confirmed experimentally12,13.
Quantum state manipulation of such a system can be done by
using a non-adiabatic pulse technique, and read-out can be per-
formed by a properly biased probe electrode5. Here we take one step
further on the way to implementation of quantum logic gates by
integrating two charge qubits and demonstrating their interaction.
The two charge qubits of our circuit are electrostatically coupled

by an on-chip capacitor (Fig. 1). The right qubit has a SQUID
(superconducting quantum interference device) geometry to allow
control of the Josephson coupling to its reservoir. Both qubits have a
common pulse gate but separate d.c. gates, probes and reservoirs.
The pulse gate has nominally equal coupling to each box. The
hamiltonian of the system in the two-qubit charge basis j00l, j10l,
j01l and j11l reads:
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where En1n2 ¼ Ec1ðng1 2 n1Þ2 þ Ec2ðng2 2 n2Þ2 þ Emðng1 2 n1Þ%
ðng2 2 n2Þ is the total electrostatic energy of the system (n 1,
n2 ¼ 0, 1 is the number of excess Cooper pairs in the first and the
second box), E J1(E J2) is the Josephson coupling energy of the first
(second) box and the reservoir, Ec1;2 ¼ 4e2CS2;1=2ðCS1CS2 2C2

mÞ
are the effective Cooper-pair charging energies, and e is the charge
on the electron, CS1,2 are the sum of all capacitances connected to
the corresponding island including the coupling capacitance Cm

and ng1;2 ¼ ðCg1;2Vg1;2 þCpVpÞ=2e are the normalized charges
induced on the corresponding qubit by the d.c. and pulse gate
electrodes. The coupling energy Em depends not only on Cm, but
also on the total capacitance of the boxes: Em ¼ 4e2Cm=ðCS1CS2 2
C2
mÞ: Application of gate voltages allows us to control diagonal

elements of the hamiltonian of equation (1). The circuit was
fabricated to have the following relation between the characteristic
energies: EJ1;2 < Em , Ec1;2: This ensures coherent superposition of
the four charge states j00l, j01l, j10l and j11l around ng1 ¼ ng2 ¼
0:5;while other charge states are separated by large energy gaps. The
above condition justifies the use of a four-level approximation for
the description of the system. In our notation jn1n2l of the charge
states used throughout the text, n1 and n2 refer to the number of
excess Cooper pairs in the first and the second qubits, respectively.

In the absence of Josephson coupling, the ground-state charging
diagram (n1, n2) (ref. 14; Fig. 2a) consists of hexagonal cells whose
boundaries delimit two neighbouring charge states with degenerate
electrostatic energies. For example, points R and L in Fig. 2a

Figure 1 Two capacitively coupled charge qubits. a, Scanning electron micrograph of the
sample. The qubits were fabricated by electron-beam lithography and three-angle

evaporation of Al (light areas) on a SiNx insulating layer (dark) (see ref. 5 for fabrication

details). Two qubits are coupled by an additional coupling island overlapping both Cooper-

pair boxes. Although the coupling island has a finite tunnelling resistance (,10MQ) to the

boxes, we consider the coupling as purely capacitive (represented by a single capacitor in

the equivalent circuit) because all the tunnelling processes are completely blocked. The

estimated capacitance of the island to the ground is ,1 aF. b, Equivalent circuit of the
device. The parameters (see text for definitions) obtained from the d.c. measurements

are: C J1 ¼ 620aF; C J2 ¼ 460aF; C b1 ¼ 41aF; C b2 ¼ 50aF; C g1 ¼ 0:60aF; C g2 ¼
0:61aF; C p < 1aF and Cm ¼ 34aF; and the corresponding energies are E c1 ¼
484meV (117 GHz in frequency units), E c2 ¼ 628meV (152 GHz) and Em ¼ 65meV

(15.7 GHz). Josephson coupling energies, E J1 ¼ 55meV (13.4 GHz) and E J2 ¼ 38 meV

(9.1 GHz), were determined from the single qubit measurements described in the text.

Probe junction tunnel resistance is equal to 31.6 MQ (left) and 34.5 MQ (right).

Superconducting energy gap is 210meV. Black bars denote Cooper-pair boxes. Vertical

rectangles containing a single line represent tunnel junctions without Josephson coupling;

horizontal, crossed rectangles represent Josephson tunnel junctions.

0.40.3 0.5 0.6

00

01

11

10

E
/h

b

10.50

1

0.5

0

(1,1)

(1,0)

(0,1)

a

L

R

X

(0,0)

ng1 (=ng2)

ng1

n g
2

Ω ε–

Ω ε+

Figure 2 Pulse operation of device. a, Ground-state charging diagram of the coupled

qubits as a function of the normalized gate charges n g1 and n g2. The number of Cooper

pairs n 1 and n 2 in the neighbouring cells differs by one. The electrostatic energies E n1n2

are degenerate at the boundaries. Points R and L correspond to energy degeneracy in the

first and the second qubit, respectively. Point X is doubly degenerate: E 00 ¼ E 11 and

E 10 ¼ E 01: Arrows show how pulses shift the system in the experiment. b, Energy
diagram of the system along the line ng1 ¼ ng2: Solid lines are the electrostatic energies
of the charge states j00l, j10l, j01l and j11l. Dashed lines are eigenenergies of the
hamiltonian equation (1). Far from co-resonance (point X in a), the system stays in j00l.
After the pulse brings the system to the co-resonance (solid arrow), the system starts to

evolve producing a superposed state jwðt Þl¼ c1j00lþ c2j10lþ c3j01lþ c4j11l:
The amplitudes jc ij (i ¼ 1, 2, 3, 4) remain ‘frozen’ after the pulse termination until the

resulting state decays into the ground state. The decay process indicated by grey arrows

contributes to the probe currents proportional to the probabilities, equation (3).

letters to nature

NATURE |VOL 421 | 20 FEBRUARY 2003 | www.nature.com/nature824 © 2003        Nature  Publishing Group

14

Introduction Capacitive Coupling Inductive CouplingTunable Coupling



(a) Probe current oscillations at R and L

¡ Can be fitted with cosine

¡ Single peaks at different energies

→ no qubit interaction

Pashkin, Y., Yamamoto, T., Astafiev, O. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003). https://doi.org/10.1038/nature01365

correspond to a degeneracy between the states j00l and j10l and the
states j00l and j01l differing by one Cooper pair in the first and the
second Cooper-pair box, respectively. If we choose the d.c. gate
charges n g1 and n g2 far from the boundaries but within the (0,0) cell,
then because of large electrostatic energies we can assume that the
system remains in the state j00l. As the pulse gate has equal coupling
to each qubit, the application of a pulse shifts the state of the system
on this diagram along a line tilted at 458, indicated by arrows in
Fig. 2a. The charging diagram remains valid for small Josephson
coupling except on the boundaries where charge states become
superposed. When the system is driven non-adiabatically to point R
or L, it behaves like a single qubit oscillating between the degenerate
states with a frequency q1;2 ¼ EJ1;2=!h: Applying arrays of pulses and
measuring oscillations of the probe currents I1 and I2, we can
determine the Josephson energies of each qubit. The accuracy of the
measured E J1,2 is very high, because the electrostatic coupling
through Cm has almost no effect on q1,2 along the boundaries in
the vicinity of R and L.

At the ‘co-resonance’ point Xðng1 ¼ ng2 ¼ 0:5Þ; the system has a
double degeneracy, E00 ¼ E11, E10 ¼ E01, and the dynamics of the
quantum evolution become more complex and reflect the coupling
between the qubits. The cross-section of the energy bands through
point X is shown in Fig. 2b. Exactly at the co-resonance, all four

charge states are mixed and the state of the system can be expressed
in general as

jwðtÞl¼ c1j00lþ c2j10lþ c3j01lþ c4j11l ð2Þ
where jcijði¼ 1;2;3;4Þ are the time-dependent probability ampli-
tudes obeying a normalization condition

P4
i¼1 jcij

2 ¼ 1: Using the
hamiltonian of equation (1) and initial conditions, we can calculate
the probabilities jcij2 of each charge state. However, in our read-out
scheme, we measure a probe current I 1,2 proportional to the
probability p 1,2(1) of each qubit having a Cooper pair on it
regardless of the state of the other qubit; that is, I1 / p1ð1Þ;
jc2j2 þ jc4j2 and I2 / p2ð1Þ; jc3j2 þ jc4j2: Assuming that the initial
state at t ¼ 0 is j00l, we can derive the time evolution of these
probabilities for an ideal rectangular pulse shape of length Dt:

p1;2ð1Þ ¼ ð1=4Þ½22 ð12 x1;2Þcos{ðQþ 1ÞDt}2 ð1

þ x1;2Þcos{ðQ2 1ÞDt}& ð3Þ
where x1;2 ¼ ðE2

J2;1 2 E2
J1;2 þ E2

m=4Þ=ð4!h2Q1Þ;Q¼ ððEJ1 þ EJ2Þ2 þ
ðEm=2Þ2Þ1=2=2!h; 1¼ ððEJ1 2 EJ2Þ2 þ ðEm=2Þ2Þ1=2=2!h:
Unlike the single qubit case, there are two frequencies present in

the oscillation spectrum of the qubits: Qþ 1 and Q2 1; both
dependent on E J1, E J2 and Em. We can identify these frequencies
with the energy gaps in Fig. 2b. Note that in the uncoupled situation
ðEm ¼ 0Þ; Q^ 1¼ EJ1;2=!h and each qubit oscillates with its own
frequency q1,2. We stress, however, that the above consideration is
valid only in the ideal case when the pulse has zero rise/fall time, and
the time evolution occurs exactly at the co-resonance point.
The idea of our experiment is shown schematically in Fig. 2b.

