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We theoretically study the interplay of spin-orbit and hyperfine interactions in dynamical nuclear polarization
in two-electron semiconductor double quantum dots near the singlet-triplet (S-T+) anticrossing. The goal of the
scheme under study is to extend the singlet-triplet (S-T0) qubit decoherence time T ∗

2 by dynamically transferring
the polarization from the electron spins to the nuclear spins. This polarization transfer is achieved by cycling
the electron spins over the S-T+ anticrossing. Here, we investigate, both quantitatively and qualitatively, how
this hyperfine-mediated dynamical polarization transfer is influenced by the Rashba and Dresselhaus spin-orbit
interaction. In addition to T ∗

2 , we determine the singlet return probability Ps , a quantity that can be measured
in experiments. Our results suggest that the spin-orbit interaction establishes a mechanism that can polarize the
nuclear spins in the direction opposite to that of hyperfine-mediated nuclear spin polarization. In materials with
relatively strong spin-orbit coupling, this interplay of spin-orbit and hyperfine-mediated nuclear spin polarizations
prevents any notable increase in the S-T0 qubit decoherence time T ∗

2 .
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I. INTRODUCTION

Electron spins in semiconductor quantum dots are consid-
ered to be excellent candidates for qubits [1]. In order for
a full-scale quantum computer to be produced, a successful
fulfillment of the DiVincenzo criteria [2] is necessary. Accurate
qubit manipulation [3,4] and reliable state preparation [5]
are some of the requirements that have been satisfied in
recent years. Techniques for qubit identification and fast
readout are also known; for example, the spin readout for a
two-electron double quantum dot is most commonly done in
the regime of Pauli spin blockade [6] using spin-to-charge
conversion measurements [7]. Still, one challenge remains:
sufficiently isolating the qubit from the corruptive effects of
its surroundings.

Due to the influence of its surroundings, a qubit will
irreversibly lose information. Different types of information
losses happen on different time scales. The time in which a
qubit relaxes to a state of thermal equilibrium is the relaxation
time T1, whereas the time in which a qubit loses coherence due
to the collective effects of its surroundings is the decoherence
time T ∗

2 . Although experimental and theoretical solutions
for overcoming these information losses have been steadily
developed for years [8–13], overcoming qubit decoherence
caused by a fluctuating nuclear spin bath is still an ongoing
task.

Silicon [14] and graphene [15] have stable isotopes with a
zero nuclear spin. Therefore, they can be isotopically purified,
leaving only spin-zero nuclei, which do not contribute to the
electron spin qubit decoherence. On the other hand, III-IV
semiconductors, particularly InxGa1−xAs structures, have only
stable isotopes with a nonzero nuclear spin. An electron
confined in a typical InxGa1−xAs quantum dot interacts with
104–106 nuclear spins, which contribute strongly to electron
spin qubit decoherence. Optically [16–18] or electrically
polarizing the nuclear spins can prolong the coherence times of
electron spins. Such a polarization of nuclear spins is achieved
by transferring spin from the electron spins to the nuclear spins

in a procedure called dynamical nuclear polarization (DNP)
[19].

A suitable system for conducting DNP is a gate-defined
double quantum dot (DQD) loaded with two electrons. There
have been a variety of proposals [3,20] to use DQDs as qubits,
e.g., by focusing on the singlet |S〉 = 1/

√
2(|↑〉|↓〉 −|↓〉|↑〉)

and triplet |T0〉 = 1/
√

2(|↑〉|↓〉 + |↓〉|↑〉) logical subspace
[21], where the generated nuclear difference field and the
exchange interaction are used to perform universal control
of the qubit on the Bloch sphere. Other than the already men-
tioned DNP, the effects of dephasing caused by a nuclear spin
bath can be canceled by applying a Hahn echo sequence [22]
or the more elaborate Carr-Purcell-Meiboom-Gill (CPMG)
sequences [21].

The generation of a nuclear gradient field, required to
control the S-T0 qubit [21], can be achieved by cycling the
electron spins over the anticrossing between the singlet |S〉 =
1/

√
2(|↑〉|↓〉 − |↓〉|↑〉) and triplet |T+〉 = |↑〉|↑〉 states. During

such a S-T+ cycle, the electron spins transfer polarization to the
nuclear spins [23], and a nuclear difference field is generated.
Furthermore, a higher degree of nuclear spin polarization
causes a longer spin coherence time of the S-T0 qubit. In
materials with sizable spin-orbit interaction, the spin-orbit
interaction induces electron spin flips, and this mechanism
competes with the hyperfine-mediated electron spin flips
required for DNP. In such materials, we theoretically explore
the interplay of spin-orbit and hyperfine effects on nuclear spin
preparation schemes, in the vicinity of the S-T+ anticrossing.

