Superconducting circuit protected by two-Cooper-pair tunneling^[1]

Margaretha Sandor

03.07.2020

[1] Smith, W. C. et al. Superconducting circuit protected by two-Cooper-pair tunneling. npj Quantum Inf 6, 8 (2020). https://doi.org/10.1038/s41534-019-0231-2

Idea

Transmon qubit:

Topologically protected qubits:

Circuit elements with degenerate phase states:

-> Only tunneling of pairs of Cooper pairs Potential Energy: $U = -E_{I} \cos 2 \varphi$

Combination of both!

Content

- 1) Protection in the $\cos 2\phi$ qubit
- 2) Superconducting circuit
 - Hamiltonian
 - Energy spectrum
- 3) Qubit States
 - Static properties
 - Decoherence estimates

Protected qubit

- $|g\rangle$, $|e\rangle$: two lowest energy eigenstates
- \mathcal{O} any operator coupling to fluctuations with mean \mathcal{O}_0
- $l \gg 1$ phase space distance between $|g\rangle$ and $|e\rangle$

$$\langle \mu | \mathcal{O} - \mathcal{O}_0 | \vartheta \rangle \sim e^{-l} \quad \forall \mu, \vartheta \in \{ g, e \}$$

- -> Qubit exponentially insensitive to variations in ${\mathcal O}$
- *O* should not be able to map:
 - $|g\rangle \rightarrow |e\rangle$ (relaxation)

•
$$\frac{1}{\sqrt{2}}(|g\rangle + |e\rangle) \rightarrow \frac{1}{\sqrt{2}}(|g\rangle - |e\rangle)$$
 (dephasing)

 $\cos 2\phi$ qubit

Transmon qubit:

$$H = 4E_C (N - N_g)^2 - E_J \cos\varphi$$
$$-E_J \cos\varphi$$
$$= -\frac{1}{2} E_J \sum_{N=-\infty}^{\infty} (|N\rangle \langle N+1| + |N+1\rangle \langle N|)$$

N: number of tunnelled Cooper pairs $N_{\rm g}$: off- set charge $E_{\rm J}$: tunneling energy $E_{\rm C}$: charging energy φ : superconducting phase

(a)

 $(\cap$

 E_{J}

 C_{shunt}

6

Cos 2
$$\varphi$$
 qubit:

$$H = 4E_{C}(N - N_{g})^{2} - E_{J} \cos 2\varphi$$

$$\xrightarrow{(b)} F_{J}$$

$$\xrightarrow{(c_{shunt})} F$$

$\cos 2\phi$ qubit

- π -periodicity
- Two nearly degenerate ground states $|+\rangle$, $|-\rangle$
- No overlap in charge space, opposite periodicity in phase space => $\langle -|\mathcal{O}| + \rangle \approx 0$
- $|\upsilon/\upsilon\rangle = \frac{1}{\sqrt{2}}(|+\rangle \pm |-\rangle)$ localized near $\varphi = 0$ and π
- Supressed overlap in phase space for large E_J / E_C roughly inversely periodic in charge space => $\langle \circlearrowleft | \mathcal{O} | \circlearrowright \rangle \approx 0$
- Groundstate splitting: $\Delta E \approx 16E_{\rm C}\sqrt{\frac{2}{\pi}}\left(\frac{2E_{\rm J}}{E_{\rm C}}\right)^{\frac{3}{4}}e^{-\sqrt{\left(2E_{\rm J}/E_{\rm C}\right)}}\cos(\pi N_{\rm g})$

->splitting and charge dispersion suppressed exponentially in $E_{\rm I}/E_{\rm C}$

Constructing a quantum Hamiltonian for a circuit

- 1. Reduce circuit
- 2. Sketch Lagrangian
- 3. Impose Kirchoff's laws
- 4. Formulate Hamiltonian
- 5. Promote variables to operators

Superconducting circuit

• New phase coordinates:

$$\varphi = \varphi_1 + \varphi_2; \ \varphi = \frac{1}{2}(\varphi_1 - \varphi_2); \ \theta = \frac{1}{2}(\varphi_1 - \varphi_2)$$

$$n \qquad N \qquad \eta$$

conjugate charges

•
$$H = 4\epsilon_{\rm C} \left[2n^2 + \frac{1}{2} \left(N - N_{\rm g} - \eta \right)^2 + x\eta^2 \right]$$

+ $\epsilon_{\rm L} \left[\frac{1}{4} (\phi - \phi_{\rm ext})^2 + \theta^2 \right] + 2\epsilon_{\rm J} \cos \phi \cos \frac{\phi}{2}$