From the state j00l (shown as a black dot), the pulse (solid arrow)
brings the system to the co-resonance point, and the system evolves
for the pulse duration time Dt, producing a superposed state
equation (2) indicated by grey circles. After the pulse termination,
the system remains in the superposed state until it decays (grey
arrows) in the ground state by emitting quasiparticles into the probe
junctions biased at Vb1;2 < 600meV: To accumulate a signal, a pulse
array (,3 £ 105 pulses) was applied to the pulse gate. The repetition
time between the pulses was 64 ns, long enough (in comparison to
the quasiparticle relaxation time of,10 ns) to let the system decay
through a Josephson-quasiparticle cycle15 and give rise to a probe
current proportional to p 1,2. The estimated amplitude of the
applied pulses is Vp < 30mV:
The results obtained in this way are presented in Fig. 3. First, by

tuning n g1 and n g2, we do single qubit measurements by bringing

 

 

Figure 3 Quantum oscillations in qubits. a, Probe current oscillations in the first (top) and
the second (bottom) qubit when the system is driven to the points R and L, respectively.

Right panel shows corresponding spectra obtained by Fourier transform. In both cases,

the experimental data (open triangles and open dots) can be fitted to a cosine dependence

(solid lines) with an exponential decay with 2.5 ns time constant. b, Probe current
oscillations in the qubits at the co-resonance point X. Their spectra (right panel) contain

two components. Arrows and dotted lines indicate the position ofQ þ 1, Q 2 1 obtained

from equation (3) using E J1 ¼ 13.4 GHz, E J2 ¼ 9.1 GHz measured in the single qubit

experiments (Fig. 3a) and E m ¼ 15.7 GHz estimated independently from d.c.

measurements. Solid lines are fits obtained from numerical simulation with the

parameters E J1 ¼ 13.4 GHz, E J2 ¼ 9.1 GHz and E m ¼ 14.5 GHz. Finite pulse rise/fall

time and an initial condition that is not pure j00l were taken into account. The introduced
exponential decay time is 0.6 ns.

 
 

Figure 4 E J1 dependence of the spectrum components obtained by Fourier transform of

the oscillations at the co-resonance. Open triangles and open circles show respectively

frequency components measured in the first and second qubit; solid lines, dependence of

Q þ 1 and Q 2 1 obtained from equation (3) using E J2 ¼ 9:1Ghz and Em ¼ 14:5GHz
and varying E J1 from zero up to its maximum value of 13.4 GHz; dashed lines,

dependence of the oscillation frequencies of both qubits in the case of zero coupling

ðEm ¼ 0Þ:
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Figure 3a: Oscillations at resonance points

(b) Probe current oscillations at co-resonance X

¡ Two peaks in spectrum

¡ Two peaks at same energies

→ evidence for qubit interaction

correspond to a degeneracy between the states j00l and j10l and the
states j00l and j01l differing by one Cooper pair in the first and the
second Cooper-pair box, respectively. If we choose the d.c. gate
charges n g1 and n g2 far from the boundaries but within the (0,0) cell,
then because of large electrostatic energies we can assume that the
system remains in the state j00l. As the pulse gate has equal coupling
to each qubit, the application of a pulse shifts the state of the system
on this diagram along a line tilted at 458, indicated by arrows in
Fig. 2a. The charging diagram remains valid for small Josephson
coupling except on the boundaries where charge states become
superposed. When the system is driven non-adiabatically to point R
or L, it behaves like a single qubit oscillating between the degenerate
states with a frequency q1;2 ¼ EJ1;2=!h: Applying arrays of pulses and
measuring oscillations of the probe currents I1 and I2, we can
determine the Josephson energies of each qubit. The accuracy of the
measured E J1,2 is very high, because the electrostatic coupling
through Cm has almost no effect on q1,2 along the boundaries in
the vicinity of R and L.

At the ‘co-resonance’ point Xðng1 ¼ ng2 ¼ 0:5Þ; the system has a
double degeneracy, E00 ¼ E11, E10 ¼ E01, and the dynamics of the
quantum evolution become more complex and reflect the coupling
between the qubits. The cross-section of the energy bands through
point X is shown in Fig. 2b. Exactly at the co-resonance, all four

charge states are mixed and the state of the system can be expressed
in general as

jwðtÞl¼ c1j00lþ c2j10lþ c3j01lþ c4j11l ð2Þ
where jcijði¼ 1;2;3;4Þ are the time-dependent probability ampli-
tudes obeying a normalization condition

P4
i¼1 jcij

2 ¼ 1: Using the
hamiltonian of equation (1) and initial conditions, we can calculate
the probabilities jcij2 of each charge state. However, in our read-out
scheme, we measure a probe current I 1,2 proportional to the
probability p 1,2(1) of each qubit having a Cooper pair on it
regardless of the state of the other qubit; that is, I1 / p1ð1Þ;
jc2j2 þ jc4j2 and I2 / p2ð1Þ; jc3j2 þ jc4j2: Assuming that the initial
state at t ¼ 0 is j00l, we can derive the time evolution of these
probabilities for an ideal rectangular pulse shape of length Dt:

p1;2ð1Þ ¼ ð1=4Þ½22 ð12 x1;2Þcos{ðQþ 1ÞDt}2 ð1

þ x1;2Þcos{ðQ2 1ÞDt}& ð3Þ
where x1;2 ¼ ðE2

J2;1 2 E2
J1;2 þ E2

m=4Þ=ð4!h2Q1Þ;Q¼ ððEJ1 þ EJ2Þ2 þ
ðEm=2Þ2Þ1=2=2!h; 1¼ ððEJ1 2 EJ2Þ2 þ ðEm=2Þ2Þ1=2=2!h:
Unlike the single qubit case, there are two frequencies present in

the oscillation spectrum of the qubits: Qþ 1 and Q2 1; both
dependent on E J1, E J2 and Em. We can identify these frequencies
with the energy gaps in Fig. 2b. Note that in the uncoupled situation
ðEm ¼ 0Þ; Q^ 1¼ EJ1;2=!h and each qubit oscillates with its own
frequency q1,2. We stress, however, that the above consideration is
valid only in the ideal case when the pulse has zero rise/fall time, and
the time evolution occurs exactly at the co-resonance point.
The idea of our experiment is shown schematically in Fig. 2b.

From the state j00l (shown as a black dot), the pulse (solid arrow)
brings the system to the co-resonance point, and the system evolves
for the pulse duration time Dt, producing a superposed state
equation (2) indicated by grey circles. After the pulse termination,
the system remains in the superposed state until it decays (grey
arrows) in the ground state by emitting quasiparticles into the probe
junctions biased at Vb1;2 < 600meV: To accumulate a signal, a pulse
array (,3 £ 105 pulses) was applied to the pulse gate. The repetition
time between the pulses was 64 ns, long enough (in comparison to
the quasiparticle relaxation time of,10 ns) to let the system decay
through a Josephson-quasiparticle cycle15 and give rise to a probe
current proportional to p 1,2. The estimated amplitude of the
applied pulses is Vp < 30mV:
The results obtained in this way are presented in Fig. 3. First, by

tuning n g1 and n g2, we do single qubit measurements by bringing

 

 

Figure 3 Quantum oscillations in qubits. a, Probe current oscillations in the first (top) and
the second (bottom) qubit when the system is driven to the points R and L, respectively.

Right panel shows corresponding spectra obtained by Fourier transform. In both cases,

the experimental data (open triangles and open dots) can be fitted to a cosine dependence

(solid lines) with an exponential decay with 2.5 ns time constant. b, Probe current
oscillations in the qubits at the co-resonance point X. Their spectra (right panel) contain

two components. Arrows and dotted lines indicate the position ofQ þ 1, Q 2 1 obtained

from equation (3) using E J1 ¼ 13.4 GHz, E J2 ¼ 9.1 GHz measured in the single qubit

experiments (Fig. 3a) and E m ¼ 15.7 GHz estimated independently from d.c.

measurements. Solid lines are fits obtained from numerical simulation with the

parameters E J1 ¼ 13.4 GHz, E J2 ¼ 9.1 GHz and E m ¼ 14.5 GHz. Finite pulse rise/fall

time and an initial condition that is not pure j00l were taken into account. The introduced
exponential decay time is 0.6 ns.

