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Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2
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The chirality of electronic Bloch bands is responsible for many intriguing properties of layered two-dimensional
materials. We show that in bilayers of transition metal dichalcogenides (TMDCs), unlike in few-layer graphene and
monolayer TMDCs, both intralayer and interlayer couplings give important contributions to the Berry curvature
in the K and −K valleys of the Brillouin zone. The interlayer contribution leads to the stacking dependence
of the Berry curvature and we point out the differences between the commonly available 3R type and 2H type
bilayers. Due to the interlayer contribution, the Berry curvature becomes highly tunable in double gated devices.
We study the dependence of the valley Hall and spin Hall effects on the stacking type and external electric field.
Although the valley and spin Hall conductivities are not quantized, in MoS2 2H bilayers, they may change sign
as a function of the external electric field, which is reminiscent of the behavior of lattice Chern insulators.
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I. INTRODUCTION

The valley degree of freedom has recently attracted a
large interest in monolayers of group-VI transition metal
dichalcogenides (TMDCs). This is in good part due to the fact
that monolayer TMDCs exhibit circular optical dichroism, that
is, the valleys at the ±K point of the Brillouin zone (BZ) can
be directly addressed by left or right circularly polarized light
[1–4]. A related phenomenon, called the valley-Hall effect,
has also been demonstrated [5] in monolayer MoS2, which
can be traced to the chirality of the electronic Bloch bands
[6–8]. The Berry curvature [9] properties of bilayer TMDCs
have received very limited attention so far [10], in part, due
to the uncertainty about the position of the band edges in
the Brillouin zone that one can find in the existing literature
[5–8]. A better understanding of the Berry curvature properties
would be important in light of recent reports [11,12] on the
valley-Hall effect in bilayer MoS2, and the purpose of this
work is to analyze the topological properties of bilayer TMDCs
(BTMDCs).

Because of the recent experimental progress [10–15], we
will concentrate on bilayer MoS2 in the following, but many
of our findings are equally valid for other BTMDCs such as
MoSe2, WS2, and WSe2. The focus of the present study is
on the competition between the contributions towards Berry
curvature of electron bands in BTMDCs coming from the
intrinsic properties of the monolayers and a part generated by
the interlayer coupling. Thus BTMDCs are markedly different
from gapped bilayer graphene or monolayer TMDCs, where
only one of the contributions is finite [8,16]. Because of
the interlayer contribution, the Berry curvature is tunable by
moderately strong external electric fields. Moreover, we show
that the stacking of the monolayer constituents in BTMDCs
affects the Berry curvature and different stackings have Berry
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curvature properties. These topological differences can already
be understood if spin-orbit coupling (SOC) is neglected.
Nevertheless, we will also analyze the effect of SOC on the
band structure, on the Berry curvature and on certain transport
properties. The finite Berry curvature leads to valley and spin
Hall conductivities which depend on the stacking and on the
presence/absence of inversion symmetry in the system. As
we will show below, the interplay of intrinsic SOC, the layer
degree of freedom and an external electric field can lead to
an interesting effect: the valley and spin Hall conductivities
change sign as a function of the external electric field.

Generally, the presence/absence of inter/intralayer Berry
curvature contributions and the effect of different stacking
is a relevant question for all layered materials, including,
e.g., heterostructures of different monolayer TMDCs obtained
by layer-by-layer growth [17] or artificial alignment [18].
BTMDCs, in addition, present a novel, rich playground for
valley and spin related phenomena.

II. k · p HAMILTONIAN IN THE ±K VALLEYS

There are two naturally occurring stable phases of bulk
TMDCs with an underlying hexagonal symmetry of their
lattice structure [19]. The most common one is the so-called
2H polytype, where the unit cell contains two monolayer units
and the bulk is inversion symmetric. Some layered TMDCs,
among others MoS2, can also exist in the 3R polytype,
where the unit cell contains three monolayers and inversion
symmetry is broken in the bulk. Bilayer samples can be
exfoliated from both bulk phases and we will refer to them as
2H and 3R stacked bilayers.

We start our discussion by introducing the k · p Hamilto-
nians for 3R and 2H stacked bilayers. We will focus on the
±K valleys in the BZ because in our DFT calculations [see
Figs. 1(a) and 1(b)], the band edge in the conduction band
can be found at these point, therefore they are experimentally
relevant. We will briefly discuss the Q valleys in Sec. VI. The
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FIG. 1. (a) Band structure showing the CB and the VB of 3R stacked bilayer MoS2 along the �-K-M-� direction of the BZ from DFT
calculations. (b) The same for 2H stacked bilayer MoS2. The spin-orbit coupling is neglected in (a) and (b). (c) Schematic crystal structure of
3R stacked bilayer TMDCs in side and in top views. (d) Schematic crystal structure of 2H stacked bilayer TMDCs in side and in top views. In
(c) and (d), the monolayers are shown as simple hexagonal lattices with two inequivalent sites. a1 and a2 denote the lattice vectors.

main differences between the Berry curvature properties of
3R and 2H bilayer TMDCs are orbital effects and therefore
we neglect the SOC in the present section. The discussion
of the important effects of the SOC are deferred to Secs. IV
and V.