We assume that the dots are embedded in the semiconductor
material InxGa1−xAs with 0 � x � 1. We model 150 nuclear
spins per dot fully quantum mechanically, keeping track of how
the probabilities and coherences of all nuclear states change in
time. Compared with our model, recent models treating more
[23] or fewer [24] nuclear spins fully quantum mechanically
do not take into account the spin-orbit interaction. Although
there has been some work on the interplay of spin-orbit and
nuclear effects in GaAs double quantum dots [25–28], to the
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best of our knowledge none of these theoretical frameworks
treat the nuclear spin dynamics fully quantum mechanically or
investigate the nuclear spin dynamics when it is subjected to a
large number (≈300) of DNP cycles. On the other hand, again
to the best of our knowledge, there has been no theoretical
work describing the S-T+ DNP in materials with strong spin-
orbit interaction, e.g., InAs. Experiments with InAs have been
carried out with a single electron spin in a single quantum
dot [29] or in a double quantum dot by using a different,
more elaborate pulsing sequence [30]. As a consequence of
our fully quantum treatment we can give precise estimations
of T ∗

2 , compare them to known experiments in GaAs [31],
and calculate a value for T ∗

2 in InxGa1−xAs. Our results can
also be extrapolated to materials with spin-orbit coupling even
stronger than that of InAs, such as InSb.

This paper is organized as follows. In Sec. II we describe our
model, and in Sec. III we discuss the total nuclear spin angular
momentum basis which significantly reduces the dimension of
our Hilbert space. In Sec. IV we study the time evolution during
the DNP cycle, in Sec. V we present results on In0.2Ga0.8As, a
material with an intermediate strength of spin-orbit interaction,
and in Sec. VI we compare results for different abundances of
indium in InxGa1−xAs. We conclude in Sec. VII.

II. MODEL

The confinement in a quantum dot is modeled with a
quadratic potential, and the electronic wave functions are
calculated according to the Hund-Mulliken theory [32]. Our
approach is a good approximation in the regime where
half of the interdot separation a is larger than the effective
Bohr radius, a � aB = √

�/m∗ω0. Here, ω0 is the circular
frequency of the confining potential, which we later assume
to be �ω0 = 3.0 meV, and m∗ is the effective electron mass
(m∗ = 0.067m0 for GaAs and m∗ = 0.023m0 for InAs). The
interdot separation 2a needs to be chosen to be sufficiently

FIG. 1. (Color online) Geometry of the problem. The strength
of spin-orbit interaction is tuned by varying the angle θ between
the [110] crystallographic axis and the interdot connection axis pξ .
Spin-orbit interaction generates an effective magnetic field � along
the y axis. The external magnetic field is perpendicular to the [110]-pξ

plane.
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FIG. 2. (Color online) Two-electron spectrum of a DQD in InAs
as a function of the interdot bias ε, obtained by diagonalizing the
Hamiltonian H0 [Eq. (2)]. The energy E and the detuning ε are
expressed in units of the Coulomb energy U . The parameters of
the plot are the magnetic field B = 1 T, the Coulomb energy U =
4.86 meV, the extended tunneling hopping tH = 0.11 meV, the triplet
matrix element V+ = 2.16 μeV, the doubly occupied singlet matrix
element V− = 0.42 μeV, and half of the interdot separation a =
73.6 nm. Including hyperfine interaction and/or spin-orbit interaction
opens up an avoided crossing � [34] (inset). The magnetic field is
chosen to be large, as compared with the value in the remainder of
the paper, for visualization purposes. S(2,0) and S(0,2) are singly
occupied singlets, and S(1,1) is the doubly occupied singlet. T+,
T0, and T− are triplet states corresponding to ms = 1, ms = 0, and
ms = −1. S− and S+ are the lower and the upper hybridized singlets
[see Eqs. (4) and (5)].

large due to the fact that the Hund-Mulliken theory is valid
in the regime of weakly interacting quantum dots. On the
other hand, the extended tunneling matrix element tH needs to
be nonvanishing, so that our DNP sequence is still possible.
Therefore, for In0.2Ga0.8As, which is the material we study
in Sec. V, we want tH ≈ 0.01U , where U is the Coulomb
energy of the electrons. This is why we set a = 46.3 nm.
A magnetic field of B = 110 mT is applied perpendicular to
the plane spanned by the [110] and [1̄10] crystallographic
axes (see Fig. 1). The specific value of the magnetic field is
chosen so that the S-T+ anticrossing is located at ε ≈ 3U/2,
where ε is the energy difference between the quantum dots
(Fig. 2).

All stable isotopes of gallium and arsenide have a nuclear
spin j = 3/2, while stable isotopes of indium have a nuclear
spin j = 9/2. Here, we discuss a simplified model in which all
of the nuclear spins are assumed to be j = 1/2 [33]. To quali-
tatively take into account the consequences of 1/2 � j � 9/2,
we use an effective hyperfine constant A which represents an
average over all present nuclear spin isotopes and all possible
values of the quantum number j . The matrix element of A′I−
is A′

�
√

j (j + 1) − m(m − 1), where A′ is the bare hyperfine
constant. We sum the matrix element of A′I− over all values
of j and m, i.e.,

∑9/2
j=1/2

∑j

m=−j A′
�
√

j (j + 1) − m(m − 1),
and continue by assigning an effective hyperfine constant
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A, which gives rise to the same value of the above sum as
for the case when j = 1/2. Furthermore, spin-orbit effects
depend strongly on the homogeneity of the distribution of In
and Ga atoms in InxGa1−xAs. Here, we assume a completely
homogenous distribution of In and Ga. For numerical conve-
nience we model a geometry in which the [110] and [1̄10]
crystallographic axes and the interdot connection axis pξ lie in
plane (Fig. 1). We develop a numerical method for modeling

up to N = 150 nuclear spins per dot, a constraint imposed by
our current computational resources.