 
 

Figure 4 E J1 dependence of the spectrum components obtained by Fourier transform of

the oscillations at the co-resonance. Open triangles and open circles show respectively

frequency components measured in the first and second qubit; solid lines, dependence of

Q þ 1 and Q 2 1 obtained from equation (3) using E J2 ¼ 9:1Ghz and Em ¼ 14:5GHz
and varying E J1 from zero up to its maximum value of 13.4 GHz; dashed lines,

dependence of the oscillation frequencies of both qubits in the case of zero coupling

ðEm ¼ 0Þ:
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Figure 3b: Oscillations at co-resonance point

by a Cooper-pair box11. The two charge states of the box, say j0l and
j1l, differing by one Cooper pair are coherently mixed by the
Josephson coupling, as has been confirmed experimentally12,13.
Quantum state manipulation of such a system can be done by
using a non-adiabatic pulse technique, and read-out can be per-
formed by a properly biased probe electrode5. Here we take one step
further on the way to implementation of quantum logic gates by
integrating two charge qubits and demonstrating their interaction.
The two charge qubits of our circuit are electrostatically coupled

by an on-chip capacitor (Fig. 1). The right qubit has a SQUID
(superconducting quantum interference device) geometry to allow
control of the Josephson coupling to its reservoir. Both qubits have a
common pulse gate but separate d.c. gates, probes and reservoirs.
The pulse gate has nominally equal coupling to each box. The
hamiltonian of the system in the two-qubit charge basis j00l, j10l,
j01l and j11l reads:

H ¼

E00 2 1
2EJ1 2 1

2EJ2 0

2 1
2EJ1 E10 0 2 1

2EJ2

2 1
2EJ2 0 E01 2 1

2EJ1

0 2 1
2EJ2 2 1

2EJ1 E11

2

666664

3

777775
ð1Þ

where En1n2 ¼ Ec1ðng1 2 n1Þ2 þ Ec2ðng2 2 n2Þ2 þ Emðng1 2 n1Þ%
ðng2 2 n2Þ is the total electrostatic energy of the system (n 1,
n2 ¼ 0, 1 is the number of excess Cooper pairs in the first and the
second box), E J1(E J2) is the Josephson coupling energy of the first
(second) box and the reservoir, Ec1;2 ¼ 4e2CS2;1=2ðCS1CS2 2C2

mÞ
are the effective Cooper-pair charging energies, and e is the charge
on the electron, CS1,2 are the sum of all capacitances connected to
the corresponding island including the coupling capacitance Cm

and ng1;2 ¼ ðCg1;2Vg1;2 þCpVpÞ=2e are the normalized charges
induced on the corresponding qubit by the d.c. and pulse gate
electrodes. The coupling energy Em depends not only on Cm, but
also on the total capacitance of the boxes: Em ¼ 4e2Cm=ðCS1CS2 2
C2
mÞ: Application of gate voltages allows us to control diagonal

elements of the hamiltonian of equation (1). The circuit was
fabricated to have the following relation between the characteristic
energies: EJ1;2 < Em , Ec1;2: This ensures coherent superposition of
the four charge states j00l, j01l, j10l and j11l around ng1 ¼ ng2 ¼
0:5;while other charge states are separated by large energy gaps. The
above condition justifies the use of a four-level approximation for
the description of the system. In our notation jn1n2l of the charge
states used throughout the text, n1 and n2 refer to the number of
excess Cooper pairs in the first and the second qubits, respectively.

In the absence of Josephson coupling, the ground-state charging
diagram (n1, n2) (ref. 14; Fig. 2a) consists of hexagonal cells whose
boundaries delimit two neighbouring charge states with degenerate
electrostatic energies. For example, points R and L in Fig. 2a

Figure 1 Two capacitively coupled charge qubits. a, Scanning electron micrograph of the
sample. The qubits were fabricated by electron-beam lithography and three-angle

evaporation of Al (light areas) on a SiNx insulating layer (dark) (see ref. 5 for fabrication

details). Two qubits are coupled by an additional coupling island overlapping both Cooper-

pair boxes. Although the coupling island has a finite tunnelling resistance (,10MQ) to the

boxes, we consider the coupling as purely capacitive (represented by a single capacitor in

the equivalent circuit) because all the tunnelling processes are completely blocked. The

estimated capacitance of the island to the ground is ,1 aF. b, Equivalent circuit of the
device. The parameters (see text for definitions) obtained from the d.c. measurements

are: C J1 ¼ 620aF; C J2 ¼ 460aF; C b1 ¼ 41aF; C b2 ¼ 50aF; C g1 ¼ 0:60aF; C g2 ¼
0:61aF; C p < 1aF and Cm ¼ 34aF; and the corresponding energies are E c1 ¼
484meV (117 GHz in frequency units), E c2 ¼ 628meV (152 GHz) and Em ¼ 65meV

(15.7 GHz). Josephson coupling energies, E J1 ¼ 55meV (13.4 GHz) and E J2 ¼ 38 meV

(9.1 GHz), were determined from the single qubit measurements described in the text.

Probe junction tunnel resistance is equal to 31.6 MQ (left) and 34.5 MQ (right).

Superconducting energy gap is 210meV. Black bars denote Cooper-pair boxes. Vertical

rectangles containing a single line represent tunnel junctions without Josephson coupling;

horizontal, crossed rectangles represent Josephson tunnel junctions.
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Figure 2 Pulse operation of device. a, Ground-state charging diagram of the coupled

qubits as a function of the normalized gate charges n g1 and n g2. The number of Cooper

pairs n 1 and n 2 in the neighbouring cells differs by one. The electrostatic energies E n1n2

are degenerate at the boundaries. Points R and L correspond to energy degeneracy in the

first and the second qubit, respectively. Point X is doubly degenerate: E 00 ¼ E 11 and

E 10 ¼ E 01: Arrows show how pulses shift the system in the experiment. b, Energy
diagram of the system along the line ng1 ¼ ng2: Solid lines are the electrostatic energies
of the charge states j00l, j10l, j01l and j11l. Dashed lines are eigenenergies of the
hamiltonian equation (1). Far from co-resonance (point X in a), the system stays in j00l.
After the pulse brings the system to the co-resonance (solid arrow), the system starts to

evolve producing a superposed state jwðt Þl¼ c1j00lþ c2j10lþ c3j01lþ c4j11l:
The amplitudes jc ij (i ¼ 1, 2, 3, 4) remain ‘frozen’ after the pulse termination until the

resulting state decays into the ground state. The decay process indicated by grey arrows

contributes to the probe currents proportional to the probabilities, equation (3).
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Figure 2a: Ground-state charging 
diagram of coupled qubits
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¡ Two capacitively coupled phase qubits:

¡ Hamiltonian:

¡ Now: 

→ approximately cubic potential wells

→ junctions treated as anharmonic oscillators →

TUNABLE COUPLING
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Figure 1: A pair of capacitively coupled CBJJs
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We study an LC circuit implemented using a current-biased Josephson junction (CBJJ) as a tunable
coupler for superconducting qubits. By modulating the bias current, the junction can be tuned in and out
of resonance and entangled with the qubits coupled to it. One can thus implement two-qubit operations
by mediating entanglement. We consider the examples of CBJJ and charge-phase qubits. A simple
recoupling scheme leads to a generalization to arbitrary qubit designs.
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Significant successes in manipulating the quantum
state of superconducting qubits [1–4] once more make
them prime candidates for a solid-state quantum com-
puter [5]. Since the experiments yield single-qubit coher-
ence times close to the accepted limits [6], one can focus
on other steps towards realizing the potential of quantum
information processing [7] in these systems. The critical
next step is controlled coupling of, at least, two qubits.

Several coupling mechanisms are possible, e.g., capaci-
tive coupling [8] for charge, charge-phase [1], and
current-biased Josephson-junction (CBJJ) qubits [2,3].
Importantly, it is simple to implement and recently en-
abled entangling two charge qubits [4]. Also, this type
of coupling can be turned on and off by tuning the
qubits’ level spacings in and out of resonance [if the
interaction Hamiltonian is off diagonal in the computa-
tional basis, e.g., !x ! !x]. A clear disadvantage is that
tuning the qubits themselves may cause extra decoher-
ence. Moreover, not all qubits are thus tunable, or have
off-diagonal interactions. To avoid this problem, the cou-
pling can be controlled using refocusing pulses—similar
to liquid-state NMR, where the J coupling must be re-
focused [9]. In this case, universal quantum computing is
still possible, but imperfect refocusing introduces errors
and the threshold for fault tolerance is not yet known.

We propose to capacitively couple superconducting qu-
bits to a CBJJ, implementing an LC circuit and acting as a
tunable bus. This parallels cavity QED [10] (the CBJJ and
qubits playing the roles of the cavity and atoms, respec-
tively) and ion traps [11]. LC circuits can also be coupled
to flux qubits (inductively) [12] and other superconducting
devices [13–15]. In another scheme to entangle qubits
through an LC circuit [5], the latter’s virtual states me-
diate an effective qubit-qubit interaction.

The CBJJ’s kinetic inductance depends on the bias and
modifies the circuit’s overall inductance [16]. It thus acts
as a tunable anharmonic LC circuit, which guarantees
a nonuniform level spacing, reducing leakage to higher

states. However, for anharmonic oscillators, transitions
from jni to jn" 2i etc. can cause leakage; this is mini-
mized for suitable system parameters (see below).

For illustration, we first consider a pair of CBJJs,
coupled by a capacitance Cc (Fig. 1; cf. Ref. [17]). One
plays the role of the qubit and the other of the tunable bus.
Controlled coupling of charge-phase qubits follows.
Coupling of a charge qubit to a CBJJ was studied in
Ref. [18].