A. 3R bilayers

We start our discussion with 3R stacked bilayer MoS2,
which can be exfoliated from the 3R bulk polytype [12–15].
3R bilayers are noncentrosymmetric (the symmetry of the
crystal structure is described by the point group C3v) and
therefore, in contrast to 2H stacked bilayers (see below), one
can expect interesting Berry curvature properties even if no
external electric field is applied. We first introduce a k · p
model for this system which differs in important details from
the one used recently in Ref. [20] (see Appendix B 2 for the
derivation of this model). The electronic properties at the ±K

point of the BZ can be succinctly captured by the following
simplified k · p Hamiltonian:

H 3R
K =

⎛
⎜⎜⎝

εb
cb γ3 q+ γcc q− 0

γ3 q− εb
vb 0 γvv q−

γcc q+ 0 εt
cb γ3q+

0 γvvq+ γ3q− εt
vb

⎞
⎟⎟⎠. (1)

Here, q± = τqx ± iqy denotes the wave number measured
from the K (or −K) point of the BZ and τ = ±1 is the valley
index. Higher-order terms in q±, which appear in the k · p
model of monolayer TMDCs [21–23] have been neglected
here. The band-edge energies of the CB and VB in the bottom
(top) layers are denoted by εb

cb (εt
cb) and εb

vb (εt
vb). The layer

index bottom (b) and top (t) are assigned to the bands based

on the localization of the corresponding Bloch-wave function
to one of the layers. We note that explicit density functional
theory (DFT) wave function calculations for the bilayer case
can be found in Ref. [15], while for the bulk 3R polytype
in Ref. [13]. Our definition of the layer index is shown in
Fig. 1(c): in the bottom monolayer, the Mo atom does not have
a S neighbor atom directly above it, while for the Mo atom in
the top layer there is a S atom neighbor belonging to the bottom
monolayer. Since in the monolayers the atomic Mo d orbitals
have the largest weight in the conduction and the valence
bands (CB and VB) at the ±K points one may expect that
this difference in the atomic environment of the two Mo atoms
can lead to different crystal field splittings in the two layers
and hence it may affect the band structure of the bilayers. This
is indeed what we can deduce from our DFT band-structure
calculations, i.e., that ε

(b)
cb (vb) > ε

(t)
cb (vb), see also Appendix B 2.

(We performed our DFT calculations using the VASP code [24],
for further details see Ref. [25]). Defining the band-edge energy
differences δEcc = (εb

cb − εt
cb)/2 and δEvv = (εb

vb − εt
vb)/2,

our DFT band-structure calculations suggest that δEcc �= δEvv ,
meaning that there is a small difference of about 10 meV
between the band gaps of the bottom and the top layer. This
energy difference will be neglected in the following as this does
not affect any of the main conclusions of the Berry curvature
calculations. We denote therefore by δEcc = δEvv := δEll the
interlayer band-edge energy difference and use the notation
δEbg = Ebg/2 for half of the monolayer band gap. We use γ3

for the intralayer coupling of the CB and VB, and γcc (γvv)
is the interlayer couplings between the CBs (VBs) of the two
monolayers. The numerical value of γ3 can, in principle, be
somewhat different in the two layers, but we neglect this effect
and use the monolayer value. The coupling constants γcc and
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TABLE I. Material parameters obtained by fitting the DFT band-
structure calculations, which do not take into account SOC, using
Eqs. (1) and (2). To obtain Figs. 2(a) and 2(b), we used γ3 = 2.73 eV Å
and Ebg = 1.67 eV from Ref. [23] and δEll = 0.031 eV.

t⊥ (eV) γcc (eVÅ) γvv (eVÅ) δEcc (eV) δEvv (eV)

3R - 0.0708 0.0779 0.029 0.033
2H 0.045 0.0706 - - -

γvv can be estimated by fitting the eigenenergies of H 3R
K to the

DFT band structure (see Table I). One can see from Eq. (1)
that for q = 0 the two layers are decoupled, in agreement with
previous results [14] for the 3R bulk form.