The total Hamiltonian describing the electronic and nuclear
degrees of freedom is

H = H0(ε) + HHF + HSO. (1)

Here, H0(ε) is the nonrelativistic Hamiltonian of two electrons
in a QD [32],

H0(ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U − ε X −√
2tH 0 0 0

X U + ε −√
2tH 0 0 0

−√
2tH −√

2tH V+ 0 0 0

0 0 0 V− + gμBBz

0 0 0 0 V− 0

0 0 0 0 0 V− − gμBBz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

in the basis of {S(2,0),S(0,2),S(1,1),T+(1,1),T0(1,1),T−(1,1)}.
S denotes the singlet state, and T+, T−, and T0 are triplet
states with the total spin projections ms = +1, ms = −1,
and ms = 0. The numbers in the parentheses indicate the
charge state. More specifically, (2,0) denotes a state where
the left dot is occupied by two electrons and the right dot is
empty, (0,2) denotes a state where the right dot is occupied by
two electrons and the left dot is empty, and (1,1) stands for
each dot being occupied by one electron. The Hamiltonian
[Eq. (2)] acquires time dependence through the bias energy ε.
To describe the DNP process, the bias energy ε will be assumed
to be a linear function of time ε = vt, where we set v = 2U/τ

and where τ = 50 ns is the duration of the bias sweep. The
value of v is chosen so that ε = 2U at the beginning of
the sweep (t = 0) and ε = 0 at the end of the sweep (t = τ ),
as in the experiment by Petta et al. [5].

The quantities in H0 are the on-site Coulomb energy
U ∼ 1 meV, the coordinated hopping from one dot to the
other X ∼ 0.1 μeV, the doubly occupied singlet and triplet
matrix elements V+, V− ∼ 10 μeV, and the extended hopping
parameter tH ∼ 0.01U [32]. The Zeeman energy is given
as gμBBz, where g is the electron g factor (g = −0.44 for
GaAs, g = −14.7 for InAs), the Bohr magneton is μB =
5.79×10−5 eV/T, and Bz = 110 mT is the magnetic field. For
an electron confined in a GaAs QD the Zeeman energy at
this field is Ez = 2.8×10−6 eV. Due to the fact that we are
interested in the S-T+ transition, we focus our attention on
the energy subspace spanned by the states {S(2,0), S(1,1),
T+(1,1)}. The singlet S(0,2) is high in energy with respect
to the other two singlets (see Fig. 2; for positive values of
the detuning ε), whereas the remaining two singlets, S(2,0)
and S(1,1), are close in energy. The triplet states T0(1,1),
and T−(1,1) are split off from T+(1,1) by the Zeeman
energy. It should be mentioned that we treat the Hamiltonian
[Eq. (2)] using the adiabatic approximation, meaning that
the system will remain in its instantaneous eigenstates. This
allows us to obtain the eigenenergies by diagonalizing the
Hamiltonian H0 in the subspace of {S(2,0),S(1,1)}. As a result

of the diagonalization we obtain the two hybridized singlets
|S+〉, |S−〉 [32,34] with energies

ES± = U − ε + V+
2

±
√

(U − ε + V+)2

4
+ 2t2

H (3)

and eigenvectors

|S−〉 = c(ε)|S(1,1)〉 +
√

1 − c(ε)2|S(2,0)〉, (4)

|S+〉 =
√

1 − c(ε)2|S(1,1)〉 − c(ε)|S(2,0)〉. (5)

With c(ε) = cos ψ we denote the charge admixture coefficient
which can be expressed with the charge admixture angle ψ ,
where

cos 2ψ = U − V+ − ε√
(U − V+ − ε)2 + 8t2

H

. (6)

We take into account only the transitions between the lower
hybridized singlet |S−〉 and triplet |T+〉 because the upper
hybridized singlet |S+〉 is higher in energy and therefore can
be neglected, as shown in Fig. 2.

The spin-orbit term HSO in the Hamiltonian is a function
of the angle θ (see Fig. 1) between the [110] crystallographic
axis and the interdot connection axis pξ [34],

HSO = i

2
�(θ ) ·

∑
s,t=↑,↓

(c†Lsσ
st cRt − H.c.), (7)

where �(θ ) is the spin-orbit effective magnetic field defined
by

i�(θ )=〈	L|p̂ξ |	R〉[(β−α) cos θe[1̄10]+(β+α) sin θe[110]].

(8)

Here, α and β are the Rashba [35] and Dresselhaus [36]
coefficients, and the c

†
r,s operator creates an electron with

spin s =↑ ,↓ in the right or left dot, r = R,L. Further, σ s,t

is the vector of Pauli matrices, 	L,R are the spatial parts of
the wave functions corresponding to the left and the right dots,
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respectively [34], and p̂ξ is the component of the momentum
operator along the interdot connection axis.

For computational simplicity, we choose our coordinate
system such that the matrix elements of the spin-orbit part of
the Hamiltonian [Eq. (7)] are always real. This is achieved
by setting the ey axis of our coordinate system parallel to �

[34], as shown in Fig. 1. When the spin-orbit interaction is
excluded, our x and y axes are parallel to the crystallographic
axes.