A Josephson junction biased by a dc current has the
well-known washboard potential [19]. Close to the criti-
cal bias Ic, there are few levels in each washboard well.We
consider a large junction with a bias such that there are
only three such levels [2]. Then, the two lowest levels in
one of the wells form the qubit’s computational subspace
fj0i; j1ig. State jni has decay rate !n to the continuum.
The j0i $ j1i transition frequency is ".

The circuit of Fig. 1 has the Hamiltonian

H # p2
q

2~CCjq

$ Ejq cos"q $
#0

2#
Iq"q %

p2
b

2~CCb

$ Ejb cos"b

$#0

2#
Ib"b %

pqpb

~CCc

; (1)

FIG. 1. A pair of capacitively coupled CBJJ qubits.
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¡ Hamiltonian 𝐻$ in 𝑠𝑝𝑎𝑛 : ;0%1! , : ;1%0! :

¡ Without coupling: > ?0516 and > ?1506 degenerate for 𝐼6 such that 𝐸51 − 𝐸57 = 𝐸61 − 𝐸67

¡ With coupling: lifts degeneracy and the new eingenstates are

¡ In resonance: 𝐻' acts like 𝑒89
&'()
*ℏ → prepared in > ?1506 : probability for > ?15 oscillates with 𝑇:;69 = ℎ/𝛾

¡ Anharmonicity of qubits supressses leakage out of two level system

¡ Coupling term 
5,5-
<=.

causes nonresonant leakage to > ?25 6 (close to barrier → large transition rate) → shortens coherence time

¡ Bus not tuned to qubit frequency Ω5 → qubit decoupled from bus

coupling coefficient:
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¡ Optimise coupling quality

pi is the charge at node i and !i the phase difference
across junction i; ‘‘q’’ (‘‘b’’) denotes qubit (bus). The
effective capacitances are ~CCjq ! Cjq " #C$1

jb " C$1
c %$1,

~CCjb ! Cjb " #C$1
jq " C$1

c %$1, and ~CCc ! CjqCjb#C$1
jq "

C$1
jb " C$1

c %. Below, we take both junctions identical:
Cjq ! Cjb & Cj and Ejq ! Ejb & Ej.

For near-critical bias, the washboard potentials are
well approximated by cubic ones [20] and the junc-
tions can be treated as anharmonic oscillators.
Using this analogy, the charge at node i is pi !
i#2"=!0%

!!!!!!!!!!!!!!!!!!

m "h!p=2
q

#ayi $ ai%, with the ‘‘mass’’
m ! ~CCj#!0=2"%2 and the plasma frequency !pi !
!!!!!!!!!!!!!!!!!!!!!!!!

2"Ic=~CCj!0

q

'1$ #Ibias;i=Ic%2(1=4; a#y%i is an annihilation
(creation) operator [19,20].

Expressing (1) in the basis fj0qi; j1qi; j2qig )
fj0bi; j1bi; j2big, we find the coupled eigenstates. First,
focus on the Hamiltonian H 2 in L, the span of
fj0q1bi; j1q0big: To first order in the anharmonicity,

H 2 !
"

Eq0 " Eb1 #=2
#=2 Eq1 " Eb0

#

; (2)

where the coupling coefficient is # & "h !!!!!!!!!!!!!!!!!pq!pb
p ~CCj=~CCc

and Eik is the energy of level k. Without coupling, j0q1bi
and j1q0bi are degenerate for bias currents such that
Eq1 $ Eq0 ! Eb1 $ Eb0. A nonzero # lifts the degeneracy,
and the new (maximally entangled) eigenstates are

j *i & #j0q1bi* j1q0bi%=
!!!

2
p
: (3)

In resonance, H 2 thus acts as e$i$x#%=2 "h in L and as
phase factors outside. Hence, for a system prepared in
j1q0bi, the probability to find the qubit in j1qi oscillates
with period TRabi ! h=#. For a single CBJJ, such oscil-
lations occur only under current bias at frequency # [2,3].
Oscillations for the coupled qubit and bus without applied
resonant perturbation on them individually then demon-
strate their entanglement.

Anharmonicity is crucial here as it keeps other relevant
level pairs out of resonance, suppressing leakage out of L.
However, pqpb=~CCc in (1) causes nonresonant leakage, in
particular, to j2q#b%i. These states are closer to the top of
the potential barrier, so $2;q#b% are large. Hence, poisoning
of j *i with j2q#b%i shortens the coherence time.

We evaluate the extent of this leakage numerically. The
Hamiltonian of each anharmonic oscillator is expressed
in terms of about 20 harmonic-oscillator eigenstates
and diagonalized. For each junction, we use Cj ! 6 pF
and Ic ! 21 &A [2]. With Ibias ! 20:8 &A, each well
contains three levels. We take Cc ! 25 fF, minimizing
leakage while keeping a reasonable TRabi + 40 ns (see
below) [2].

We find that j2q#b%i poisons j *i with a small probabil-
ity (P2 , 10$6) only, as expected. The coupled system’s
other states also have weak poisoning by j2q#b%i; worst is

the eigenstate close to j1q1bi, with P2 , 10$4. Roughly,
the lifetime of a state with poisoning P2 is #P2$2%$1.
Since $2=$1 , 103 [2], then P2 & 10$4 should hardly
change the lifetime of the qubit or bus.

When the bus is not tuned to the qubit’s frequency
#q, the two are decoupled. For this, we keep the qubit’s
bias constant, and for the bus decrease it to 20:43 &A;
each well then contains about 11 levels. The eigen-
states are now computed as 0:007j0q1bi" 0:999j1q0bi
and 0:999j0q1bi" 0:007j1q0bi, where poisoning by
higher states with probabilities & 10$6 has been omitted.

One can choose aCc optimizing the effective quality of
the coupled qubits, as shown in Fig. 2. To avoid further
leakage and gate errors, the qubit-bus coupling should be
turned on faster than TRabi but adiabatically with respect
to the bus interlevel spacing, corresponding to ,1 ns [2];
this leaves a suitable window of turn-on time.

Let us turn to a pair of charge-phase qubits coupled
through a CBJJ (Fig. 3). For the qubits, only two levels are
considered. To be able to couple the bus to only one qubit
at a time, we assume #1 ! #2 for their level spacings.
Similarly to the above, tuning the bus in resonance with
#i causes coherent oscillations between it and qubit i,
while the other qubit is hardly affected.

As before, the interaction Hamiltonian couples the bus
charge to the qubit-island charge and, in the logical basis
for the qubit [1], takes the form $ixpb=~CCc. The qubit-
bus coupling coefficient is #0 &

!!!

2
p
'#2e%#2"=!0%2 -

!!!!!!!!!!!!!!!

m "h!pb
p

=~CCc, where ~CCc now depends on the total

FIG. 2. Quality of coupled identical CBJJ qubits. (a) De-
coherence time Tdec (full lines) and leakage time Tleak (dashed
line) over the oscillation period TRabi, vs the coupling capaci-
tance Cc. We take T$1

dec ! T$1
1 " T$1

2 [see Eqs. (5) and (6)] and
T$1
leak ! $2#1$ P01 $ P10%; Pij is the population of jiqjbi. The

resonant cases (Ibias ! 20:8 &A) at T ! 10, 25, and 70 mK are
shown. At 25 mK [2], Cc , 10 fF maximizes the effective
quality factor Q. (b) Populations P01 and P10 of j "i vs Cc

in resonance. At large Cc, poisoning by other states reduces P01

and P10. (c) Same as (b) but off resonance: Ibias;q ! 20:8 &A,
Ibias;b ! 20:43 &A (full lines), and Ibias;b ! 20:74 &A (dashed
lines).

P H Y S I C A L R E V I E W L E T T E R S week ending
28 MARCH 2003VOLUME 90, NUMBER 12

127901-2 127901-2

decoherence time

leakage time

𝐶#~10fF maximizes 𝑄$%%

in resonance population

off resonance population

Figure 2: Quality of coupled identical CBJJ qubits
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¡ Pair of charge-phase qubits coupled through CBJJ

¡ For qubits: consider only two levels

¡ Ω7 ≠ Ω" → bus can be coupled to only one qubit 
(by tuning bus to Ω8)

¡ Hamiltonian:

¡ Couples bus charge to island charge

¡ Takes form 𝜎9:𝑞;/ :𝐶!
¡ Qubit-bus coupling coefficient

TUNABLE COUPLING
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capacitances of both qubits C!;i ! Cgi " 2Cji. The
number ! depends on the ratio of the qubit island’s
charging and Josephson energies; we take ! ! 1:16, cor-
responding to the parameters of Ref. [1].

For two-qubit operations, the qubits should interact
sequentially with the bus which, at the end of the opera-
tion, should be disentangled from them. This can be done
as follows. Assume the qubits are in an arbitrary state and
the bus prepared in its ground state. The bus is first tuned
to "1 for a time t1 such that "0t1=2 #h ! #=2. It is then
tuned to "2 for a time t2 with "0t2=2 #h ! #=4 and, finally,
tuned again to "1 for another t1. Afterwards, the bus is
disentangled from the qubits. Omitting some phase fac-
tors, the net effect is to implement a square root of
swap on the qubits. Together with single-qubit operations,
this gate is universal for quantum computation [21].
The phase factors have to be accounted for. Since all
energies involved are known from numerics and depend
on experimentally accessible parameters, this should not
be a problem. Moreover, since these qubits always have
"i ! 0, they accumulate phase shifts. Refocusing on the
idle qubit is therefore assumed.

