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MOTIVATION

= Qubit Computation:
Uly)

Time evolution of state [ (t)) = e /M) = Ulpy) — unitary transformation )

= Quantum Circuit Model:

— U can be constructed in approximation from a finite set of

= 1 qubit operations U € SU(2) and

= 2 qubit operations U € SU(4)

= Examples of two qubit gates, necessary for universality:

A CNOT SWAP
L/




SUPERCONDUCTING QUBIT ARCHETYPES
= The Charge Qubit (Cooper-Pair Box, CPB)

gate capacitance

Cg
' ------------------------- .'
1 superconductingisland |
i : y
' ' a Voltage-driven box (charge qubit)
' ° :
’ :
i
i i ()
i i
i i
i i
i i
[ i
1 : - .
_ o _
Josephson junction! E] Cl ' [{g gate voltage
: : -
i i
i i
i i
i i
' ------------ --------------.
Fig. 1, You, J., Nori, F. Atomic physics and quantum optics using superconducting
circuits.Nature 474, 589-597 (2011). https://doi.org/10.1038/nature 10122
Superconducting Charge Qubit — Cooper-pair box 5

(Fig. 17.4a, Kockum A.F., Nori F. (2019) Quantum Bits with Josephson Junctions. Springer)
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. . 2
=  Hamiltonian: Hepg =\EC(N — Ng)/\— E] COS(Q)}
Y

charge energy Josephson energy
‘ . (2e)* . . U
charge energy: E. = 2C;+Cy) background charge: N, = (g >
= Externally adjustable parameters:
1. Background charge: N, = Cg% through gate voltage U
2. Josephson energy: Ej (@) = E; COS(%T[) CPB Potential (red) and two lowest states (blue solid)
0

(Srjmas, ,,Charge qubit potential”,

. . https://commons.wikimedia.org/wiki/File:Charge_qubit_potential.svg)
= States: number of excess Cooper pairs on island

10) = [N)
1) =[N +1)
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SUPERCONDUCTING QUBIT ARCHETYPES
= The Flux Qubit (RF SQUID)
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Superconducting Flux Qubit — RF-SQUID
(Srjmas, , Flux qubit circuit”, https://commons.wikimedia.org/wiki/File:Flux_qubit_circuit.svg)
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Phase difference across J. j.

\

Charge on C]\
2

N Oy ., b \q 27
=  Hamiltonian: Hyps qa n (_0)2_ — Ejcos(¢ — (I)e:rt_l)
2C; \277' 2L (1’0/
(2 e)? @3 Po\ten/tial
energy scales: E;, EC] = 2¢; E, = z_li)

= Externally adjustable parameters:
1. External bias flux: D, through bias current I,

2. Loop inductance: L through coil £ and N

: _ @)
3. Josephson energy: E]((D]) =5 COS(qTo m) Flux Qubit Potential (red) and two lowest states (blue solid)

(Srjmas, ,, Flux qubit potential”,

= States: symmetrical and antisymmmetrical superposition of flux quanta https://commons.wikimedia.org/wiki/File:Flux_qubit_potential.svg)
10) = (10} + L) e
0 = —(10 + (@] -
V2 S >
1 S =
1) = =(0) — V) Iy g = E;, G
S oy
V2 S >
S
8
L
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SUPERCONDUCTING QUBIT ARCHETYPES
= The Phase Qubit (Current Biased Josephson Junction, CBJJ)

€ Current-driven junction (phase qubit)

. - &‘V

lext

Fig. 1, You, J., Nori, F. Atomic physics and quantum optics using superconducting
circuits.Nature 474, 589-597 (2011). https://doi.org/10.1038/nature 10122

Superconducting Charge Qubit — Cooper-pair box
(Fig. 17.4b, Kockum A.F., Nori F. (2019) Quantum Bits with Josephson Junctions. Springer)
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Phase Qubit Potential (red) and two lowest states (blue solid)
(Srjmas, ,,Phase qubit potential”,
https://commons.wikimedia.org/wiki/File:Phase_qubit_potential.svg)

Charge on (;
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Ph 20, q

=  Hamiltonian:

= Externally adjustable parameters:

1. Bias current: I
2. Josephson energy:  E;(®;) =E cos(% )
0

= States: Oscillations modes in superconducting loop

Introduction
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CAPACITIVE COUPLING

= Two capacitively coupled charge qubits:
= Qubit state given by charge on superconducting island

=  Qubit charges on capacitor C,;, — coupling of charge states

| Reservoir 2 Reservoir 1
EJ2’ CJ2 EJ1’ CJ1

Coupling

island
&

Figure 1: Experiment setup — two coupled charge qubits !