B. 2H bilayers

We now compare the results in Sec. II A with the corre-
sponding ones for 2H stacked bilayer MoS2 which derives from
the 2H polytype [see Fig. 1(b)]. The k · p Hamiltonian reads

H 2H
K =

⎛
⎜⎝

εcb + Ug γ3 q+ γcc q− 0
γ3 q− εvb + Ug 0 t⊥
γcc q+ 0 εcb − Ug γ3q−

0 t⊥ γ3q+ εvb − Ug

⎞
⎟⎠,

(2)

where t⊥ is a momentum independent tunneling amplitude
between the VBs of the two layers and we included the
possibility of an interlayer potential difference given by ±Ug ,
which can be induced by a substrate or an external electric
field. A similar model, which neglected the coupling between
the CBs, was introduced in Refs. [10,26] (see Appendix B 1
for further details). We will show, however, that the coupling
between the CBs gives an important contribution to the Berry
curvature. For Ug = 0, the system is inversion symmetric (the
crystal symmetries are described by point group D3d ). At the
±K points, the two CBs are degenerate, while the VBs are
split due to the tunneling amplitude t⊥ [see Fig. 1(b)]. Away
from the ±K points, the CBs are also split, for small q wave
numbers this splitting is mainly due to the interlayer coupling
term γccq±.

III. BERRY CURVATURE OF BTMDCS

A. Numerical results and analytical approach

The Berry curvature of band n in a 2D material is defined
by �z(k) = ∇k × i〈un,k|∇kun,k〉, where un,k is the lattice-
periodic part of the Bloch wave functions. In the envelope
function approximation, un,k can be calculated from a k · p
Hamiltonian valid around a certain k-space point. Using the
k · p models introduced in Secs. II A and II B, in the ±K

valleys the un,k functions are 4-spinors that can be obtained by
e.g., numerically diagonalizing H 3R

K and H 2H
K of Eqs. (1) and

(2), respectively. We used these eigenstates and the approach
introduced by Ref. [27] to calculate the Berry curvature. The
�z(k) obtained for 3R and 2H bilayers is shown in Figs. 2(a)
and 2(b), respectively (the material parameters used in these
calculations are given in Table I). For comparison, we also
show the Berry curvature that can be obtained from a gapped-

FIG. 2. Comparison of numerical and analytical calculation of
�z around the K point for (a) 3R stacked and (b) 2H stacked bilayer
MoS2. � show the results for CBs, © for VBs. In (a), brown color
corresponds to bands in the bottom layer, purple to bands in the top
layer, solid lines show the results of Eq. (4). Dashed lines indicate
the Berry curvature �(0)

z of a monolayer, given by Eq. (4a). In (b),
brown color corresponds to the layer at −Ug , purple to the layer at
+Ug potential, solid lines show the results of Eqs. (5a), (5b), and (6),
dashed lines indicate �

(0)
z,cb for the interlayer contribution given by

Eq. (5a). For material parameters of the k · p models see Table I. In
(b), we used Ug = 10 meV. The plotted range corresponds to around
10% of the �-K distance in the BZ. (c) and (d) Schematics of the
valley Hall conductivity contributions in the CB of 3R and 2H bilayers,
respectively, when an in-plane electric field E is applied.

graphene model [8], which approximately describes the band
structure of individual monolayers in the limiting case when
all interlayer coupling terms in Eqs. (1) and (2) are neglected.
It is clear that the Berry curvature of both types of bilayer is
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substantially different from the monolayer case suggesting that
interlayer coupling may have an important role.

To show this explicitly, we now derive an approximation for
�z(k), which can make analytical calculations easier. As it is
well known, one can use the Schrieffer-Wolff transformation
[28] e−SHeS of a Hamiltonian H to eliminate coupling terms
between subsystems of H in order to obtain an effective
Hamiltonian H̃ in the desired subspace. Here, S = −S† is an
anti-Hermitian operator. Denoting the eigenfunctions of H̃ by
�̃, the eigenfunctions � of the original Hamiltonian H can
be obtained by a back-transformation � = eS�̃. By writing
eS = 1 + S + 1

2!S
2 + . . . a systematic approximation of� can

be obtained if �̃ is known. By using this approximation for �

in the expression of �z, one finds

�z(k) = ∇k × i
{〈�̃|∇k�̃〉 + 1

2 〈�̃|[∇kS,S ]|�̃〉 + . . .
}
, (3)

where [A,B] denotes the commutator of A and B. Al-
though S is usually not known exactly, one can write
S = S(1) + S(2) + . . . and explicit expressions for S(i) can
be found in, e.g., Ref. [28]. In this way, Eq. (3) can be
used to obtain a perturbation series for �z. One may write
�z ≈ �(0)

z + �(1,1)
z + . . . , where �(0)

z = ∇k × i〈�̃|∇k�̃〉 and
�(1,1)

z = ∇k × i
2 〈�̃|[∇kS

(1),S(1)]|�̃〉.

