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We study finite-time Landau-Zener transitions at a singlet-triplet level crossing in a GaAs double

quantum dot, both experimentally and theoretically. Sweeps across the anticrossing in the high driving

speed limit result in oscillations with a small visibility. Here we demonstrate how to increase the

oscillation visibility while keeping sweep times shorter than T�
2 using a tailored pulse with a detuning

dependent level velocity. Our results show an improvement of a factor of�2:9 for the oscillation visibility.

In particular, we were able to obtain a visibility of �0:5 for Stückelberg oscillations, which demonstrates

the creation of an equally weighted superposition of the qubit states.
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The adiabatic theorem of quantum mechanics states
that a quantum system will remain in its instantaneous
eigenstate if the variation of a dynamical parameter is
slow enough on a scale determined by the energy sepa-
ration from other eigenstates [1]. However, there are
systems for which adiabaticity breaks down resulting in
a transition between states. The first result quantifying a
population change in such a process is due to independent
works by Landau, Zener, Stückelberg, and Majorana
[2–5]. They considered a coupled two-level quantum
system whose energies are controlled by a time dependent
external parameter, which is defined such that the system
exhibits an anticrossing of magnitude � ¼ 2� at t ¼ 0. If
the system is prepared in its ground state, j0i, at t ¼ �1
and swept through the anticrossing by modifying the
external parameter in such a way that the energy differ-
ence is a linear function of time, �E ¼ �t, then the
probability to remain in j0i at t ¼ 1 (in the diabatic

basis) is given by PLZSM ¼ e�ð2��2=@�Þ, which is known
as the Landau-Zener(-Stückelberg-Majorana) (LZSM)
nonadiabatic transition probability. Remarkably, this ele-
gant solution, although valid only in the asymptotic limit
for an infinitely long sweep, has demonstrated its accu-
racy in real physical systems for which the sweep has a
finite duration [6].

Another success of the asymptotic formulation resides in
an accurate description of LZSM interferometry. If the
system is driven back and forth across an anticrossing, it
accumulates a Stückelberg phase that gives rise to periodic
variations in the transition probability [6]. Although the
exact accumulated phase can only be calculated by solving
the time-dependent Schrödinger equation [7–11], a scat-
tering approach assimilating the phase acquired in a single
passage to a Stokes phase [12] nicely reproduces experi-
mental results obtained in superconducting qubits [13],
two-electron spin qubits at a singlet (S)-triplet (Tþ)

anticrossing [14,15], and in nitrogen-vacancy centers in
diamond [16].
Focusing on spin qubits, passage through a S-Tþ anti-

crossing in the energy level diagram is analogous to a
spin-dependent beam splitter [14]. There are two major
challenges relating to quantum control of such systems.
First, in two-electron double quantum dots (DQDs), the
S-Tþ anticrossing is located near the ð1; 1Þ $ ð2; 0Þ inter-
dot charge transition, where (NL,NR) refer to the number of
electrons in the left and right quantum dots. As a result, the
singlet state involved in the spin-dependent anticrossing is
a superposition of (1, 1) and (2, 0) singlet states. Second,
the magnitude of the splitting at the level anticrossing is set
by transverse hyperfine fields. To achieve LZSM oscilla-
tions with 100% visibility, the sweep through the anticross-
ing would have to be performed on a time scale set by the
electron spin decoherence time T�

2 . As a result, there is a
tradeoff between adiabaticity and inhomogeneous dephas-
ing. While there are several studies about dissipative adia-
batic passages (see, for instance, Refs. [17–22]), it remains
to be shown how to make a system less sensitive to dis-
sipation while at the same time increasing adiabaticity.
In this Letter, we attempt to reconcile the contradiction

between the need for a slow (adiabatic) passage susceptible
to dissipation and a fast passage minimizing dissipation
effects. Our approach is based on the observation that the
biggest population change occurs in the vicinity of the
anticrossing. We have developed a multiramp pulse
sequence that has a detuning dependent level velocity,
which we refer to as a ‘‘double hat’’ pulse [see Fig. 2(b)].
The slow level velocity portion of the pulse is chosen to
coincide with the passage through the S-Tþ anticrossing in
order to increase the visibility of the quantum oscillations.
To demonstrate the advantages of ‘‘double hat’’ pulses,

we consider a finite-time LZSM model [23]. In this model,
there are three parameters that control the magnitude of
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PLZSM: the dimensionless coupling � ¼ �=
ffiffiffiffiffiffi