Finally, the hyperfine part of the Hamiltonian is given by
[23]

HHF = S1 · h1 + S2 · h2 = 1

2

2∑
i=1

(
2Sz

i h
z
i + S+

i h−
i + S−

i h+
i

)
,

(9)

where S
(±)
i are the ith electron spin ladder operators and Sz

i

and hz
i are the z components of the ith electron spin operator

and Overhauser field operator. Furthermore, h±
i = hx

i ± ih
y

i

are the ladder operators of the Overhauser field,

hi =
n(i)∑
k=1

Ak
i Ik

i , (10)

where Ik
i are the nuclear spin operators for the kth nuclear

spin in contact with the ith electron spin. The strength of
the hyperfine coupling between the ith electron and the kth
nuclear spin is labeled Ak

i . In general, Ak
i has a different value

for every nuclear spin, but we simplify this by assuming a
constant hyperfine coupling Ak

i = Atot/N [23–25,37].
For a harmonically confined electron inside a quantum dot,

the strength of the hyperfine interaction Ak
i depends on the

position of the nuclear spin rk as Ak
i = Atot exp [−r2

k /a2
B]

[38]. Here, aB = √
�/m∗ω0 is the effective Bohr radius

of an electron confined in a harmonic potential with a
circular frequency ω0 and with an effective electron mass
m∗. This means that the nuclear spins closer to the origin
have a higher chance of being polarized. The electron triplet
probability is given by the Landau-Zener formula PT+ =
exp [−2π |〈1|HHF|2〉|2/�v] [39–41]. However, our selection
of the Landau-Zener velocity v is such that �v � |Ak

i |2 for
most nuclear spins. Therefore, most nuclear spin dynamics
involve the nuclear spins that are distributed close to the top
of the Gaussian Ak

i = Atot exp [−r2
k /a2

B]. This top value of the
Gaussian nuclear spin hyperfine constant distribution can be
approximated well with a uniform distribution.

Performing a diagonalization in the singlet subspace
spanned by {S(2,0), S(1,1)}, we find that the singlet eigen-
functions are bias dependent and therefore time dependent
[Eqs. (4) and (5)]. This implies that the coupling between the
lower hybridized singlet |S−〉 and the |T+〉 triplet state is time
dependent, in contrast to time-independent coupling between
the |S(1,1)〉 and |S(2,0)〉 singlets and the |T+〉 triplet. The
time dependence of the coupling originates from the fact that
the coupling depends on the charge state of the hybridized
singlet [Eqs. (4) and (5)]. The state S(2,0) couples to T+
only via the spin-orbit interaction, and S(1,1) couples to T+
only by means of the hyperfine interaction. By using the wave
functions of the lower hybridized singlet [see Eq. (4)] we can
calculate the matrix element of the Hamiltonian between the

lower hybridized singlet |S−〉 and the triplet |T+〉,
〈S−|H |T+〉 = c(ε)〈S(1,1)|HHF|T+〉

+
√

1 − c(ε)2〈S(2,0)|HSO|T+〉. (11)

It should be mentioned that due to time-dependent in-
teractions, the model discussed here must go beyond the
Landau-Zener model [39–41].

III. THE BASIS OF TOTAL ANGULAR MOMENTUM

In our model, all nuclear spins are treated as having spin
j = 1/2. This means that the total number of nuclear spin
states is dim(H) = 2N , where N is the number of nuclear
spins in a quantum dot. Because the total number of nuclear
spin states scales exponentially with N , it would be impossible
to treat a large number (N = 150) of nuclear spins with
the computational power at our disposal. In order to make
the problem treatable we first make a basis change from the
product basis {↑ ,↓} to the basis of total angular momentum
{|j,m〉}. Here, j is the total nuclear spin quantum number,
0 � j � N/2, and m is the total nuclear spin projection along
the z axis, −j � m � j . Now the total number of states can
be written as

dim(H) =
N/2∑
j=0

∑
perm

(2j + 1) = 2N . (12)

The inner sum runs over all permutation symmetries for a
given value of j . The basis of total angular momentum still
scales as dim(H) = 2N , but now certain states in the inner
sum in Eq. (12) do not need to be taken into account, and
states with higher j in the outer sum in Eq. (12) can be
neglected due to the low probability of their occurrence.
In the remainder of this section we will describe in more
detail how we reduce the number of nuclear spin states from
dim(H) = 2N to dim(H′) � 2N .

Neither the hyperfine nor the spin-orbit interaction mix
states with different j , and thus, the matrix representing our
Hamiltonian is block diagonal, with every block corresponding
to a value of j = j0, j0 + 1, . . . N/2 [24]. The value of j0 de-
pends on the parity of N ; for an even N , j0 = 0, and for an odd
N , j0 = 1/2. The probability distribution of nuclear spin states
with respect to the quantum number j is a Gaussian (in the
limit N → ∞) with its maximum located at ≈√

N/2 (Fig. 3).
From now on we will refer to this value of j as its most likely
value, jml ≈ √

N/2. The nuclear spin probability distribution,
with respect to the number of nuclear spins per dot N and
quantum number j , is given by the following formula [42]:

p(N,j ) = (2j + 1)2N !