B. Berry curvature of 3R and 2H bilayers

In the case of 3R bilayers, one may choose as a subspace,
e.g., one of the layers and treat the interlayer coupling as
perturbation. This corresponds to neglecting the interlayer
coupling in the wave function but retaining it in S(1). Using
Eq. (3), we find that �(b)

z (�(t)
z ) for the bottom (top) layer can be

written as �(b)
z ≈ �(0)

z − �(1,1)
z (�(t)

z ≈ �(0)
z + �(1,1)

z ), where

�(0)
z (q) = ±τ

2

(
γ3

δEbg

)2 1(
1 + (

γ3|q|
δEbg

)2)3/2 , (4a)

�(1,1)
z (q) ≈ τ

(2δEll)2

⎡
⎣λ1 ± λ2(

1 + (
γ3|q|
δEbg

)2)1/2

⎤
⎦. (4b)

Here, |q| is the magnitude of q, λ1 = γ 2
cc + γ 2

vv , λ2 = γ 2
cc −

γ 2
vv and the + (−) sign corresponds to the CB (VB). �(0)

z in
Eq. (4a) is the well known result for a gapped-graphene two-
band model [7,9], while Eq. (4b) is a correction due to the
interlayer coupling. The first correction to Eq. (4) is ∼q2 but
we found that for the wave number range of interest it is quite
small.

In 2H bilayers, if both inversion and time reversal symme-
tries are simultaneously present, �z vanishes [9]. However,
a finite interlayer potential ±Ug breaks inversion symmetry,
opens a gap in the CB at the ±K point, and causes �z(q) to
be nonzero. For the physically relevant case of Ug 
 δEbg , it
proves to be useful to treat the intralayer coupling between
the CB and VB in each layer as a perturbation that enters
S(1). Following the same steps as for the 3R stacking, one

finds that in the CB the Berry curvature is given by �z,cb =
�

(0)
z,cb + �

(1,1)
z,cb , where

�
(0)
z,cb(q) = ∓τ

2

γ 2
ccUg(

U 2
g + (γcc|q|)2

)3/2 (5a)

is due to the interlayer coupling of the CBs. The second
contribution reads

�
(1,1)
z,cb (q) ≈ ±τ

2

(
γ3

δEbg

)2

λ3
Ug

(U 2
g + (γcc|q|)2)1/2

, (5b)

where, using the notation ε̃vb =
√

t2
⊥ + U 2

g , the constant λ3 is
given byλ3 = 1 + 3

4 ( ε̃vb

δEbg
)
2

and terms∼q2 have been neglected

in Eq. (5b). �
(1,1)
z,cb (q) is nonzero even if we set γcc = 0, i.e.,

this term describes a Berry curvature contribution due to the
intralayer coupling of the CB and the VB. For the VB, one
finds that �

(0)
z,vb = 0 and the first nonzero term is

�
(1,1)
z,vb = ∓2τ

γ 2
3 Ug

ε̃vb(Ebg ∓ ε̃vb)2
, (6)

which is in agreement with Ref. [10] for ε̃vb 
 Ebg . This
means that the Berry curvature is, in first approximation,
dispersionless in the VB. The upper (lower) sign in Eqs. (5a),
(5b), and (6) corresponds to the bands that have larger weight
in the layer at +Ug (−Ug) potential. One can note that the
interlayer (�(0)

z,cb) and intralayer (�(1,1)
z,cb ) contributions have

opposite sign in each valley. As shown in Figs. 2(a) and 2(b),
our numerical calculations using the eigenstates of Eqs. (1)
and (2) are in good agreement with the analytical results of
Eqs. (4)–(6).

C. Discussion

One can see that although the band structure of 3R and 2H
stacked bilayers look rather similar, especially in the valence
band [cf. Figs. 1(a) and 1(b)], the comparison of Figs. 2(a)
and 2(b) reveals several important differences between their
Berry curvature properties. Considering first the 3R bilayers,
the Berry curvature is essentially layer-coupled both in the
VB and in the CB: it is significantly larger in the CB of
the top layer than of the bottom layer, while the converse is
true for the VBs [see Fig. 2(a)]. In the CB of the bottom and
top layers, one finds for q = 0 that �z,cb = �

(0)
z,cb + �

(1,1)
z,cb =

τ
2 [(γ3/δEbg)2 ∓ (γcc/δEll)2], where − (+) sign is for the bot-
tom (top) layer. This expression shows that (i) both intralayer
and interlayer coupling contribute to the Berry curvature and
(ii) the two contributions can either reinforce or weaken each
other. The effect of the interlayer coupling is clearly visible:
it reduces �z,cb for the bottom layer and enhances it for the
top layer. A similar but opposite effect takes place in the VB
as well, where �z,vb = − τ