- => three strongly coupled modes:
 - ϕ : flux dependent, coupled to ϕ via Josephson junctions
 - ϕ : off-set charge dependent, capacitiely coupled to θ

$$\begin{split} x &\equiv C_J/C_{shunt} \\ \phi_{ext}: \text{ external flux} \\ 2\epsilon_L: \text{ inductive energy of each} \\ \text{ superinductance} \\ \epsilon_C: \text{ single junction charging energy} \\ \epsilon_I: \text{ tunneling energy} \end{split}$$

Effective Hamiltonian

For $\phi_{ext}=\pi \ \makebox{->}$ degenerate ridges

1D potential: minimizing energy, eliminating coordinate

-> Instanton trajectory

Semiclassical theory

- U->-U
- => Lagrangian
- => Euler Lagrangian equation of motion

•
$$\phi = \frac{1}{1+z} \left(2 \left| \varphi - 2\pi \operatorname{round} \frac{\varphi}{2\pi} \right| + z \varphi_{\text{ext}} \right)$$

• Plugging in Hamiltonian and approximating with truncated Fourier series and Taylor expansion about z=0

•
$$H_{\text{eff}} = 4\epsilon_{\text{C}} \left[\frac{1}{4(1-z)} \left(N - N_{\text{g}} - \eta \right)^2 + x\eta^2 \right] + \epsilon_{\text{L}} \theta^2$$

 $- \frac{16}{3\pi} \epsilon_{\text{L}} (\pi - \phi_{\text{ext}}) \cos \phi - \epsilon_{\text{J}} \left(1 - \frac{5}{4} z \right) \cos 2\phi$

 $z = \epsilon_L / \epsilon_J$ $\phi_{ext} = |\phi_{ext} - 4\pi \operatorname{round} \frac{\phi_{ext}}{4\pi}|$

Energy spectrum

Dependence of energy levels on external flux: At $\varphi_{ext} = \pi$: harmonic oscillator, $\Delta E = \sqrt{16x\epsilon_L\epsilon_C}$

Otherwise:

	Fluxon mode:	Plasmon mode:
Flux	Dependent	Independent
Energy	Linear increase; slope $\frac{32}{2}\epsilon_L$	Harmonic ladder
Excitations	Fluxons enclosed by loop -> magnitude and chirality of persistent current	Quantized charge density oscillations Capacitance and superinductances

m: number of plasmons Label: •/o: presence/absence of fluxon excitation

 $10 \cdot$

8

6

 $\bullet/\bigcirc = \begin{cases} \mho/\circlearrowright \text{ for } \phi_{ext} \mod 2\pi < \pi \\ -/+ \text{ for } \phi_{ext} \mod 2\pi = \pi \\ \mho/\circlearrowright \text{ for } \phi_{ext} \mod 2\pi > \pi \end{cases}$

03/07/2020

0.5

0.6

higher order transitions

Matrix elements

• Properties of logical qubit formed by: $\{|0-\rangle, |0+\rangle\}$ at $\varphi_{ext} = \pi$

 $\{|0 \bullet \rangle, |0 \circ \rangle\}$

• Operators inducing transitions ? -> matrix elements

Capacitive coupling:

Voltage V coupling to superconducting island via gate capacitance C_g

$$\Rightarrow H_{int} = \frac{C_g}{C_{shunt} + C_g} (2e\eta) V$$

$$\Rightarrow \text{Transition directly related to } \langle \psi | \eta | 0 \circ \rangle$$

Inductive coupling:

Current *I* coupling to circuit via inductance $L_{\rm S}$

$$\Rightarrow H_{\text{int}} = \frac{L_s}{2L} (\phi_0 \phi) I$$
$$\Rightarrow \langle \psi | \phi | 0 \circ \rangle$$

 $\phi_0 = \hbar/2e$ reduced magnetic flux L :Superinductance in each arm

03/07/2020

Matrix elements

• Normalized matrix elements:

$$\left|\mathcal{O}_{\psi}\right|^{2} \equiv \frac{\left|\langle \psi | \mathcal{O} | 0 \circ \rangle\right|^{2}}{\left|\langle 0 \circ | \mathcal{O}^{\dagger} \mathcal{O} | 0 \circ \rangle\right|}; \quad \sum_{\psi} \left|\mathcal{O}_{\psi}\right|^{2} = 1; \left|\mathcal{O}_{\psi}\right|^{2} > 0$$

