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Finite Superconductors

e Consider A and @ as classical variables (infinite superconductors)
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* Now also justified for finite small superconductors
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* Phase is now totally undefinied



Now: Josephson junction

Phase difference induce Josephson current, but electrons can move freely: get
uncertainty in number of electrons

Some cases number of particle can’t move freely: consider A and ® as gm variable
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Charge regime: normal conductors

* Consider small normal conductive island connecting to external leads by tunnelling
barriers and capacitors (SET)

 Situation: tunnelling energy smaller than charging energy of the island

Ep(Q.Q%) :2C2<Q—Q->-—§chv_;. Q*=-Y;C;V;
J

* Q have to be a multiple of e
= allowed states of the system can only have discrete value of electrostatic energy

= Coulomb blockade
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* When coulomb blockade is lifted, resonant tunnelling through the island is allowed
(single electron oszillation)



Charge regime: superconductors

* Now: island is superconducting (SSET), gap must be considered

* Small island = number of electrons and parity matters

Ep(Q.Q% = Loy +1->(g) A
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e Resonant tunnelling of cooper pairs is possible as long as: A = e’ /2Cy
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e Assumptions: no voltage drop between island and superconducting
bank 0*=-C,V, J-couplings are the same ¢ =—¢>» =¢y/2

* As long as gap is bigger than charging energy:
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* One get for energy and current: Eo1(V,.¢0) =
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Charge qubit (Cooper-pair box)

* Hamiltonian from SSET is up to constant term, similar to qubit Hamiltonian in external

field |
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e ‘left-right state’ |L)=|N)and |R)=|N+1) are ground state and first exited state, with the
energies seen before

* Qubit can be built with only one JJ, if also the Hamiltonian is reduced to the qubit form in
the subspace, spanned by the two states, we get:
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* |In practice: single JJ in SSET is replaced by two parallel junctions in tunable dc
SQUID configuration

e Disadvantage: Very sensitive to charge noise

* Decoherence time of simple charge qubit: ~2ns



Quantronium

At induced charge n*e=-C,V,+ Q" near to degeneracy point n*=1
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Ratio E;/Ec very large leads to less sensitivity

Develop design of quantronium to decrease sensitivity of noise and improve readout

Sweet spot:  pn* =1 Y =0

In quantronium don’t read out charge but phase



* Device: basically SSET with tunable junctions and a dc SQUID loop closed by another
large JJ )
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* Phase difference readout at large JJ: y=—% —2r—



Thank you