2 [(γ3/δEbg)2 ± (γvv/δEll)2]. Using
the band-structure parameters given in Table I, we find that
the intralayer and the interlayer contributions are of similar
magnitude: although the coupling γcc between the layers is
much weaker than the intralayer coupling γ3 between the
CB and the VB, since δEll 
 δEbg , the ratios γ3/δEbg and
γcc/δEll are of the same order of magnitude. This conclusion
does not seem to depend on the level of theory applied in
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the first-principles calculations which yield the band-structure
parameters for the k · p theory: using, as an estimate, the
parametrization for γ3 and δEbg of, e.g., Ref. [29], which
are based on GW calculations for the 2H polytype, one still
finds that the ratio γ3/δEbg is similar in the DFT and GW

calculations and we expect the same for γcc/δEll . Moreover,
�(1,1)

z and hence the total Berry curvature may be tunable by an
external electric field which would change δEll . We point out
that the external electric field can, in principle, both decrease
and increaseδEll depending on its polarity, and the same can
be expected for �(1,1)

z as well (assuming that γcc and γvv do not
change significantly). While Ebg and hence �(0)

z is difficult to
change by electric field because it depends on the crystal-field
splitting of the atomic Mo d orbitals, δEll is determined by
weaker interlayer interactions and hence it might be more
easily tunable.

For 2H bilayers, on the other hand, the Berry curvature is
CB-coupled: it is much larger in the CB than in the VB [see
Fig. 2(b)]. This can be understood from Eqs. (5a) and (5b): for
small q values, such that γcc|q| 
 Ug the main contribution
to �z,cb comes from the interlayer term �

(0)
z,cb and can be quite

large for small Ug values. Similarly to 3R bilayers, therefore,
�z,cb is gate tunable. In contrast, using Eq. (6) we expect that
the Berry curvature, albeit gate tunable, will be rather small in
the VB. Assuming Ug of the order of 1–10 meV, which we think
is experimentally feasible, one finds that Ug is significantly

smaller than t⊥ (see Table I) and therefore �
(1,1)
z,vb ∼ 0.5–1.0 Å

2
.

IV. SPIN-ORBIT COUPLING EFFECTS

The considerations in Secs. II and III should be applicable to
all homobilayer TMDCs. We have not yet discussed the effect
of the spin-orbit coupling (SOC) on the Berry curvature prop-
erties of BTMDCs. Generally, the SOC in BTMDCs is more
complex than in monolayers, see Appendices B 1 b and B 2 b
for details. Moreover, in 3R bilayers, the low-energy physics
also depends on the ratio of the band-edge energy difference
δEcc and δEvv and the monolayer SOC coupling strengths 
cb

and 
vb. These energy scales can be quite different in different
BTMDCs. Because of the recent experimental activity [11,12],
we will focus on bilayer MoS2. Our DFT calculations suggest
that for bilayer MoS2 it is sufficient to take into account only
the intrinsic SOC of the constituent monolayers.

A. 3R bilayer MoS2

Figure 3(a) shows the band structure of 3R bilayer MoS2

obtained from DFT calculations. In contrast to Fig. 1(a),
here the SOC is also taken into account. The effects of the
SOC at the K point of the BZ are highlighted by comparing
the schematic band structure without and with the SOC in
Figs. 3(c) and 3(d), respectively. As already explained in
Sec. II, the band edge energy is different for bands localized
to the top and bottom layers both in the CB and the VB.
Upon considering the SOC, since 3R bilayers lack inversion
symmetry, their bands, apart from the �-M direction in the
BZ, will be spin-orbit split and spin-polarized [Fig. 3(a)]. The
SOC is diagonal in the layer index and it can be described
by adding a term H 3R

so,cb = 
cbτzsz (H 3R
so,vb = 
vbτzsz) to the

CB (VB) of the constituent monolayers, where 
cb(vb) is (in

good approximation) the SOC strength in monolayer MoS2,
sz is a spin Pauli matrix and the Pauli matrix τz acts in the
valley space. Our DFT calculations show that 
cb is much
smaller than the interlayer band-edge energy difference δEcc.
Therefore, as shown schematically in Fig. 3(d), it has a minor
effect on the band structure. The situation is different in the VB,
because 
vb is larger than the band-edge energy difference
δEvv . Therefore in the ±K valleys, the four highest energy
spin-split VB show an alternating layer polarization pattern.

Regarding the Berry curvature calculations, the effect of
SOC on the formulas (4) can be rather straightforwardly
taken into account by introducing the spin-dependent band
gaps δE

↓
bg = δEbg − τ (
cb + 
vb)/2 and δE

↑
bg = δEbg +

τ (
cb + 
vb)/2 and the corresponding spin-dependent Berry
curvatures for the top and bottom layers. Note that δEll in
Eq. (4b) is not affected by the SOC because in 3R bilayers,
unlike in 2H bilayers, the SOC is not layer dependent and
therefore it drops out from the interlayer energy difference.