(N/2 + j + 1)!(N/2 − j )!2N
. (13)

The j and m quantum numbers are generally not sufficient to
describe all possible nuclear spin states. Other than j and m, the
nuclear spin states are described by their permutation symme-
tries. For example, for three nuclear spins defined by quantum
numbers j = 1/2 and m = 1/2, there are two states, |1/2,1/2〉
and |1/2,1/2〉′, with distinct permutation symmetries. These
two states are not mixed by homogenous hyperfine interactions
or by spin-orbit interactions. Furthermore, they remain equally
probable as the matrix elements of the Hamiltonian depend on
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FIG. 3. (Color online) Initial nuclear spin probability distribution
with respect to the quantum number j for N = 150 nuclear spins 1/2,
where jml = √

N/2 and jmax = 18. Throughout our calculations we
only consider the states 0 � j � jmax (blue diamonds) and do not
consider the states j > jmax (black circles).

only j and m and not on the symmetry properties. Therefore,
by evaluating our system for a certain symmetry |1/2,1/2〉
we would also know the behavior of the state with a different
permutation symmetry |1/2,1/2〉′. By generalizing this simple
example to N -spin systems we can significantly reduce the
number of states we consider. For every value of j we need to
evaluate only one state of symmetry in Eq. (12), and therefore,
for each value of j the inner sum in Eq. (12) can be replaced
by one representative term.

We can reduce the number of states further by choosing
the maximum value of j we take into consideration, jmax, in
a manner such that

√
N/2 � jmax � N/2. The omission of

all states with j > jmax is justified because these states occur
with a very low probability [see Fig. 3 and Eq. (13)]. Now the
total number of states we consider scales with jmax as

dim(H′) =
jmax∑
j=0

(2j + 1) ∼= (jmax + 1)2 � 2N . (14)

Due to the fact that states with different j do not mix by
any interaction we consider, we can analyze our system for
one value of j at a time and finally average over all included
values of j . By doing so, we average over close to (but not
exactly) 100% of all possible states. In our case, N = 150
nuclear spins per dot and 0 � j � 75. Constraining ourselves
to 0 � j � jmax = 18, we average over 97.8% of all possible
nuclear spin configurations, as shown in Fig. 3. The efficiency
of our approach can be illustrated best if we calculate the
number of states in the {↑, ↓} basis and in the {|j,m〉} basis after
we consider only one symmetry state for every j and consider
only 0 � j � jmax. For N = 150, Eq. (12) yields dim(H) ≈
1.4×1045, and for jmax = 18, Eq. (14) yields dim(H′) = 361.

IV. TIME EVOLUTION DURING DNP

We now describe a single step in the DNP procedure. For
the initial nuclear spin state we assume a completely mixed
state. The electrons are initialized in a singlet state S(2,0),
where both electrons are occupying the same dot. Afterwards,

the electronic system is driven with a finite velocity through
the S-T+ anticrossing (see Fig. 2) by varying the voltage bias
ε. The electronic state is then measured, and finally, the system
is reset quickly to the initial state S(2,0) [23]. Accordingly, we
propagate the density matrix of the system ρ according to the
update rule

ρ(i+1) = MSUρ(i)U †MS + MT Uρ(i)U †MT . (15)

Here, ρ(i) and ρ(i+1) are the total density matrices before
and after the ith DNP step, U is the unitary time evolution
operator, and MS and MT are the singlet and triplet projection
operators [43]. They satisfy the relations MS + MT = I and
MSMT = 0.

After the evolution of the system, a measurement of the
electronic state takes place. This measurement procedure has
two outcomes: either a singlet S or a triplet T+ is detected. The
nuclear density matrix is updated accordingly,

ρn = PSρ
S
n + PT ρT

n , (16)

where ρn is the nuclear density matrix and PS =
Tr[MSUρ(i)U †MS] and PT = Tr[MT Uρ(i)U †MT ] are the sin-
glet and the triplet outcome probabilities. The superscripts
S and T stand for a nuclear density matrix related to the
singlet and triplet measurement outcomes, respectively. For a
certain value of j we calculate the singlet return probability
PS , and the standard deviation of the nuclear difference
field σ (z) =

√
〈(δhz)2〉 − 〈δhz〉2 [13]. After averaging over

all included j , we use the standard deviation of the nuclear
difference field to evaluate the S-T0 spin qubit decoherence
time, T ∗

2 = �/σ (z) [13].
We compute the propagator U by discretizing the time

interval (0,τ ). Our model describes the passage through
the anticrossing with q = 100 equally spaced, steplike time
increments. The procedure for computing the propagator is
the following: For every discrete point in time ti we compute
the Hamiltonian H (ti). We approximate the propagator for the
fixed time point ti ,

Uti = e−iH (ti )�t/�, (17)

with �t = τ/q. By repeating the procedure for every discrete
step we obtain the total time evolution operator

U = Utq Utq−1 · · ·Ut1 . (18)

Tuning the system across the S-T+ point and measuring
the electronic state after every forward sweep changes the
probabilities and coherences of the electronic and nuclear
states. The qualitative picture is simpler if we first disregard
the spin-orbit interaction. When the spin-orbit interaction
is excluded, both the electronic spin-singlet and the triplet
outcomes increase the probability for nuclear spins to be in
the spin-down state [23], corresponding to generating negative
values of nuclear spin polarization P = (n↑ − n↓)/(n↑ + n↓),
where P is the nuclear spin polarization, n↑ is the number of
nuclear spins pointing up, and n↓ is the number of nuclear
spins pointing down [see Figs. 4(a)–4(d)].