- For $\mathcal{O} = \eta$:
- Transitions only form |0 °> to |1 °>;
 no transition between qubit states
- Resulting from decoupling from even and odd Cooper pair number parity manifolds
- => Measurement and control

Matrix elements

• Normalized matrix elements:

 $\left|\mathcal{O}_{\psi}\right|^{2} \equiv \frac{\left|\langle \psi | \mathcal{O} | 0 \circ \rangle\right|^{2}}{\left|\langle 0 \circ | \mathcal{O}^{\dagger} \mathcal{O} | 0 \circ \rangle\right|}; \quad \sum_{\psi} \left|\mathcal{O}_{\psi}\right|^{2} = 1; \left|\mathcal{O}_{\psi}\right|^{2} > 0$

- For $\mathcal{O} = \varphi$:
- Transitions form $|0 \circ\rangle$ to $|0 \bullet\rangle$
- φ induces transition between Cooper pair parity manifolds
- => Relaxation mainly due to inductive loss

Disorder

- Influence of imperfections in supercoducting circuit?
- Symmertry breaking possible in junctions, capacitances and superinductances
- Numerical diagonalization of *H*
 - -> energy splitting ΔE at $N_g=0$

-> charge dispersion $\epsilon = \max_{N_g} \Delta E - \min_{N_g} \Delta E$ at $\varphi_{ext} = \pi$ of $\{|0+\rangle, |0-\rangle\}$ manifold

• $\delta \in [0,1)$ as parameter of asymmetry

Asymetry

•
$$H = 4\epsilon_{\rm C} \left[2n^2 + \frac{1}{2} \left(N - N_{\rm g} - \eta \right)^2 + x\eta^2 \right] + \epsilon_{\rm L} \left[\frac{1}{4} (\phi - \phi_{\rm ext})^2 + \theta^2 \right] - 2\epsilon_{\rm J} \cos \phi \cos \frac{\phi}{2}$$

Josephson junctions:

- $(1 \pm \delta_J)\epsilon_J$
- $H'=2 \epsilon_J \delta_J \sin \phi \sin \frac{\phi}{2}$
- $H'_{\text{eff}} = -\frac{16}{3\pi} \epsilon_{\text{J}} \delta_{\text{J}}(\sin \varphi \frac{1}{5} \sin 3\varphi)$

=> tunnelling of single cooper pairs, symmetric and asymmetric circuit characteristics

Asymetry

•
$$H = 4\epsilon_{\rm C} \left[2n^2 + \frac{1}{2} \left(N - N_{\rm g} - \eta \right)^2 + x\eta^2 \right] + \epsilon_{\rm L} \left[\frac{1}{4} (\phi - \phi_{\rm ext})^2 + \theta^2 \right] - 2\epsilon_{\rm J} \cos \phi \cos \frac{\phi}{2}$$

Capacitances:

•
$$\epsilon_C / (1 \pm \delta_C)$$

•
$$H' = -8\epsilon_{\mathrm{C}} \frac{\delta_{\mathcal{C}}}{1-\delta_{\mathcal{C}}^2} n \left(N - N_{\mathrm{g}} - \eta\right)$$

• $\delta_J = \delta_C \equiv \delta_A$

• $\epsilon_J \epsilon_C$ =const.; plasma frequencies fixed, area imperfections: $(1 + \delta_A)A$, $A \propto \sqrt{\epsilon_J/\epsilon_C}$

Asymetry

•
$$H = 4\epsilon_{\rm C} \left[2n^2 + \frac{1}{2} \left(N - N_{\rm g} - \eta \right)^2 + x\eta^2 \right] + \epsilon_{\rm L} \left[\frac{1}{4} (\phi - \phi_{\rm ext})^2 + \theta^2 \right] - 2\epsilon_{\rm J} \cos \phi \cos \frac{\phi}{2}$$

Superinductances:

- $\epsilon_L / (1 \pm \delta_L)$
- $H' = \epsilon_{\mathrm{L}} \frac{\delta_L}{1 \delta_L^2} (\phi \phi_{\mathrm{ext}}) \theta$

=> sufficiently non degenerate ground states and largely supressed charge dispersion

Relaxation

• Fermi's Golden rule to model loss -> relaxation rate:

$$\frac{1}{T_1} = \frac{1}{\hbar^2} |\langle 0 + |\mathcal{O}|0 - \rangle|^2 [S_{\mathcal{E}\mathcal{E}}(\Delta \omega) + S_{\mathcal{E}\mathcal{E}}(-\Delta \omega)]$$

 \mathcal{O} Operator coupling to noisy bath $\mathcal{E}(t)$ spectral noise density $S_{\mathcal{E}\mathcal{E}}(\omega)$