B. 2H bilayer MoS2

Turning now to the 2H bilayers, we remind that if SOC
is neglected and inversion symmetry is not broken, the CB is
doubly degenerate, while the VB is nondegenerate in the ±K

point [Fig. 1(b)]. If now spin is taken into account but SOC is
neglected, this would mean a fourfold degeneracy of the CB.
However, the SOC partially lifts this fourfold degeneracy and
leads to two twofold degenerate levels, see Figs. 3(e) and 3(f).
In contrast to the 3R bilayers, due to the inversion symmetry all
bands of 2H bilayers remain spin-degenerate even when SOC
is considered. The SOC of 2H bilayers can be described by the
Hamiltonian H 2H

so,cb = 
cbτzσzsz (H 2H
so,vb = 
vbτzσzsz) in the

CB (VB) of the bilayer. Here the Pauli matrix σz indicates that
within a given valley the SOC has a different sign [26] in the two
layers: this can be understood from the fact that the layers are
rotated by 180◦ with respect to each other. At each energy, there
will be a ↑ and a ↓ polarized band, see Fig. 3(f). In the CB, the
splitting between the twofold degenerate levels is essentially
given by the SOC strength 2
cb of monolayer TMDCs. In
the VB, the main effect of the SOC is to increase the energy
splitting of the two highest bands from 2t⊥ to 2

√

2

vb + t2
⊥ .

The SOC has an interesting effect on the Berry curvature.
Considering first the CB, the SOC leads to a finite �

(0)
z,cb

even for Ug = 0, i.e., when there is no external electric field
applied. The corresponding formulas can be obtained from
Eqs. (5a) an (5b) by making the substitution Ug → 
cb and
using ε̃vb =

√

2

vb + t2
⊥ in the expression for λ̃3. One can label

�z by a spin index s = ↑,↓ and write �
↑
z,cb = �

(0)
z,cb + �

(1,1)
z,cb ,

where the upper (lower) sign appearing in Eqs. (5a) and (5b)
corresponds to the band at energy εcb + τ
cb (εcb − τ
cb)
for q = 0. Regarding the ↓ bands, one finds �

↓
z,cb = −�

↑
z,cb.

In the VB, for the physically relevant spin-degenerate band at
the band gap, one finds

�
(1,1,s)
z,vb = τ s

2γ 2
3 
vb

ε̃vb(Ebg − ε̃vb)2
, (7)

where s = 1 for the ↑ (s = −1 for ↓) spin-polarized band. This
result was also obtained in Ref. [26].
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FIG. 3. SOC effects in the band structure of bilayer MoS2. (a) DFT band-structure calculations along the �-K-M-� line of the BZ for 3R
bilayer. (b) The same as in (a) for 2H bilayer. (c) For 3R bilayers, close to the ±K points the layer index is an approximately good quantum
number for each of the bands both in the CB and the VB. Neglecting the SOC (noSOC) the lowest CB is mostly localized to the top layer
(dashed line), while the next CB band (solid line) to the bottom layer. The opposite is true for the two highest energy VBs. The bands are shifted
in energy due to the interlayer band edge energy difference 2δEcc and 2δEvv . (d) When SOC is taken into account for 3R bilayers, each of the
bands become spin-split and spin polarized. Red corresponds to ↑, blue to ↓ spin polarization. The spin-splitting 
cb of the two lowest CBs is
much smaller than the interlayer splitting δEcc. The situation is different for the VBs: here 
vb � δEvv and therefore the spin-polarized bands
have an alternating layer index. (e) For 2H bilayers, if SOC is neglected (noSOC), the two lowest energy CB are degenerate at the ±K points
and weakly split due to the interlayer coupling away from the ±K points. The energy splitting of the two highest energy VBs is 2t⊥. Both
layers contribute with equal weight to each of the bands. (f) When SOC is taken into account for 2H bilayers, in the CB there are two twofold
degenerate and spin-unpolarized bands separated by an energy 2
cb at the ±K point. A combined layer and spin index can be assigned to each
of the four CB bands at the ±K point, away from the ±K points both layers contribute to each of the bands, but with different weights. In the
VB, both layers contribute to each of the bands, even at the ±K points. Only if 
vb � t⊥ do the bands become approximately layer polarized
[26]. In (d) an (f), the spin polarization of the bands in the −K valley can be obtained by taking the time-reversed states.

V. VALLEY HALL EFFECTS

We now discuss how the Berry curvature affects the valley
and spin Hall conductivities in bilayer MoS2. Since few-layer
MoS2 on dielectric substrate is often found to be n-doped [30],
we will focus on the valley Hall effects in the CB. Although the
Q and K valleys are nearly degenerate, in our DFT calculations,
the band edge in the CB is at the ±K point. Therefore we can
use the results obtained in Secs. III and IV. The relevance of the
Q point valleys in the CB will be briefly discussed in Sec. VI.
Regarding the VB, we briefly note that the band edge energy
difference E�K between the � and K points is quite large,
500–600 meV and, therefore, the K valley is not relevant for
transport properties of p-doped samples. Nevertheless, in other
BTMDCs E�K might be much smaller [31,32] than in MoS2

and, therefore, the ±K valleys may also play an important
role. We leave the study of the valley Hall effect in the VB of
BTMDCs to a future work.