As above, leakage can occur to higher bus states.
Taking, e.g., Ic ! 147:9 $A, Cj ! 5:8 pF [3], and Ibias *
0:99Ic, then "b is in the range of the qubit energy split-
ting in Ref. [1]. For the qubits, we take C! ! 5:5 fF, and
"1 and "2 equal to "b at Ibias ! 146:5 $A and
146:75 $A, respectively. Further, Cc ! 0:1 fF. These val-
ues reduce mixing while keeping the coherent oscilla-
tions as fast as possible, h="0 # 100 ns, of the order of the
single-qubit Rabi period under microwave excitation in
Ref. [1].

Since charge-phase qubits are at least as anharmonic as
CBJJs, the leakage per qubit will be no larger than for the
circuit in Fig. 1.With two qubits, the total Hilbert space is
however larger, leaving more room for leakage. A higher
density of states also means that operations must be
slower to avoid spurious transitions, hence the longer
Rabi period. As above, poisoning with j2bi has probabil-
ity P2 # 10$4 and smaller Cc helps to avoid mixing, but at
the price of a longer Rabi period. [A small Cc also ensures
that the qubit islands’ charging energies are virtually
unchanged.] Moreover, the qubit-bus eigenstates are not

maximally entangled as in (3), their amplitudes having a
small difference #10$3. This will have to be accounted
for when realizing logic operations. Finally, biasing the
bus at Ibias ! 146:6 $A decouples it from both qubits,
again with P2 # 10$4.

Besides leakage, other imperfections must be dealt
with, in particular, relaxation and dephasing due to fluc-
tuations of the control parameters—Ibias, gate voltage,
etc. The effect of these noises on a single qubit or CBJJ
has been given in Refs. [5,22]. Here we study them for the
coupled system near the degeneracy point. Consider, e.g.,
the CBJJs in Fig. 1. Major sources of decoherence are the
qubit %Iq%t& and bus %Ib%t& bias noises. These correspond
to two separate environments, leading to independent
fluctuations of!pq and!pb. Near degeneracy, focus again
on the subspace L. First rewrite (2) as H 2 !
1
2 &%'z cos(" 'x sin(&, where cos( ! %"q ""b&=&,
sin( ! "=&, and & !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

%"q ""b&2 " "2
q

. Then, expand
H 2 to O%%I&, obtaining the system-bath Hamilto-
nian H SB ! )z%Xq " Xb& " )x%X0

q " X0
b&. The )n are

Pauli matrices in the eigenbasis of H 2 and X%0&
i are bath

operators.
For an environment represented by real impedances

Z%!& ! RI in parallel to each junction, the spectral den-
sity of the bath operators is J%!& ! Jx%!& " Jz%!&, where

RIJz%!&
!

!
"

!pqIbias;q
4%I2cq $ I2bias;q&

#

" sin(
2!pq

$ #h cos(
$%

2

"
"

!pbIbias;b
4%I2cb $ I2bias;b&

#

" sin(
2!pb

" #h cos(
$%

2
; (4)

and similarly for Jx%!& but with ( ! (" #=2. The
effects of the two independent baths add up in J%!&.

The relaxation and dephasing rates now become [23]

T$1
1 ! Jx%&= #h& coth%&=2kBT&=2 #h; (5)

T$1
2 ! T$1

1 =2" 2#*kBT= #h; (6)

where * ! Jz%!&=2# #h! for !! 0. For the CBJJ, long
coherence times require an environment with sufficiently
high impedance, engineered to be ReZ%!& ' 560 k" in
Ref. [2] (instead of the standard #100 " at microwave
frequencies). With this RI, T ! 25 mK, and the above
parameters for two CBJJs, T1;2 are #1 ms at exact reso-
nance. Out of resonance, T1 grows while T2 stays of the
same order. This lower bound on T1;2 is > 103 times the
decoherence time of the decoupled system [1–3], so %Iq;b
should hardly affect the coherence.

For a charge-phase qubit at the working point, voltage
fluctuations %V across the coupling-bus impedance Zb%!&
affect the qubit island through H SB # e!%V%Cc=C!&)0x.
Here, )0x is a Pauli matrix in the single-qubit eigenbasis.
As is clear from the general (5) and (6), there is no
dephasing since H SB does not couple to )0z [1].
Moreover, in the case of a purely resistive Zb%!&, and

FIG. 3. A pair of charge-phase qubits capacitively coupled to
a CBJJ.

P H Y S I C A L R E V I E W L E T T E R S week ending
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Figure 3: A pair of charge-phase qubits capacitively coupled to a CBJJ

effective coupling capacitances depend on

depends on ratio
between 𝐸/ and 𝐸0
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¡ Two qubit operation:

Assume qubits are in arbitrary state, bus in ground state.

1. Tune bus to Ω7 for 𝑡7 such that <
>=?
"ℏ = ?

"

2. Tune bus to Ω" for 𝑡" such that <
>=!
"ℏ = ?

@

3. Tune bus to Ω7 again for 𝑡7
4. Disentangle bus from the qubits

¡ Problems:

¡ Phase factors accumulating → can be calculated numerically from known parameters

¡ Leakage to higher bus states

¡ Charge-phase qubits at least as anharmonic as CBJJ → leakage not larger than with two phase qubits.

𝑆𝑊𝐴𝑃
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INDUCTIVE COUPLING

Wendin, G., & Shumeiko, V. S. (2005). Superconducting quantum circuits, qubits and computing. arXiv preprint cond-mat/0508729.

𝐸"
𝐶"

𝐸"
𝐶"

𝐿1 𝐿'

𝐿1'
¡ Passive inductive coupling of flux qubits

¡ Flux in one qubit induces current in second qubit

→ inductance matrix 𝐿9A: connects flux in 𝑖-th loop with current in 𝑘-th loop:

𝐿&' - mutual inductance

¡ Generalized magnetic potential energy

¡ Interaction term

27

FIG. 27: Fixed inductive (flux) coupling of elementary flux
qubit. The loops can be separate, or have a common leg like
in the figure.

Ĥ = EC n̂2 + EJ (1 − cosφ) + EL
(φ− φe)2

2
(9.2)

Ĥ = EC n̂2 + EJ (1 − cosφ) +
h̄

2e
Ieφ. (9.3)

In a multi-qubit system the induced gate charge in the
SCB, or the flux through the SQUID loop, or the phase
in the Josephson energy, will be a sum of contributions
from several (in principle, all) qubits. The energy of the
system can therefore not be described as the sum of two
independent qubits because of the quadratic dependence,
and the cross terms represent interaction energies of dif-
ferent kinds: capacitive, inductive and phase/current.
Moreover, using JJ circuits as non-linear coupling ele-
ments we have the advantage that the direct physical
coupling strength may be controlled, e.g tuning the in-
ductance via current biased JJs, or tuning the capaci-
tance by a voltage biased SCB.

B. Inductive coupling of flux qubits

A common way of coupling flux qubits is the inductive
coupling: magnetic flux induced by one qubit threads
the loop of another qubit, changing the effective external
flux. This effect is taken into account by introducing the
inductance matrix Lik, which connects flux in the i-th
loop with the current circulating in the k-th loop,

Φi =
∑

k

LikIk. (9.4)

The off-diagonal element of this matrix, L12, is the mu-
tual inductance which is responsible for the interaction.
By using the inductance matrix, the magnetic part of the
potential energy in Eq. (6.16) can be generalized to the
case of two coupled qubits,

1

2

(

h̄

2e

)2
∑

ik

(L−1)ik(φi − φei)(φk − φek). (9.5)

Then following the truncation procedure explained in
Section VII C, we calculate the matrix elements,

〈l|φ̃− f |l〉, 〈r|φ̃ − f |r〉, 〈l|φ̃− f |r〉, (9.6)

Vg

SCB

VgVg

SCB

C3

FIG. 28: Fixed capacitive coupling of charge qubits

for each qubit. The last matrix element is exponentially
small, while the first two ones are approximately equal to
the minimum points of the potential energy, φl and φr,
respectively. This implies that the truncated interaction
basically has the zz-form,

Ĥint = λσz1σz2,

λ =
1

8

(

h̄

2e

)2

(L−1)12 (φl − φr)1(φl − φr)2. (9.7)

C. Capacitive coupling of charge qubits

One of the simplest coupling schemes is the capacitive
coupling of charge qubits. Such a coupling is realized by
connecting the islands of two SCBs via a small capacitor,
as illustrated in Fig. 28. This will introduce an addi-
tional term in the Lagrangian of the two non-interacting
SCBs, Eq. (5.27), namely the charging energy of the
capacitor C3,

δL =
C3V 2

3

2
. (9.8)

The voltage drop V3 over the capacitor is expressed via
the phase differences across the qubit junctions,

V3 =
h̄

2e
(φ̇1 − φ̇2), (9.9)

and thus the kinetic part of the Lagrangian (5.28) will
take the form

K(φ̇1, φ̇2) =
1

2

(

h̄

2e

)2
∑

i,k

Cikφ̇iφ̇k

−
h̄

2e

2
∑

i

CgiVgiφ̇i, (9.10)

where the capacitance matrix elements are Cii = CΣi +
C3, and C12 = C3. Then proceeding to the circuit quan-
tum Hamiltonian as described in Section VI, we find the
interaction term,