There is one more possible process, involving spin-orbit
interaction, which is not shown in Fig. 4. After the electronic
system is cycled across the S-T+ anticrossing, the system can
end up in a virtual T+ state due to spin-orbit interaction but is
instantaneously transferred to a singlet state due to hyperfine
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(a)

(b)

(c)

(d)

FIG. 4. (Color online) System initialization and measurement
outcomes. (a) Initially, the quantum dots have an energy bias ε, and
the two electrons rest in a singlet (2,0) state on the left dot. (b) After
slowly tuning ε to zero and measuring a singlet outcome, due to
the weak measurement, the spin of the nuclear bath decreases. (c)
In the case of a spin-triplet outcome an electron spin flips, and the
spin of the nuclear bath is changed accordingly. (d) The electronic
spin can also be flipped due to spin-orbit coupling, and the spin of
the nuclear bath is pumped in the opposing direction (up) due to the
weak measurement. With ε we denote the voltage bias, θ is the angle
between the [110] crystallographic axis and the interdot connection
axis pξ , and � is the spin-orbit effective magnetic field.

interaction, accompanied by a flip of the nuclear spin from
down to up, thus changing the nuclear spin polarization closer
to positive values. This is a process that, along with the process
visualized in Fig. 4(d), competes with the hyperfine-mediated
generation of negative polarization of the nuclear spins (down
pumping). These two processes combined compensate the
down pumping in systems with strong spin-orbit interaction.

To make an effective comparison between InxGa1−xAs
systems with different indium content x we keep the same

values for Bz and d = a/aB = 2.186. This implies that the
single-particle tunneling and the overlap between the quantum
dots would remain the same for every value of x (see Ref. [32]).
For a comparison between different materials, the relative
strength of the spin-orbit interaction can be quantified by
the ratio of � = 4a/�SO, where �SO is the spin-orbit length
defined by

1

�SO
= m∗

�

√
cos2 θ (α − β)2 + sin2 θ (α + β)2. (19)

Here, m∗ is the effective electron mass, α and β are the
Rashba and Dresselhaus constants, respectively, and θ is the
angle between the [110] crystallographic axis and the interdot
connection axis pξ (see Fig. 4).

The spin-orbit length is the distance which an electron needs
to travel in order to have its spin flipped due to spin-orbit
interaction. If the electrons are initialized in a singlet state
the probability for flipping the tunneling electron due to spin-
orbit interaction is Pflip = 1/2 at 2a = �SO/2. This further
implies that if � < 1, the system is more likely to remain in
a singlet state. If � = 1, the S and T+ outcomes due to spin-
orbit coupling are equally probable, and finally, if 1 < � < 2,
a T+ outcome due to spin-orbit coupling is more probable
because the probability that the tunneling electron has flipped
its spin is greater than Pflip > 0.5. In our study �SO/2 � 2a,
which implies � � 1; thus, singlet outcomes due to spin-orbit
interaction are always more probable even in pure InAs with
the strongest possible value of spin-orbit coupling (θ = π/2).
In pure InAs, with θ = π/2, � ≈ 0.63 for d = a/aB = 2.186.

V. RESULTS FOR In0.2Ga0.8As

Our attention is now focused on In0.2Ga0.8As, a material
with an intermediate strength of spin-orbit coupling, in
contrast to the relatively weak spin-orbit coupling in GaAs
and relatively strong spin-orbit coupling in InAs. We have
evaluated the system of N = 150 nuclear spins per dot for
different values of the angle θ and with jmax = 18. States with
j > jmax would further lower T ∗

2 and Ps and increase σ (z).
Therefore, we point out that our results provide an upper bound
for T ∗

2 [including states with j > jmax = 18 could lower T ∗
2

by at most 2.2%; see Fig. 3 and Eq. (13)] and Ps and a lower
bound for σ (z). We study the effect of 300 DNP cycles on the
nuclear spin state. We find that the spin-orbit interaction has a
notable effect on nuclear state preparation. In Fig. 5, we plot
the probabilities of nuclear spin states for a case with a given
value of jL,R in the left and the right dots.