Due to the Berry curvature, if an in-plane electric field is
applied, the charge carriers will acquire a transverse anoma-

lous velocity component [9], which gives rise to an intrinsic
contribution to the Hall conductivity [33]. We may define the
valley Hall conductivity σv,H of band n as [8,33]

σn,v,H = e2

h̄

∫
dq

(2π )2
[f ↑

n (q)�↑
z,n(q) + f ↓

n (q)�↓
z,n(q)], (8)

where f
↑,↓
n (q) is the Fermi-Dirac distribution function. Simi-

larly, the spin Hall conductivity can be defined as

σn,s,H =
∫

dq
(2π )2

[f ↑
n (q)�↑

z,n(q) − f ↓
n (q)�↓

z,n(q)]. (9)

Since we only study the valley Hall effects in the CB, we ne-
glect the band index n in the following. For later reference, we
note that since for each band one may write the Berry curvature
as �z = �(0)

z + �(1,1)
z , the corresponding conductivities read

σv,H = σ
(0)
v,H + σ

(1,1)
v,H and σs,H = σ

(0)
s,H + σ

(1,1)
s,H .
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A. 3R bilayers

Due to the relatively large band-edge energy difference
2δEll = 58 meV, for typical n doping only the CB (mostly)
localized to the top layer would be occupied and have a finite
σv,H and σs,H contribution [the former is shown schematically
in Fig. 2(c)]. This situation is similar to one of the proposed
strongly interacting phases of bilayer graphene, namely, to the
quantum Valley Hall insulator phase [34]. However, in our
case, σv,H is not quantized. In the following, we assume that the
charge density is large enough so that both spin-split CB bands
in the top layer are populated and we add up their contributions
to σv,H and σs,H . Since �z(q) changes rather slowly around the
±K points [see Fig. 2(a)], we may use �z(q = 0) in Eq. (8)
and, at zero temperature, one finds

σ 3R
v,H = τ

2

e2

h̄

⎡
⎣(

γcc

δEcc

)2 q2
F,↓ + q2

F,↑
4π

+
(

γ3

δE
↑
bg

)2
q2

F,↑
4π

+
(

γ3

δE
↓
bg

)2
q2

F,↓
4π

⎤
⎦, (10)

whereqF,↓ (qF,↑) is the Fermi wave vector for electrons of↓ (↑)
spin. The term in the first line on the right-hand side (r.h.s) of
Eq. (10) corresponds to σ

(1,1)
v,H while the second line is σ

(0)
v,H . One

may recognize that σ
(0)
v,H equals the valley Hall conductivity

σml
v,H of monolayer TMDCs [8]. Note that (q2

F,↓ + q2
F,↑)/4π =

ne,v is the total charge density per valley. After expanding the
second line of Eq. (10) in terms (
cb + 
vb)/(2δEbg), one
finds that it is also ∼ne,v plus a correction ∼(q2

F,↑ − q2
F,↓),

which is typically small with respect to terms that are ∼ne,v .
Since γ3/δEbg and γcc/δEll are of the same order of magnitude,
Eq. (10) shows that σ 3R

v,H is roughly twice as big as σml
v,H . The

sign of σ 3R
v,H is opposite in the K and −K valleys, therefore no

net bulk charge current flows unless there is a charge imbalance
between the valleys. Calculating the spin Hall conductivity,
e.g., in the K valley, it reads

σ 3R
s,H = 1

2

⎡
⎣(

γcc

δEcc

)2 q2
F,↑ − q2

F,↓
4π

+
(

γ3

δE
↑
bg

)2
q2

F,↑
4π

−
(

γ3

δE
↓
bg

)2
q2

F,↓
4π

⎤
⎦. (11)

The second line in Eq. (11), which corresponds to σ
(0)
s,H , is the

same as in monolayer MoS2. Because of the σ
(1,1)
s,H contribution

shown in the first line on the r.h.s of Eq. (11), σ 3R
s,H is larger

than σml
s,H in monolayer MoS2. The term q2

F,↑ − q2
F,↓ can

be expressed as (q2
F,↑ − q2

F,↓) = 2(m↑−m↓)
h̄2 EF + 2m↑

h̄2 
cb where
m↑ and m↓ are the effective masses of the spin-split bands.
Therefore the enhancement of σ 3R

s,H depends on the Fermi
energy EF and on 
cb. Our DFT calculations suggest that
in MoS2 the term 2m↑

h̄2 
cb would dominate for EF � few tens
of meV because m↑ − m↓ ≈ 0.03me is rather small (here me

is the free electron mass). As we discussed for σ 3R
v,H , σ

(0)
s,H can

be expanded in terms of (
cb + 
vb)/(2δEbg) and we find that
σ 3R

s,H is roughly twice as big as σml
s,H . One can also easily show

FIG. 4. Schematic evolution of the four low-energy CB bands as
a function of the interlayer potential Ug at the K point of the BZ.
Spin-degenerate bands are shown with purple, ↑ polarized with red
and ↓ polarized with blue. Solid line corresponds to bands at +Ug ,
dashed line to bands at −Ug potential.

that, as in monolayers [8], the magnitude and sign of σ 3R
s,H does

not depend on the valley index τ .