Ĥint = 2e2(C−1)12n̂1n̂2. (9.11)
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¡ Flux qubit Hamiltonian

¡ Currents and fluxes in lower loop coupled (dashed line)

¡ Fluxes control barriers between potential wells → ∝ 𝜎:7𝜎:" interaction

¡ Placing loop differently → ∝ 𝜎C7𝜎C" interaction

¡ Interaction energy in order of 𝑀𝐼D" (𝑀- mutual inductance)
typically 0.01𝐸*

¡ For typical RF-SQUID: 
coupling stronger than tunnelling rate between flux states

¡ Turn coupling of by switch controlled by high-frequency pulses

¡ Trade-off: coupling to external circuit leads to decoherence

¡ Alternative: use ac driving pulses to induce state transitions two-qubit system

Makhlin & Schön & Shnirman. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001). https://link.aps.org/doi/10.1103/RevModPhys.73.357

(Voss and Webb, 1981; Martinis et al., 1987; Clarke
et al., 1988; Rouse et al., 1985). Another important quan-
tum effect has been reported recently: The groups at
Stony Brook (Friedman et al., 2000) and Delft (van der
Wal et al., 2000) have observed in experiments the
avoided level crossing due to coherent tunneling of the
flux in a double-well potential. In principle, all other
manipulations discussed in the previous section should
be possible with Josephson flux devices as well. They
have the added advantage of not being sensitive to fluc-
tuations in the background charges. However, attempts
to observe macroscopic quantum coherent oscillations in
Josephson flux devices have not been yet successful
(Leggett, 1987; Tesche, 1990).

A. Josephson flux (persistent current) qubits

We consider superconducting ring geometries inter-
rupted by one or several Josephson junctions. In these
systems persistent currents flow and magnetic fluxes are
enclosed. The simplest design of these devices is an rf
SQUID, which is formed by a loop with one junction, as
shown in Fig. 9(a). The phase difference across the junc-
tion is related to the flux ! in the loop (in units of the
flux quantum !0!h/2e) by "/2#!!/!0"integer. An
externally applied flux !x biases the system. Its Hamil-
tonian, with Josephson coupling, charging energy, and
magnetic contributions taken into account, thus reads

H!#EJ cos! 2#
!

!0
""

$!#!x%
2

2L
"

Q2

2CJ
. (3.1)

Here L is the self-inductance of the loop and CJ the
capacitance of the junction. The charge Q!#i&'/'!
on the leads is canonically conjugate to the flux !.

If the self-inductance is large, such that (L
)EJ /(!0

2/4#2L) is larger than 1 and the externally ap-
plied flux !x is close to !0/2, the first two terms in the
Hamiltonian form a double-well potential near !
!!0/2. At low temperatures only the lowest states in
the two wells contribute. Hence the reduced Hamil-
tonian of this effective two-state system again has the
form (2.3), Hctrl!# 1

2 Bz*̂z# 1
2 Bx*̂x . The diagonal term

Bz is the bias, i.e., the asymmetry of the double-well
potential, given for (L#1$1 by

Bz$!x%!4#!6$(L#1 % EJ $!x /!0#1/2%. (3.2)

Bz can be tuned by the applied flux !x . The off-
diagonal term Bx describes the tunneling amplitude be-
tween the wells, which depends on the height of the bar-
rier and thus on EJ . This Josephson energy, in turn, can
be controlled if the junction is replaced by a dc SQUID,
as shown in Fig. 9(b), introducing the flux !̃x as another
control variable.8 With these two external control pa-
rameters the elementary single-bit operations, i.e., z and
x rotations, can be performed, equivalent to the manipu-
lations described for charge qubits in the previous sec-
tion. In addition, for flux qubits we can either perform
the operations by sudden switching of the external fluxes
!x and !̃x for a finite time, or we can use ac fields and
resonant pulses. To permit coherent manipulations the
parameter (L should be chosen larger than unity (so
that two wells with well-defined levels appear) but not
much larger, since the resulting large separation of the
wells would suppress the tunneling.

The rf SQUID described above had been discussed in
the mid 1980s as a realization of a two-state quantum
system. Some features of macroscopic quantum behav-
ior were demonstrated, such as macroscopic quantum
tunneling of the flux, resonant tunneling, and level quan-
tization (Voss and Webb, 1981; Martinis et al., 1987;
Clarke et al., 1988; Rouse et al., 1995; Silvestrini et al.,
1997). However, only very recently has the level repul-
sion near a degeneracy point been demonstrated (Fried-
man et al., 2000; van der Wal et al., 2000).

The group at Stony Brook (Friedman et al., 2000)
probed spectroscopically the superposition of excited
states in different wells. The rf SQUID used had self-
inductance L!240 pH and (L!2.33. A substantial
separation of the minima of the double-well potential
(of order !0) and a high interwell barrier made the tun-
nel coupling between the lowest states in the wells neg-
ligible. However, both wells contain a set of higher lo-
calized levels—under suitable conditions one state in
each well—with relative energies also controlled by !x

and !̃x . Because they were closer to the top of the bar-
rier, these states mixed more strongly and formed eigen-
states, which were superpositions of localized flux states
from different wells. External microwave radiation was
used to pump the system from a well-localized lowest
state in one well to one of these eigenstates. The energy
spectrum of these levels was studied for different biases
!x , !̃x , and the properties of the model (3.1) were con-
firmed. In particular, the level splitting at the degen-
eracy point indicated a superposition of distinct quan-
tum states. They differed in a macroscopic way: the
authors estimated that the two superimposed flux states
differed in flux by !0/4, in current by 2–3 +A, and in
magnetic moment by 1010+B .

8See Mooij et al. (1999) for suggestions on how to control !̃x
independent of !x .

FIG. 9. The simplest flux qubits: (a) The rf SQUID, a simple
loop with a Josephson junction, forms the simplest Josephson
flux qubit; (b) improved design for a flux qubit. The flux !̃x in
the smaller loop controls the effective Josephson coupling of
the rf SQUID.
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Figure 9: (a) Flux qubit and (b) improved 
design for flux qubit

B. Coupling of flux qubits

In order to couple different flux qubits one can use a
direct inductive coupling (Mooij et al., 1999; Orlando
et al., 1999), as shown by the dashed line in Fig. 11. A
mutual inductance between the qubits can be estab-
lished in different ways. The dashed loop shown in the
figure couples the currents and fluxes in the lower parts
of the qubits. Since fluxes through these loops control
the barrier heights of the double-well potentials, this
gives rise to the interaction term !"̂x

1"̂x
2 . Placing the

loop differently produces in addition contributions to
the interaction Hamiltonian of the form "̂z

1"̂z
2 . The typi-

cal interaction energy is of order MIc
2 where M is the

mutual inductance and Ic!(2#/$0)EJ is the critical cur-
rent in the junctions. For their design, Mooij et al. (1999)
estimate the typical interaction energy to be of order
0.01EJ%50 mK in frequency units, i.e., of the order of
single-qubit energies. For a typical rf SQUID (Friedman
et al., 2000) this coupling can be even stronger than the
tunneling rate between the flux states of the SQUID.

In the simplest form this interaction is always turned
on. To turn it off completely, one needs a switch con-
trolled by high-frequency pulses. The related coupling to
the external circuit leads to decoherence (see the discus-
sion at the end of this section). An alternative is to keep
the interaction turned on constantly and use ac driving
pulses to induce coherent transitions between the levels
of the two-qubit system (see Shnirman et al., 1997; Mooij
et al., 1999). A disadvantage of this approach is that per-
manent couplings result in an unwanted accumulation of
relative phases between the two-qubit states even in the
idle periods. Keeping track of these phases, or their sup-
pression by repeated refocusing pulses (see Sec. IV), re-
quires a high precision and complicates the operation.

A controllable interqubit coupling without additional
switches is achieved in the design shown by the solid line
in Fig. 11 (Makhlin et al., 2000c). The coupling is medi-
ated by an LC circuit, with self-inductance Losc and ca-
pacitance Cosc , which is coupled inductively to each qu-
bit. Like the design of the charge qubit register in Sec.
II.C, the coupling depends on parameters of individual
qubits and can be controlled in this way. The effective
coupling can be found again by integrating out the fast
oscillations in the LC circuit. It can be understood in a
simple way by noting that in the limit Cosc→0 the qubits
establish a voltage drop across the inductor, V

!&iM$̇i /L, and the Hamiltonian for the oscillator mode
is Hosc!$2/2Losc"Q2/2Cosc#VQ , with the charge Q
being conjugate to the flux $ through the LC circuit.
Here $ i is the flux in the loop of qubit i , L is the self-
inductance of the loop, and M is its mutual inductance
with the LC circuit. Continuing as described in Sec.
II.C, we obtain the interqubit interaction term
#CoscV2/2. In the limit of weak coupling to the LC
circuit, we have $̇ i!(i/')(Hi ,$ i)!*$ iBx

i "̂y
i /' , where

*$ i is the separation between two minima of the poten-
tial and Bx

i is the tunneling amplitude. Hence the inter-
action is given by

Hint!##2! M
L " 2

&
i$j

*$ i*$ j

$0
2

Bx
i Bx

j

e2/Cosc
"̂y

i "̂y
j . (3.4)

To turn off the interaction one should suppress the
tunneling amplitudes Bx

i . This can be done with expo-
nential precision by increasing the height of the poten-
tial barrier via $̃x . Note that in this case unwanted fluc-
tuations of Bx

i and resulting dephasing effects are also
exponentially suppressed. All needed single and two-
qubit manipulations can be performed by turning on the
fields Bx

i and Bz
i , in complete analogy to what we dis-

cussed in Sec. II.C. We also encounter the equivalent
drawbacks: the design shown in Fig. 11 does not allow
simultaneous manipulations on different qubit pairs, and
the conditions of high oscillator frequencies and weak
renormalization of qubit parameters by the coupling,
similar to Eqs. (2.14) and (2.16), limit the two-qubit cou-
pling energy. The optimization of this coupling requires
!Losc /Cosc+RK(*$/$0)2(M/L)2 and ,LC not far
above the qubit frequencies. For rf SQUID’s (Friedman
et al., 2000) the resulting coupling can reach the same
order as the single-bit terms. On the other hand, for the
design of Mooij et al. (1999), in which two basis phase
states differ only slightly in their magnetic properties,
the coupling term is much weaker than the single-bit
energies.