- Four main loss mechanism:
 - capacitive loss
 - inductive loss
 - Purcell loss
 - Quasiparticle tunneling

 $\frac{2\hbar}{\lambda Q(\omega)} \coth \frac{\hbar |\omega|}{2k_{\mathsf{B}}T}$

 $\Delta \omega = \Delta E / \hbar$

Properties of relaxation mechanisms

$$[S_{\mathcal{E}\mathcal{E}}(\Delta\omega) + S_{\mathcal{E}\mathcal{E}}(-\Delta\omega)] = \frac{2n}{\lambda Q(\omega)} \operatorname{coth} \frac{n|\omega|}{2k_{\mathsf{B}}T}$$

03/07/2020

Pure dephasing

- Dependence of ΔE on λ -> dephasing mechanisms
- Noise spectral densities $\frac{1}{f} \rightarrow S_{\lambda\lambda}(\omega) = 2\pi A_{\lambda}/|\omega|$
- $\sqrt{A_{\lambda}}$: noise spectral amplitude

Pure dephasing

Dephasing channel	λ	$\frac{1}{T_{\Phi}}$	Spectral density amplitude
Charge	Ng	$=\frac{\pi}{(2e)^2}\epsilon/\hbar$	$\sqrt{A_{N_g}} \sim 1 \times 10^{-4}$
Flux	φ _{ext}	$= A_{\varphi}_{\text{ext}} \left \frac{\partial^2 \Delta E}{\partial \varphi_{\text{ext}}^2} \right $	$\sqrt{A_{\varphi_{\text{ext}}}}/2\pi$ ~ 3×10 ⁻⁶
Critical current	ε _J	$= \sqrt{A_{\epsilon_{\rm J}}} \left \frac{\partial \Delta {\rm E}}{\partial \epsilon_{\rm J}} \right $	$\sqrt{A_{\epsilon_{\rm J}}}/\epsilon_{\rm J}$ ~ 5×10 ⁻⁷
Photon Shot	n_p	$= n_{th} \kappa \frac{\chi^2}{\chi^2 + \kappa^2}$	n_{th}/Q_{cap} ~ 1×10 ⁻⁷

 χ : dispersive shift of plasmon mode $κ: ω_p / Q_{cap(ω_p)}$, linewidth of plasmon mode

Decoherence estimates

Control and readout

- Problem in general: staying isolated to preserve coherence
- Non local encoding: $|g\rangle \rightarrow |e\rangle$ control, $|g\rangle$, $|e\rangle$ read out
- Large degree of insensitivity of frequency -> no dispersive measurement
- Cos 2ϕ qubit: qubit transition via inductive coupling
- -> capacitive coupling to higher levels
- Readout problem: no native dispersive shift between qubit and external electromagnetic mode
- ->dispersive coupling plasmon mode 20MHz, small anharmonicity -> ancillary anharmonic mode to measure plasmon, two readout tones

Conclusion

- Few body superconducting circuit
- Charge carriers: pairs of Cooper pairs at paticular bias
- Josephson tunneling element: characterized by cos 2ϕ term in Hamiltonian
- Numerical simulations: protection against relaxation and dephasing sources
- Enhanced in the presence of disorder

Thank you for your attention!

Literature

- [1] Smith, W.C., Kou, A., Xiao, X. *et al.* Superconducting circuit protected by two-Cooperpair tunneling. *npj Quantum Inf* **6**, 8 (2020). <u>https://doi.org/10.1038/s41534-019-0231-2</u>
- [2] Smith, W.C., Design of Protected Superconducting Qubits, Yale University (2019)

Wavefunctions

Numerical diagonalisation: -> Four lowest energy eigenstates, $\varphi_{ext} = \pi$ Charge wave functions: $\langle N|\psi \rangle$ Projection of θ and constrain to the trajectory Grid states with Fock state envelopes

- +/ -: superpostitions of even/odd number states
- 0,1: order of Fock state envelope

|0+>, |0-> protected from spurious transitions, except operator flipping parity

Wavefunctions

Phase wavefunctions: $\langle \varphi, \varphi | \psi \rangle$: Projection of θ and FT of $\varphi \varphi$ plane

Fock states localized within the potential energy wells

+/-: symmetric, antisymmetric states localized in within opposite ridges of potential wells ridges correspond to persistent currents of opposite chirality, and hence also to the absence/presence of a fluxon in the inductive loop of the circuit

0,1: Fock order

flip Cooper pair parity odd functions of ϕ and φ period an odd division of 2π