�@
p

and the

dimensionless initial and final times Ti;f ¼
ffiffiffi

�
@

p

ti;f, where

ti;f are the start and stop times for the pulse relative to

t ¼ 0 defined at the anticrossing. The dependence on Ti;f

results in oscillations of PLZSM. In Fig. 1(b), we plot the
visibility of Stückelberg oscillations, given by V ¼
4PLZSMð1� PLZSMÞ [6], as a function of pulse duration
for trapezoid (single ramp) and ‘‘double hat’’ pulses. The
duration of the pulse is increased by lowering the level
velocity �. For the ‘‘double hat’’ pulse, only the slow level
velocity is changed. To be consistent with the regime
studied in experiments, we choose � ¼ 50 neV and
energy differences on the order of the Zeeman splitting
(� �Ei ¼ �Ef ¼ 2:5 �eV). The results demonstrate that

‘‘double hat’’ pulses can improve the oscillation visibility
while maintaining a short pulse duration. The oscillation
visibility is enhanced because ‘‘double hat’’ pulses allow a
passage through the anticrossing with a slower level ve-
locity � as compare to trapezoid pulses. The oscillatory
behavior of the results is a consequence of the finite-time
LZSM model.

Ideally, one would like the visibility to be unity, which
corresponds to the perfect beam splitter limit, PLZSM ¼
0:5. Its achievement would imply the possibility of realiz-
ing the Hadamard gate, which is essential to perform
certain quantum algorithms (e.g., Shor’s period finding
algorithm [24]). Optimization methods to obtain high-
fidelity adiabatic passages (i.e., PLZSM ¼ 0) have already
been studied [25].
We measure and model LZSM transitions at the S-Tþ

anticrossing for finite duration sweeps. Measurements are
performed on a GaAs/AlGaAs heterostructure that sup-
ports a two-dimensional electron gas located 110 nm below
the surface of the wafer. We use a triple quantum dot
depletion gate pattern, where two of the dots are configured
in series as a DQD and the third dot serves as a highly
sensitive quantum point contact charge detector [14,26].
The DQD is configured in the two-electron regime, where
the electrons can either be separated in the (1, 1) configu-
ration or localized on a single quantum dot, forming the
(2, 0) charge state. In this regime, the spin states are the
singlets Sð2; 0Þ and Sð1; 1Þ and the (1, 1) triplet states Tþ,
T0, and T�. Interdot tunnel coupling � results in hybrid-
ization of the charge states at zero detuning with a resulting

splitting of magnitude 2
ffiffiffi

2
p

� between the ground and ex-
cited state singlet, that we respectively denote S and S0. An
external magnetic field is applied perpendicular to the
sample, resulting in Zeeman splitting of the triplet states,
as depicted in Fig. 1(a). The hyperfine interaction between
electron and nuclear spins results in an anticrossing
between S and Tþ located at "c. The energy difference
at the anticrossing, �HF, is set by transverse hyperfine
fields [27].
Simulated interference patterns are obtained by solving

the master equation _� ¼ � i
@
½H;�� þ 1

2

P

3
i¼1ð½Li�; L

y
i � þ

½Li; �L
y
i �Þ [28]. Here, the Hamiltonian H describes the

dynamics in the vicinity of the S-Tþ anticrossing and is
given by [29]

HðtÞ¼ESðtÞjSihSjþETþjTþihTþjþfðtÞðjSihTþjþH:c:Þ;
(1)

where ES is the unperturbed singlet energy, ETþ ¼
g��BðBþ Bz

HF;1 þ Bz
HF;2Þ is the triplet energy, with g� ¼

�0:44 the effective Landé g factor,�B the Bohr magneton,
B the external magnetic field, and Bz

HF;j the z component of

the hyperfine field in dot j ¼ 1, 2. The effective coupling
fðtÞ between electronic spin states depends on the hyper-
fine interaction with nuclear spins and on the charge state.
It can be written as fðtÞ ¼ cðtÞ�, with cðtÞ the time-
dependent (1,1) charge amplitude and � the hyperfine
matrix element between Sð1; 1Þ and Tþ. The Lindblad

operators Li are given by L1 ¼
ffiffiffiffiffiffiffi

�þ
p

�þ, L2 ¼
ffiffiffiffiffiffiffi

��
p

��,
and L3 ¼

ffiffiffiffiffiffi

�’

q

�z. They respectively describe relaxation

from the excited state to the ground state and vice versa

FIG. 1 (color online). (a) DQD energy levels as a function of
the detuning, ", near the ð1; 1Þ $ ð2; 0Þ charge transition. The
low energy hybridized singlet state and the triplet Tþ form a
qubit whose dynamics can be controlled through LZSM inter-
ferometry by sweeping the system through the hyperfine medi-
ated anticrossing. (b) Comparison of Stückelberg oscillation
visibility V as a function of pulse length, �t, for a trapezoid
and ‘‘double hat’’ pulse with the same maximal amplitude. The
oscillation visibility is calculated within a finite-time LZSM
model, where it is given by V ¼ 4PLZSMð1� PLZSMÞ. ‘‘Double
hat’’ pulses allow for more than a factor of 2 improvement while
keeping �t < T�

2 .
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with rates �� ¼ 	1ðnþ 1Þ and �þ ¼ 	1n due to phonon
emission and absorption, with the mean phonon number

n ¼ ðe�E=kBT � 1Þ�1 and the spontaneous spin relaxation
rate 	1 ¼ 1=T1, as well as pure dephasing with a rate �’. A

phenomenological model for the rates leads to the relation
�þ þ �� ¼ 	1 cothð�EðtÞ=2kBTÞ, where �EðtÞ is the en-
ergy difference between the instantaneous eigenstates of
Eq. (1), kB is Boltzmann’s constant, and T is the phonon
bath temperature (� 10 mK).

We furthermore assume that pure dephasing is mainly
due to charge noise when the qubit is in a superposition of
Sð2; 0Þ and Tþ. Since these two states have different orbital
wave functions, they are sensitive to electric fluctuations of
the charge background [30,31]. We thus assume �’ ¼
	2ð1� jcðtÞj2Þ. The rates 	1 and 	2 are free parameters
and can be used to fit experimental results. Nuclear spin
induced dynamics are obtained by averaging solutions of
the master equation over a Gaussian distribution of hyper-
fine fields [30,32], suitable when the thermal energy is
larger than the nuclear Zeeman energy, kBT � gn�nB,
where gn is the nuclear g factor and �n is the nuclear
magneton. This description of the nuclear state is only
valid when its internal dynamics happens on characteristic
time scales longer than those of the LZSM driven system
(classical approximation). The standard deviation of the
distribution of nuclear fields Bi

HF;j (i ¼ fx; y; zg, j ¼ f1; 2g)
is denoted by 
i

j. The singlet energy and charge amplitude

coefficient used for our simulations are determined
experimentally [14].

We consider two types of pulses to measure the singlet

return probability PS [14]. Convolved pulses which are

obtained by convolving a trapezoid pulse with a finite rise

time of 1.5 ns, a maximal amplitude of �2 mV, and a

variable width tw, with a Gaussian pulse of mean � ¼ 0
and a standard deviation s ¼ 3:7 ns [see Fig. 2(a)].

‘‘Double hat’’ pulses are tailored to have a detuning-

dependent level velocity at the leading and trailing edges

of the pulse. The leading edge of the pulse has a level

velocity that varies in the sequence fast, slow, fast. The

leading edge has a rise time of 0.1 ns and an amplitude of

�2 mV, which is followed by a slow ramp with a rise

time tslow ¼ 8 ns and an amplitude of �0:5 mV. A 0.1 ns

rise-time pulse shifts the detuning to its maximal value of

�3 mV, where the detuning is held constant for a time

interval tw. The lever-arm conversion between gate volt-

age and energy is �0:13 meV=mV. The trailing edge

of the pulse is simply the reverse of the leading edge

[see Fig. 2(b)]. We present in Figs. 2(c) and 2(e) PS as a

function of the final detuning "s and waiting time tw
obtained respectively with convolved pulses for B ¼
50 mT and ‘‘double hat’’ pulses for B ¼ 55 mT.
Since PS for convolved pulses exhibits features already

discussed in Ref. [14], we only discuss the interference
pattern obtained with ‘‘double hat’’ pulses. Since the
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FIG. 2 (color online). (a) Convolved pulse obtained by convolving a trapezoid pulse with a Gaussian pulse. (b) ‘‘Double hat’’ pulse
with a detuning-dependent level velocity. (c) Singlet return probability PS as a function of "s and tw for B ¼ 50 mT using convolved
pulses. (d) Trace taken along "s ¼ �1:14 mV. (e) Singlet return probability PS measured with ‘‘double hat’’ pulses plotted as a
function of "s and tw for B ¼ 55 mT. The results exhibit a high-visibility region corresponding to the slow level velocity portion of the
‘‘double hat’’ pulse. (f) Trace taken along "s ¼ �1:41 mV. This value of "s corresponds to a passage through the anticrossing with the
slow level velocity portion of the pulse. (g) and (h) Traces taken along tw ¼ 15 ns and tw ¼ 5:2 ns for convolved and ‘‘double hat’’
pulses, respectively. A comparison between the different traces shows that the ‘‘double hat’’ pulse allow us to achieve higher
visibilities, while keeping the total pulse duration below the limit set by T�

2 .
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maximal amplitude of these pulses does not depend on tw,
we can observe interference fringes that start at tw ¼ 0 ns,
which is a first step for manipulation within T�

2 . More

importantly, we notice three distinct regions for detunings
smaller than "s ��1 mV, which correspond to different
magnitude ranges for PS. There is an alternation between
regions with PS ’ 1, PS ’ 0:4� 0:9, and again PS ’ 1 in
correspondence with the different level velocities associ-
ated to the ‘‘double hat’’ pulse. A passage through the
anticrossing with a slower level velocity improves the
oscillation visibility, as we could expect from the earlier
considerations within the finite-time LZSM theory.