C. ‘‘Quiet’’ superconducting phase qubits

The circuits considered so far in this section are vul-
nerable to external noise. First, they need for their op-
eration an external bias in the vicinity of $0/2, which
should be kept stable for the time of manipulations. In
addition, the two basis flux states of the qubit have dif-
ferent current configurations, which may lead to mag-
netic interactions with the environment and possible
cross talk between qubits. To a large extent the latter
effect is suppressed already in the design of Mooij et al.
(1999). To further reduce these problems several designs
of so-called ‘‘quiet’’ qubits have been suggested
(Ioffe et al., 1999; Zagoskin, 1999; Blais and Zagoskin,
2000; Blatter, 2001) They are based on intrinsically dou-
bly degenerate systems, e.g., Josephson junctions with
d-wave leads and energy-phase relations (e.g., cos 2-)
with two minima, or the use of # junctions, which re-
moves the need for a constant magnetic bias near $0/2.

FIG. 11. Flux qubits coupled in two ways. The dashed line
induces a direct inductive coupling. Alternatively, an interqu-
bit coupling is provided by the LC circuit indicated by a solid
line.
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Figure 11: Direct inductive coupling (dashed 
line) vs. coupling by LC-circuit (solid line).

(Voss and Webb, 1981; Martinis et al., 1987; Clarke
et al., 1988; Rouse et al., 1985). Another important quan-
tum effect has been reported recently: The groups at
Stony Brook (Friedman et al., 2000) and Delft (van der
Wal et al., 2000) have observed in experiments the
avoided level crossing due to coherent tunneling of the
flux in a double-well potential. In principle, all other
manipulations discussed in the previous section should
be possible with Josephson flux devices as well. They
have the added advantage of not being sensitive to fluc-
tuations in the background charges. However, attempts
to observe macroscopic quantum coherent oscillations in
Josephson flux devices have not been yet successful
(Leggett, 1987; Tesche, 1990).

A. Josephson flux (persistent current) qubits

We consider superconducting ring geometries inter-
rupted by one or several Josephson junctions. In these
systems persistent currents flow and magnetic fluxes are
enclosed. The simplest design of these devices is an rf
SQUID, which is formed by a loop with one junction, as
shown in Fig. 9(a). The phase difference across the junc-
tion is related to the flux ! in the loop (in units of the
flux quantum !0!h/2e) by "/2#!!/!0"integer. An
externally applied flux !x biases the system. Its Hamil-
tonian, with Josephson coupling, charging energy, and
magnetic contributions taken into account, thus reads

H!#EJ cos! 2#
!

!0
""

$!#!x%
2

2L
"

Q2

2CJ
. (3.1)

Here L is the self-inductance of the loop and CJ the
capacitance of the junction. The charge Q!#i&'/'!
on the leads is canonically conjugate to the flux !.

If the self-inductance is large, such that (L
)EJ /(!0

2/4#2L) is larger than 1 and the externally ap-
plied flux !x is close to !0/2, the first two terms in the
Hamiltonian form a double-well potential near !
!!0/2. At low temperatures only the lowest states in
the two wells contribute. Hence the reduced Hamil-
tonian of this effective two-state system again has the
form (2.3), Hctrl!# 1

2 Bz*̂z# 1
2 Bx*̂x . The diagonal term

Bz is the bias, i.e., the asymmetry of the double-well
potential, given for (L#1$1 by

Bz$!x%!4#!6$(L#1 % EJ $!x /!0#1/2%. (3.2)

Bz can be tuned by the applied flux !x . The off-
diagonal term Bx describes the tunneling amplitude be-
tween the wells, which depends on the height of the bar-
rier and thus on EJ . This Josephson energy, in turn, can
be controlled if the junction is replaced by a dc SQUID,
as shown in Fig. 9(b), introducing the flux !̃x as another
control variable.8 With these two external control pa-
rameters the elementary single-bit operations, i.e., z and
x rotations, can be performed, equivalent to the manipu-
lations described for charge qubits in the previous sec-
tion. In addition, for flux qubits we can either perform
the operations by sudden switching of the external fluxes
!x and !̃x for a finite time, or we can use ac fields and
resonant pulses. To permit coherent manipulations the
parameter (L should be chosen larger than unity (so
that two wells with well-defined levels appear) but not
much larger, since the resulting large separation of the
wells would suppress the tunneling.

The rf SQUID described above had been discussed in
the mid 1980s as a realization of a two-state quantum
system. Some features of macroscopic quantum behav-
ior were demonstrated, such as macroscopic quantum
tunneling of the flux, resonant tunneling, and level quan-
tization (Voss and Webb, 1981; Martinis et al., 1987;
Clarke et al., 1988; Rouse et al., 1995; Silvestrini et al.,
1997). However, only very recently has the level repul-
sion near a degeneracy point been demonstrated (Fried-
man et al., 2000; van der Wal et al., 2000).

The group at Stony Brook (Friedman et al., 2000)
probed spectroscopically the superposition of excited
states in different wells. The rf SQUID used had self-
inductance L!240 pH and (L!2.33. A substantial
separation of the minima of the double-well potential
(of order !0) and a high interwell barrier made the tun-
nel coupling between the lowest states in the wells neg-
ligible. However, both wells contain a set of higher lo-
calized levels—under suitable conditions one state in
each well—with relative energies also controlled by !x

and !̃x . Because they were closer to the top of the bar-
rier, these states mixed more strongly and formed eigen-
states, which were superpositions of localized flux states
from different wells. External microwave radiation was
used to pump the system from a well-localized lowest
state in one well to one of these eigenstates. The energy
spectrum of these levels was studied for different biases
!x , !̃x , and the properties of the model (3.1) were con-
firmed. In particular, the level splitting at the degen-
eracy point indicated a superposition of distinct quan-
tum states. They differed in a macroscopic way: the
authors estimated that the two superimposed flux states
differed in flux by !0/4, in current by 2–3 +A, and in
magnetic moment by 1010+B .

8See Mooij et al. (1999) for suggestions on how to control !̃x
independent of !x .

FIG. 9. The simplest flux qubits: (a) The rf SQUID, a simple
loop with a Josephson junction, forms the simplest Josephson
flux qubit; (b) improved design for a flux qubit. The flux !̃x in
the smaller loop controls the effective Josephson coupling of
the rf SQUID.
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¡ Flux qubit Hamiltonian

¡ Coupling by LC circuit (solid line)

¡ Without additional switches

¡ Coupling controlled by qubit parameters

¡ Oscillator Hamiltonian:

¡ Weak coupling to LC circuit (Heisenberg equation)

¡ Interaction Hamiltonian:

¡ Turn off coupling: Supress 𝐵:9 ↔ increase potential barrier via CΦ:

B. Coupling of flux qubits

In order to couple different flux qubits one can use a
direct inductive coupling (Mooij et al., 1999; Orlando
et al., 1999), as shown by the dashed line in Fig. 11. A
mutual inductance between the qubits can be estab-
lished in different ways. The dashed loop shown in the
figure couples the currents and fluxes in the lower parts
of the qubits. Since fluxes through these loops control
the barrier heights of the double-well potentials, this
gives rise to the interaction term !"̂x

1"̂x
2 . Placing the

loop differently produces in addition contributions to
the interaction Hamiltonian of the form "̂z

1"̂z
2 . The typi-

cal interaction energy is of order MIc
2 where M is the

mutual inductance and Ic!(2#/$0)EJ is the critical cur-
rent in the junctions. For their design, Mooij et al. (1999)
estimate the typical interaction energy to be of order
0.01EJ%50 mK in frequency units, i.e., of the order of
single-qubit energies. For a typical rf SQUID (Friedman
et al., 2000) this coupling can be even stronger than the
tunneling rate between the flux states of the SQUID.