For jL = 14 and jR = 7 the pumping procedure alters the
nuclear probability distribution from a uniform distribution
(with respect to the quantum number m) to a probability
distribution where states with negative m are more likely. In the
case without spin-orbit interaction, two processes contribute
to this negative pumping of the nuclear spin [23]: the singlet
detection accompanied by a weak measurement of the nuclear
spin state and the T+ detection, which flips the nuclear spin
down to conserve the total spin of the system [see Figs. 4(b) and
4(c)]. Although including spin-orbit interaction [see Figs. 5(a)
and 5(b)] changes the final distribution of nuclear spin states
only slightly, spin-orbit effects still have a notable effect on the

245305-6



INTERPLAY OF SPIN-ORBIT AND HYPERFINE . . . PHYSICAL REVIEW B 90, 245305 (2014)

0

0.2

0.4

-15 -10 -5 0 5 10 15

p(
m

)

m

(a) left dot

-8 -6 -4 -2 0 2 4 6 8
m

(b) right dot

initial state
final state, no spin-orbit

final state, spin-orbit

FIG. 5. (Color online) (a) Probability distribution in the left
quantum dot with respect to the nuclear spin projection quantum
number m for jL = 14 before and after 300 DNP cycles. (b)
Probability distribution in the right quantum dot with respect to the
nuclear spin projection quantum number m for jR = 7 before and
after 300 DNP cycles. The included spin-orbit interaction corresponds
to the angle θ = π/2. Here, θ is the angle between the [110]
crystallographic axis and the interdot connection axis pξ . The number
of nuclear spins per quantum dot is N = 150.

singlet return probability PS = Tr[MSUρ(i)U †MS]. In Fig. 6,
we plot PS as a function of the number of cycles across the
S-T+ anticrossing for In0.2Ga0.8As. Here, we tune the strength
of the spin-orbit interaction by varying the angle θ between
the [110] crystallographic axis and the interdot connection
axis pξ . As shown in Fig. 6 (solid red line), repeatedly
cycling the system across the anticrossing point polarizes the
nuclear spins, which leads to Ps = 1 after 300 cycles [23].
The situation changes dramatically when we include the spin-
orbit interaction, which competes with the hyperfine-mediated
down pumping of the nuclear spin.

By theoretically varying the strength of the spin-orbit
interaction, we find that when the spin-orbit interaction has
the largest possible value for θ = π/2, it significantly affects
the singlet return probability Ps ≈ 0.72 (Fig. 6). Including
spin-orbit interaction generates a mechanism which polarizes
nuclear spins in the up direction (see Sec. IV and Fig. 5).

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

P
s

Number of cycles

spin-orbit excluded
θ = 0

θ = π/12
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θ = π/3
θ = π/2

FIG. 6. (Color online) The singlet return probability PS as a
function of the number of cycles across the S-T+ anticrossing in
In0.2Ga0.8As. Here, θ is the angle between the [110] crystallographic
axis and the interdot connection axis pξ .
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FIG. 7. (Color online) Standard deviation of the nuclear differ-
ence field σ (z) with respect to the number of DNP cycles across the
S-T+ anticrossing and different values of angle θ in In0.2Ga0.8As.
Here, θ is the angle between the [110] crystallographic axis and the
interdot connection axis pξ .

As a consequence of this behavior, the nuclear preparation
mechanism is not efficient when spin-orbit effects are strong.
The interplay of the hyperfine and spin-orbit interactions on
nuclear state preparation can be observed better if we plot
the standard deviation of the nuclear difference field σ (z)

(Fig. 7). We notice that the spin-orbit interaction has prevented
the reduction of the standard deviation of the nuclear difference
field (0 � θ � π/2; see Fig. 7). Spin-orbit interactions affect
the efforts to increase the spin S-T0 qubit decoherence time T ∗

2
(see Fig. 8). The strongest spin-orbit coupling, corresponding
to θ = π/2, slightly lowers the resulting decoherence time
from T ∗

2 ≈ 15 ns (red line) to T ∗
2 ≈ 13 ns (black dashed line

with black crosses).
Without the spin-orbit interaction our theory predicts that

the ratio of the final decoherence time (after the cycling is
complete) T ∗

2,f and initial decoherence time (before the cycling

6

8

10

12

14

0 50 100 150 200 250 300

T
∗ 2

[n
s]

Number of cycles

spin-orbit excluded
θ = 0

θ = π/6
θ = π/3
θ = π/2

FIG. 8. (Color online) S-T0 qubit decoherence time T ∗
2 as a

function of the number of DNP cycles across the S-T+ anticrossing
and strength of spin-orbit interaction in In0.2Ga0.8As. Here, θ is
the angle between the [110] crystallographic axis and the interdot
connection axis pξ .
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FIG. 9. (Color online) The ratio of the final T ∗
2,f and initial T ∗

2,i

decoherence times in In0.2Ga0.8As for different values of the angle θ

between the [110] crystallographic axis and the interdot connection
axis pξ .

starts) T ∗
2,i is T ∗

2,f /T ∗
2,i ≈ 2.28 (see Fig. 9). The situation

changes when we include spin-orbit interaction. For θ = 0
we find a value of T ∗

2,f /T ∗
2,i ≈ 2.20, while for θ = π/2 the

ratio is T ∗
2,f /T ∗

2,i ≈ 2.04.
After the inclusion of the spin-orbit interaction the ratio

T ∗
2,f /T ∗

2,i decreases with θ . Our results suggest that the S-T+
dynamical nuclear polarization is not as effective in materials
with an intermediate strength of spin-orbit interaction com-
pared to those without spin-orbit coupling. Nevertheless, the
DNP still provides a notable enhancement of the S-T0 qubit
decoherence time T ∗

2 . We work in the so-called giant spin
model, and we model the behavior of 104–106 nuclear spins
with significantly fewer spins, ∼102–103. In general σ

(z)
i ∝

Ak
i , which would give rise to a much higher standard deviation

of the nuclear difference field than expected. Therefore, we
rescale the hyperfine constant, such that σ

(z)
i has the same

value for N ≈ 106 and N = 150, jml = √
N/2.