Pashkin, Y., Yamamoto, T., Astafiev, O. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823-826 (2003). https://doi.org/10.1038/nature01365
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. . . . 1
m Hamiltonian: normalised charges on qubit _
(induced by d.c. and pulse gate electrodes) Mgy 2 % (Cgl,g Vgl,g + Cpr)

\ \ \ \

total electrostatic energy: En1n2 — EC1 (ngl _ n1)2 i ECQ (ng2 . ’I’L2)2 4+ Em(ngl . nl)(n92 . n2)

\ \ \

Cs &

. . , 42 2.1 ' =

effective C. p. charging energies Ec,, =4e Co Cs, —C2 coupling energy E,, = 4¢” o =2

- 1 1 . E. C |—|—| E,,C
Eoo) —3Epn —3E2 O R 6,

Cb1

—LEj, 0 —1lEp
H= —1E, 0 —1E;,

0 —1E, —1Ej

— gate voltages allow control over diagonal terms

Josephson coupling  Ej, , = Ey < Ec¢,, — coherent superpositions of {|00),]01),[10), |11) } atng,, = 0.5
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Pashkin, Y., Yamamoto, T., Astafiev, O. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823-826 (2003). https://doi.org/10.1038/nature01365
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= |n absence of Josephson coupling: A
=  Hexagonal boundaries between states n
= RandL-degeneracy between neighbouring states
= System will oscillate between neighbouring states X051
u ngl,ngzinside cell — system will remain in cells’ state =
= Pulse gate shifts system along 45° line (black arrows) Of
= With small Josephson coupling:
> States become superposed on boundaries! 5 0.5 1 >
ng1
m Co-resonance pOiﬂt X with ng =ng, = 0.5 Figure 2a: Ground-state charging diagram of

coupled qubits
» Double degeneracy

> Superposition of all charge states |1(t)) = ¢1 |00) + ¢5 [10) + ¢3 [01) + ¢4 |11)}

13

Pashkin, Y., Yamamoto, T., Astafiev, O. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823-826 (2003). https://doi.org/10.1038/nature01365
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= |dea of the experiment:
1. Prepare system in [00)

2. Start applying pulse —  system at co-resonance point X
in |1/J(t)> =C |OO> + C2 |10> + c3 |01> + ¢4 |11>}

3. Stop applying pulse —  system ‘frozen’ in superposition

4. System decays to |00) emitting quasi particles

m Readout scheme:

=  Measuring probe currents I, I, in proportion to probability of

each qubit having a C. p. on it: I o pr(1) = |eof? + Jeal? Ngy (=Ngy)

Figure 2b: energy diagram along ng, = ng,-line

_ 2 2
I < pa(1) = [e3|” + [ca| Reservoir 2 Reservoir 1

= Time evolution of probabilities:

1 oy
p12(l) = = (2 — (1 — x12)cos((2+ €)At) — (1 4 x1.2)cos((2 — €)At))

' VAN \ \

1
E2% —E% +E2/4 = 2V (Bn + Ep)? + (En/2)?
X1,2 = ’ 5 1
Ah*(le €= 57 (Ep, — Ep)? + (En/2)? 14

Pashkin, Y., Yamamoto, T., Astafiev, O. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823-826 (2003). https://doi.org/10.1038/nature01365
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(a) Probe current oscillations at R and L (b) Probe
b
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Figure 3a: Oscillations at resonance points

= Can be fitted with cosine
= Single peaks at different energies

— no qubit interaction

Figure 2a: Ground-state charging
diagram of coupled qubits

current oscillations at co-resonance X
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Figure 3b: Oscillations at co-resonance point