In the simplest form this interaction is always turned
on. To turn it off completely, one needs a switch con-
trolled by high-frequency pulses. The related coupling to
the external circuit leads to decoherence (see the discus-
sion at the end of this section). An alternative is to keep
the interaction turned on constantly and use ac driving
pulses to induce coherent transitions between the levels
of the two-qubit system (see Shnirman et al., 1997; Mooij
et al., 1999). A disadvantage of this approach is that per-
manent couplings result in an unwanted accumulation of
relative phases between the two-qubit states even in the
idle periods. Keeping track of these phases, or their sup-
pression by repeated refocusing pulses (see Sec. IV), re-
quires a high precision and complicates the operation.

A controllable interqubit coupling without additional
switches is achieved in the design shown by the solid line
in Fig. 11 (Makhlin et al., 2000c). The coupling is medi-
ated by an LC circuit, with self-inductance Losc and ca-
pacitance Cosc , which is coupled inductively to each qu-
bit. Like the design of the charge qubit register in Sec.
II.C, the coupling depends on parameters of individual
qubits and can be controlled in this way. The effective
coupling can be found again by integrating out the fast
oscillations in the LC circuit. It can be understood in a
simple way by noting that in the limit Cosc→0 the qubits
establish a voltage drop across the inductor, V

!&iM$̇i /L, and the Hamiltonian for the oscillator mode
is Hosc!$2/2Losc"Q2/2Cosc#VQ , with the charge Q
being conjugate to the flux $ through the LC circuit.
Here $ i is the flux in the loop of qubit i , L is the self-
inductance of the loop, and M is its mutual inductance
with the LC circuit. Continuing as described in Sec.
II.C, we obtain the interqubit interaction term
#CoscV2/2. In the limit of weak coupling to the LC
circuit, we have $̇ i!(i/')(Hi ,$ i)!*$ iBx

i "̂y
i /' , where

*$ i is the separation between two minima of the poten-
tial and Bx

i is the tunneling amplitude. Hence the inter-
action is given by

Hint!##2! M
L " 2

&
i$j

*$ i*$ j

$0
2

Bx
i Bx

j

e2/Cosc
"̂y

i "̂y
j . (3.4)

To turn off the interaction one should suppress the
tunneling amplitudes Bx

i . This can be done with expo-
nential precision by increasing the height of the poten-
tial barrier via $̃x . Note that in this case unwanted fluc-
tuations of Bx

i and resulting dephasing effects are also
exponentially suppressed. All needed single and two-
qubit manipulations can be performed by turning on the
fields Bx

i and Bz
i , in complete analogy to what we dis-

cussed in Sec. II.C. We also encounter the equivalent
drawbacks: the design shown in Fig. 11 does not allow
simultaneous manipulations on different qubit pairs, and
the conditions of high oscillator frequencies and weak
renormalization of qubit parameters by the coupling,
similar to Eqs. (2.14) and (2.16), limit the two-qubit cou-
pling energy. The optimization of this coupling requires
!Losc /Cosc+RK(*$/$0)2(M/L)2 and ,LC not far
above the qubit frequencies. For rf SQUID’s (Friedman
et al., 2000) the resulting coupling can reach the same
order as the single-bit terms. On the other hand, for the
design of Mooij et al. (1999), in which two basis phase
states differ only slightly in their magnetic properties,
the coupling term is much weaker than the single-bit
energies.

C. ‘‘Quiet’’ superconducting phase qubits

The circuits considered so far in this section are vul-
nerable to external noise. First, they need for their op-
eration an external bias in the vicinity of $0/2, which
should be kept stable for the time of manipulations. In
addition, the two basis flux states of the qubit have dif-
ferent current configurations, which may lead to mag-
netic interactions with the environment and possible
cross talk between qubits. To a large extent the latter
effect is suppressed already in the design of Mooij et al.
(1999). To further reduce these problems several designs
of so-called ‘‘quiet’’ qubits have been suggested
(Ioffe et al., 1999; Zagoskin, 1999; Blais and Zagoskin,
2000; Blatter, 2001) They are based on intrinsically dou-
bly degenerate systems, e.g., Josephson junctions with
d-wave leads and energy-phase relations (e.g., cos 2-)
with two minima, or the use of # junctions, which re-
moves the need for a constant magnetic bias near $0/2.

FIG. 11. Flux qubits coupled in two ways. The dashed line
induces a direct inductive coupling. Alternatively, an interqu-
bit coupling is provided by the LC circuit indicated by a solid
line.
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Figure 11: Direct inductive coupling (dashed line) vs. 
coupling by LC-circuit (solid line).

(Voss and Webb, 1981; Martinis et al., 1987; Clarke
et al., 1988; Rouse et al., 1985). Another important quan-
tum effect has been reported recently: The groups at
Stony Brook (Friedman et al., 2000) and Delft (van der
Wal et al., 2000) have observed in experiments the
avoided level crossing due to coherent tunneling of the
flux in a double-well potential. In principle, all other
manipulations discussed in the previous section should
be possible with Josephson flux devices as well. They
have the added advantage of not being sensitive to fluc-
tuations in the background charges. However, attempts
to observe macroscopic quantum coherent oscillations in
Josephson flux devices have not been yet successful
(Leggett, 1987; Tesche, 1990).

A. Josephson flux (persistent current) qubits

We consider superconducting ring geometries inter-
rupted by one or several Josephson junctions. In these
systems persistent currents flow and magnetic fluxes are
enclosed. The simplest design of these devices is an rf
SQUID, which is formed by a loop with one junction, as
shown in Fig. 9(a). The phase difference across the junc-
tion is related to the flux ! in the loop (in units of the
flux quantum !0!h/2e) by "/2#!!/!0"integer. An
externally applied flux !x biases the system. Its Hamil-
tonian, with Josephson coupling, charging energy, and
magnetic contributions taken into account, thus reads

H!#EJ cos! 2#
!

!0
""

$!#!x%
2

2L
"

Q2

2CJ
. (3.1)

Here L is the self-inductance of the loop and CJ the
capacitance of the junction. The charge Q!#i&'/'!
on the leads is canonically conjugate to the flux !.

If the self-inductance is large, such that (L
)EJ /(!0

2/4#2L) is larger than 1 and the externally ap-
plied flux !x is close to !0/2, the first two terms in the
Hamiltonian form a double-well potential near !
!!0/2. At low temperatures only the lowest states in
the two wells contribute. Hence the reduced Hamil-
tonian of this effective two-state system again has the
form (2.3), Hctrl!# 1

2 Bz*̂z# 1
2 Bx*̂x . The diagonal term

Bz is the bias, i.e., the asymmetry of the double-well
potential, given for (L#1$1 by

Bz$!x%!4#!6$(L#1 % EJ $!x /!0#1/2%. (3.2)

Bz can be tuned by the applied flux !x . The off-
diagonal term Bx describes the tunneling amplitude be-
tween the wells, which depends on the height of the bar-
rier and thus on EJ . This Josephson energy, in turn, can
be controlled if the junction is replaced by a dc SQUID,
as shown in Fig. 9(b), introducing the flux !̃x as another
control variable.8 With these two external control pa-
rameters the elementary single-bit operations, i.e., z and
x rotations, can be performed, equivalent to the manipu-
lations described for charge qubits in the previous sec-
tion. In addition, for flux qubits we can either perform
the operations by sudden switching of the external fluxes
!x and !̃x for a finite time, or we can use ac fields and
resonant pulses. To permit coherent manipulations the
parameter (L should be chosen larger than unity (so
that two wells with well-defined levels appear) but not
much larger, since the resulting large separation of the
wells would suppress the tunneling.

The rf SQUID described above had been discussed in
the mid 1980s as a realization of a two-state quantum
system. Some features of macroscopic quantum behav-
ior were demonstrated, such as macroscopic quantum
tunneling of the flux, resonant tunneling, and level quan-
tization (Voss and Webb, 1981; Martinis et al., 1987;
Clarke et al., 1988; Rouse et al., 1995; Silvestrini et al.,
1997). However, only very recently has the level repul-
sion near a degeneracy point been demonstrated (Fried-
man et al., 2000; van der Wal et al., 2000).

The group at Stony Brook (Friedman et al., 2000)
probed spectroscopically the superposition of excited
states in different wells. The rf SQUID used had self-
inductance L!240 pH and (L!2.33. A substantial
separation of the minima of the double-well potential
(of order !0) and a high interwell barrier made the tun-
nel coupling between the lowest states in the wells neg-
ligible. However, both wells contain a set of higher lo-
calized levels—under suitable conditions one state in
each well—with relative energies also controlled by !x

and !̃x . Because they were closer to the top of the bar-
rier, these states mixed more strongly and formed eigen-
states, which were superpositions of localized flux states
from different wells. External microwave radiation was
used to pump the system from a well-localized lowest
state in one well to one of these eigenstates. The energy
spectrum of these levels was studied for different biases
!x , !̃x , and the properties of the model (3.1) were con-
firmed. In particular, the level splitting at the degen-
eracy point indicated a superposition of distinct quan-
tum states. They differed in a macroscopic way: the
authors estimated that the two superimposed flux states
differed in flux by !0/4, in current by 2–3 +A, and in
magnetic moment by 1010+B .

8See Mooij et al. (1999) for suggestions on how to control !̃x
independent of !x .

FIG. 9. The simplest flux qubits: (a) The rf SQUID, a simple
loop with a Josephson junction, forms the simplest Josephson
flux qubit; (b) improved design for a flux qubit. The flux !̃x in
the smaller loop controls the effective Josephson coupling of
the rf SQUID.
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