The predicted decoherence time before the start of the
DNP is T ∗

2 ≈ 6 ns, while measurements yield T ∗
2 ≈ 10 ns for

pure GaAs [5] (where excluding spin-orbit effects is a good
approximation). Since σ

(z)
i ∝ √

N and σ
(z)
f does not depend

on N but on the polarization mechanism, we can estimate
that T ∗

2,f /T ∗
2,i ∼ √

N for our case with N = 150 and the
realistic case N = 106 (for an electrically defined quantum
dot in InxGa1−xAs). Therefore, we can estimate the maximum
possible ratio of initial and final decoherence times for the
realistic case of N = 106 spins and spin-orbit interaction
excluded and included to be T ∗

2,f /T ∗
2,i ≈ 175 without spin-

orbit interaction, which is compared to T ∗
2,f /T ∗

2,i ≈ 94 for
GaAs in Ref. [23] and T ∗

2,f /T ∗
2,i ≈ 174 for θ = 0, which is

slightly lower than the value without spin-orbit coupling but
by an amount that we consider to be insignificant given the
approximations made. For the strongest spin-orbit effect at
θ = π/2, we find T ∗

2,f /T ∗
2,i ≈ 163. Due to the larger ensemble

of nuclear spins in reality, conducting an experiment requires
a larger number of cycles to achieve our level of DNP. This
number of cycles scales with

√
N , and for N ∼ 106 nuclear

spins we estimate it to be 104–105.
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FIG. 10. (Color online) S-T0 electron spin coherence time T ∗
2 as

a function of the number of DNP cycles across the S-T+ anticrossing
for different abundances of indium x in InxGa1−xAs and for θ = π/2.
Here, θ is the angle between the [110] crystallographic axis and the
interdot connection axis pξ .

VI. RESULTS FOR InxGa1−xAs

In this section we will compare the T ∗
2 results for

InxGa1−xAs with varying In content x. We vary the con-
centration of indium x in the sample between 0 and 1 with
a 0.2 increment. For the sake of computational efficiency
and because we are interested in a mere comparison between
materials with different percentages of indium, our computa-
tional method is slightly simplified now. Instead of averaging
over all possible states ranging from jmin to jmax, we set
jL = jR = jml = √

N/2 for the left and the right quantum
dots. This effectively means that we are simulating a situation
where an experiment is performed only once with the most
likely nuclear spin configuration.

From Fig. 10 we conclude that raising the concentration
of indium in an InxGa1−xAs sample has a detrimental effect
on the efficiency of the S-T+ DNP scheme. By doping
the system with indium, the Rashba spin-orbit coupling is
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FIG. 11. (Color online) S-T0 electron spin coherence time T ∗
2

for GaAs and InAs as a function of the number of DNP cycles
across the S-T+ anticrossing for θ = 0, i.e., the case where the [110]
crystallographic axis and the interdot connection axis pξ are aligned.
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strengthened, thus reducing the overall �SO [Eq. (19)], which,
as a consequence, has more virtual and real T+ outcomes due
to the spin-orbit interaction. The virtual T+ will relax to S,
quickly flipping a nuclear spin from down to up in the process.
The real spin-orbit-mediated T+ outcomes will also pump the
nuclear spin towards the positive values of the polarization
(up). This process can impede efforts to increase T ∗

2 , even
at intermediate concentrations of 40% In (Fig. 10). At higher
indium concentrations, DNP is totally suppressed for all values
of θ (see Fig. 11).

VII. CONCLUSIONS AND FINAL REMARKS

Our results show that pure InAs is not a suitable candidate
for S-T+ DNP due to the fact that the enhancement of T ∗

2 is
strongly suppressed even for the smallest possible strength of
the spin-orbit interaction corresponding to θ = 0. Dynamical
nuclear polarization in InAs could still be achieved by using
single-spin single-quantum-dot systems [29] or by using a
more elaborate pulsing sequence [30]. A similar behavior
could be expected in materials with spin-orbit coupling even
stronger than that of InAs, e.g., InSb.

To conclude, we have discussed a nuclear polarization
scheme in InxGa1−xAs double quantum dots with spin-orbit

interaction included. In the presence of spin-orbit interaction
a suppression of the enhancement of T ∗

2 is predicted. Our
conclusions are also valid for materials with fewer nuclear
spins, but due to the assumed constant hyperfine constant,
only electrostatically defined quantum dots are treatable by
our formalism. We underline that the S-T+ DNP sequence
is highly sensitive to the strength of the spin-orbit coupling,
and therefore, the efficiency of the S-T+ DNP sequence will
depend on the angle θ and the In content x in InxGa1−xAs.
A stronger spin-orbit interaction will establish a process that
will quickly neutralize any efforts to prolong T ∗

2 . The cases
of unequally coupled and/or sized dots and different shapes of
the bias [21] are, in general, treatable by our numerics and will
be the subject of our future studies. Charge noise [44–46] is
neglected in the current model. Investigating the significance of
charge coherence requires an extension of the numerical tools
we use [45] and is planned as a forthcoming investigation.
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