Two peaks in spectrum
Two peaks at same energies

— evidence for qubit interaction
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Pashkin, Y., Yamamoto, T., Astafiev, O. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823-826 (2003). https://doi.org/10.1038/nature01365
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TUNABLE COUPLING

= Two capacitively coupled phase qubits: - _Qu_bita --- FTU_“a_t'f;'QCO_UPﬁ“Q bHS_l
= Hamiltonian: | | % |
Coupling | CC |
CBJJ Qubit Hamiltonian Tuneable Couplirﬁ Bus Hamiltonian ~ Term | | | |
s 5 N A4 \ 1~ 1 |
I Ejq Cat "B Cip I
| T o 1 |
2 2 | |
q D Qo | |
H=—=— —FE,,cos¢p, — I ¢Pq + HCOS Py — —Ibgbb + 2= 9_ |
Zqu ) q q Cb J I CC’ T _:_l_l ________ _!
\ \ \ Figure 1: A pair of capacitively coupled CBJJs
effective capacitances: éb(jq) = qu(b) + 1/(1/Cb(jq) -+ 1/00) éC = quCjb(l/Cjb + qu + 1/CC)
/
= Now: (. :CbEC E: :EbEE - C— 2ml, _éZ
Jjq | J | Jjq - J (By/27) Wyi \/é'j@o 1 (Ic)
— approximately cubic potential wells ) =
7 w
— junctions treated as anharmonic oscillators — i = Za WTq(CLT — a;) .
0

Blais & v. e. Brink & Zagoskin (2003). Tunable Coupling of Superconducting Qubits. Physical review letters. 90. 127901. 10.1103/PhysRevLett.90.127901.

Tunable Coupling




= Hamiltonian H, in Span{|0q1b), |1q0b)}:

EqO + Ebl 7/2

H, =
v/2 Eq + Eyo

C.
coupling coefficient: 7Y = h\ /wpqubé_J
C

= Without coupling: |0q1b) and |1q0b) degenerate for I, such that Egy — Eqp = Epy — Ejg
= With coupling: lifts degeneracy and the new eingenstates are
1
Wy) = ﬁ(|0qlb> + ‘1qob>)
LOxYT
= |n resonance: H, acts like e™"2n — prepared in [1,0,): probability for |1,) oscillates with Tgap; = h/y

=  Anharmonicity of qubits supressses leakage out of two level system

db

. q . L. .
=  Coupling term g causes nonresonant leakage to |2, (close to barrier — large transition rate) — shortens coherence time
C

= Bus not tuned to qubit frequency Q, — qubit decoupled from bus

Blais & v. e. Brink & Zagoskin (2003). Tunable Coupling of Superconducting Qubits. Physical review letters. 90. 127901. 10.1103/PhysRevLett.90.127901.

Tunable Coupling
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= Optimise coupling quality

leakage time

decoherence time

(o) Qieak = Tieak/ TRabi

~

Qgec = Tdec/ TRabi T=10mK

T=25mK
T=70mK

Cc~10fF maximizes Qe
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Blais & v. e. Brink & Zagoskin (2003). Tunable Coupling of Superconducting Qubits. Physical review letters. 90. 127901. 10.1103/PhysRevLett.90.127901.
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Figure 2: Quality of coupled identical CBJJ qubits

Tunable Coupling
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TUNABLE COUPLING

= Pair of charge-phase qubits coupled through CBJJ Tunable coupling bus

=  For qubits: consider only two levels Qubit #1

r

= 0 #FQ, —  bus can be coupled to only one qubit
(by tuning bus to Q;)

®m Hamiltonian:

=  Couples bus charge to island charge

Figure 3: A pair of charge-phase qubits capacitively coupled to a CBJJ

= Takes form o0y,qp/Cc

/
27"' zmhw 27TIC 1,
= Qubit-bus coupling coefficient 4" = $2e(=—)? pb T e = \/C.q)o V- (]_i)2
\ (I)O CC
depends on ratio \

between E¢ and E} effective coupling capacitances depend on Cz,i = Cgi + QCji

19

Blais & v. e. Brink & Zagoskin (2003). Tunable Coupling of Superconducting Qubits. Physical review letters. 90. 127901. 10.1103/PhysRevLett.90.127901.
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= Two qubit operation:

Assume qubits are in arbitrary state, bus in ground state.