To demonstrate that a high oscillation visibility can be
achieved with ‘‘double hat’’ pulses, we compare two differ-
ent types of traces. First, we compare traces taken for a
fixed waiting time. This is equivalent to measuring the
visibility of Stückelberg oscillations for a double passage
as a function of "s. The results are presented in Figs. 2(g)
and 2(h) for convolved pulses and ‘‘double hat’’ pulses. To
quantitatively compare the visibility of the coherent oscil-
lations we have to neglect the first interference fringe,
which corresponds to a final detuning located at the posi-
tion of the anticrossing, "s ¼ "c, which is strongly affected
by relaxation mechanisms (cf. Refs. [14,29]). We thus find
that the visibility for convolved pulses is �0:17 and the
visibility of ‘‘double hat’’ pulses is �0:5, which corre-
sponds to an improvement of a factor of �2:9. Second,
we present a comparison of traces taken at a fixed value of
the detuning. This is equivalent to measuring the visibility
of the Rabi oscillations. The results are presented in
Figs. 2(d) and 2(f) for convolved pulses and ‘‘double
hat’’ pulses. Neglecting once more the first oscillation
dip, we find, by considering only the first peak and relevant
dip, for convolved pulses a visibility of �0:14 and for
‘‘double hat’’ pulses a visibility of �0:4. Here, there is
an improvement of a factor of�2:9, which is obtained with
�t � T�

2 . By considering the first three peaks and dips,

i.e., �t� T�
2 , we find an improvement of�2:4. The reduc-

tion of visibility is due to nuclear spin dephasing. We
expect to obtain improvements in the visibility close to
�2:9 for suitably prepared nuclear states [33], which ex-
hibit longer decoherence times. The error on the visibility
is on the order of the error on PS, which we find to be�7%.

To support our experimental findings, we present in
Fig. 3 theory results obtained by using the experimental
pulse profiles measured at the output port of the waveform
generator. We use 
x;y;z

1;2 ¼ 1:00 mT, 	1 ¼ 105 s�1, and

	2 ¼ 108 s�1. Moreover, since the experimental data are
acquired at a high rate with cycles of 5 �s length, we can
observe a build up of nuclear polarization. To take this into
account in our model, we allow a nonzero mean for Bi

HF;j.

The mean �z
1;2 ’ 0:0 mT for Bz

HF;1;2 can be determined

from spin-funnel measurements [14]. Since we cannot
experimentally determine �x;y

1;2, we have chosen �x;y
1 ¼

6 mT and �x;y
2 ¼ 0 mT. Our theory results agree

qualitatively with the experiments, as can be seen when
comparing interference fringes [see Figs. 3(a) and 2(e)].
Our results indicate that the qubit is not only influenced

by nuclear spins, but that there are additional physical
mechanisms that determine the oscillation visibility.
Here, the contrast is also limited due to the superposition
of Sð2; 0Þ and Sð1; 1Þ [29]. First, the weighting of Sð1; 1Þ
sets the maximal population that can be transferred to Tþ.
Second, superpositions of different charge states are sus-
ceptible to charge noise, which results in an additional spin
dephasing mechanism. This dephasing channel directly
competes against LZSM tunneling by preventing the qubit
from coherently interfering with itself. Spin relaxation also
changes the balance of the populations, but due to energy
scales its effect is weak far from the avoided crossing,
where kBT � �E.
In conclusion, we have demonstrated how to increase the

visibility of quantum oscillations by enhancing the adia-
batic passage probability in the presence of dissipation. We
have designed a pulse which combines both fast and slow
rise-time ramps to minimize dissipation and enhance adia-
baticity. By considering a S� Tþ anticrossing, we have
shown that it is possible to achieve coherent superposition
states with a high Tþ population. In the more general
context of LZSM driven spin qubits, this technique allows
one to perform more quantum gates within a given deco-
herence time and achieve higher amplitude rotations in the
qubit space without exponentially extending the gate op-
eration times. Our control technique can be further
improved by preparing a nuclear spin gradient [33]. This
will not only increase T�

2 , but it will also enhance the

effective coupling between spin states, thus boosting adia-
batic transition probabilities.
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