\

!
1. Tune bus to Q; for t; such that VZ;: =3

2. Tune bus to Q, for t, such that vt _m
woe VSWAP
3. Tune bus to Q; again for t;

4. Disentangle bus from the qubits

by
= Problems:
= Phase factors accumulating — can be calculated numerically from known parameters
= |eakage to higher bus states
=  Charge-phase qubits at least as anharmonic as CBJJ — |eakage not larger than with two phase qubits.

Blais & v. e. Brink & Zagoskin (2003). Tunable Coupling of Superconducting Qubits. Physical review letters. 90. 127901. 10.1103/PhysRevLett.90.127901.
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INDUCTIVE COUPLING

= Passive inductive coupling of flux qubits ,
12
=  Flux in one qubit induces current in second qubit //\\
— inductance matrix Ly, connects flux in i-th loop with current in k-th loop: E g
O, = Lyl 5 LS =3 E;
i = Z ik Lk C Qg D 2 C
k L1, - mutual inductance g g
: : . S 2
=  Generalized magnetic potential energy Hp,, = 2% + (2—;)2% — Ejcos(¢— @ezta:) \\//
1/ k) Y
(=) D@L ir(¢i — Gei)(k — pek) < —
2\ 2¢ =
= |nteraction term a

Hint — )\O-z10-221

A= 1 (2—2) (L Y12 (1 — d0)1 (61— br)o

21

Wendin, G., & Shumeiko, V. S. (2005). Superconducting quantum circuits, qubits and computing. arXiv preprint cond-mat/0508729.
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. . ) _ 2 2
= Flux qubit Hamiltonian H=—EJcos(2w ¢)+ (- Py) 4 0

d, 2L 2C,

= Currents and fluxes in lower loop coupled (dashed line)

Fluxes control barriers between potential wells — o o462 interaction

Placing loop differently — & glc? interaction

Interaction energy in order of MI? (M- mutual inductance)
typically 0.01E;

For typical RF-SQUID:
coupling stronger than tunnelling rate between flux states

Turn coupling of by switch controlled by high-frequency pulses
= Trade-off: coupling to external circuit leads to decoherence

= Alternative: use ac driving pulses to induce state transitions two-qubit system

) | ——

X

Figure 9: (a) Flux qubit and (b) improved
design for flux qubit

LOSC

Cosc—

Figure 11: Direct inductive coupling (dashed
line) vs. coupling by LC-circuit (solid line).
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Makhlin & Schén & Shnirman. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001). https://link.aps.org/doi/10.1103/RevModPhys.73.357
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2 2
= Flux qubit Hamiltonian He— E COS(ZW ¢ ) + (P—@y) Q
! d, 2L 2CJ Loscg
. o . CoscT—.

= Coupling by LC circuit (solid line) 05¢

= Without additional switches Dy

. . Figure 11: Direct inductive coupling (dashed line) vs.
- Coupllng controlled by qult parameters coupling by LC-circuit (solid line).
2 2
= Oscillator Hamiltonian: H,.. = ¢ + Q —VQ

2‘[/OSC 2C'OSC

. Distance between two minima in potential |1)
. . . 1
= Weak coupllng to LC circuit (I)z' = ﬁ[Hi’ (Di] — 6(1) B;:O‘yai (Heisenberg equation) |0)

Tunnelling amplitude
/I\/Iutua inductance

7']\[ 0P;0P; B! BJ
D D e 1C O
i< 0 osc

Qub:t inductance

® |nteraction Hamiltonian:

Hint -

m  Turn off coupling: Supress BL «» increase potential barrier via ®
X X

0P,
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Makhlin & Schén & Shnirman. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001). https://link.aps.org/doi/10.1103/RevModPhys.73.357
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