B. 2H bilayers

The situation is more complex for 2H bilayers than for
their 3R counterparts. As a first step we will discuss the
valley Hall and spin Hall effects qualitatively. Let us start
with the Ug = 0 case. As already mentioned in Sec. IV, the
SOC leads to a finite Berry curvature even for Ug = 0. Since
inversion symmetry is not broken and therefore each band is
spin-degenerate, f ↓

n (q) = f
↑
n (q). On the other hand, one finds

that �↑
z (q) = −�

↓
z (q) and therefore σ 2H

v,H vanishes in this limit.

However, �↑
z (q) − �

↓
z (q), and hence σs,H are nonzero. This is

allowed because both the (in-plane) electric field and the spin
current transform in the same way under time-reversal and
inversion symmetries [35].

In general, for Ug > 0, both σ 2H
v,H and σ 2H

s,H will be finite. For
concreteness, we consider the K point and first discuss quali-
tatively the evolution of the band structure and the valley Hall
conductivity as a function of Ug . The finite interlayer potential
difference leads to the breaking of inversion symmetry and
splitting of the spin-degenerate bands, as shown in Figs. 4(a)
and 4(b). Each band can be labeled by a spin index ↑, ↓ and
by the index ± depending on whether the band edge is at ±Ug

potential for q = 0. Next, when Ug = 
cb [Fig. 4(c)] the (+,↓)
and (−,↓) bands become degenerate. We will show that upon
further increasing Ug [Fig. 4(d)], the contribution σ

(0)
v,H (σ (0)

s,H )
to the total valley Hall (spin Hall) conductivity, which is due
to the interlayer coupling [see the discussion below Eq. (5a)],
changes sign. This behavior is reminiscent of the topological
transition in lattice Chern insulators [36,37]. Note, however,
that the true band gap of the system, between the valence and
conduction bands, does not close. Nor does the gap close and
reopen for the (↑,+) and (↑,−) bands. Therefore (i) σ 2H

v,H and
σ 2H

s,H are not quantized and (ii) those contributions to σ 2H
v,H and

σ 2H
s,H which are related to the intralayer coupling of the CBs

and the VBs do not change sign as a function of Ug . At the
−K point, by time reversal symmetry, the (↑,+) and (↑,−)
bands can become degenerate as a function of Ug .
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We note that in recent experiments [11,12], the bilayer
devices were fabricated with a single backgate. In such de-
vices, the bilayer would be doped and at the same time a
finite interlayer potential difference Ug would be induced by
changing the backgate voltage. Depending on the EF /Ug and
EF /
cb ratios, where EF is the Fermi energy, only one or both
layers [this case is illustrated in Fig. 2(d)] and 1–4 bands may
contribute to σ 2H

v,H and σ 2H
s,H . In the following we will assume

that EF > 2(Ug + 
cb) for all Ug values considered, i.e., EF

is large enough so that both layers and all four low-energy
CBs are occupied and contribute to the valley and spin Hall
effects. In MoS2, given the relatively small 
cb ≈ 3 meV
value of the SOC, we expect that this situation is realistic.
However, in other 2H-BTMDCs, where the SOC constant 
cb

can be substantially larger than in MoS2, not all four CBs
would be necessarily occupied. Furthermore, we neglect any
Rashba-type SOC induced by the external electric field because
we expect that in the devices of Refs. [11,12] it should be much
smaller than the intrinsic SOC. We also neglect the difference
between the effective masses of the two spin-split CBs at
Ug = 0 because it is quite small in MoS2 and use a single
effective mass meff for all bands. On the other hand, as shown
in Fig. 2(b), for Ug � 20 meV, the q dependence of �z,cb(q)
is more important for 2H bilayers than for 3R bilayers and we
take it into account when we evaluate Eqs. (8) and (9).

We first assume that Ug ≶ 
cb and that EF is approximately
few tens of meV. The case Ug = 
cb, which requires slightly
different considerations, will be discussed below (see also
Appendix D). Under the above assumptions and after summing
up the contributions of all four bands shown in Fig. 4, one finds
that

σ 2H
v,H ≈ τ

e2

h̄

[
εcc

2π

Ug

U 2
g − 
2

cb

− ρ2dUg

(
γ3

δEbg

)2

λ4(Ug)

]

(12)

and

σ 2H
s,H ≈ −

[
εcc

2π


cb

U 2
g − 
2

cb

+ ρ2d
cb

(
γ3

δEbg

)2

λ4(Ug)

]
. (13)

Here, εcc = 2meff

h̄2 γ 2
cc, ρ2d = meff/2πh̄2 is the two-dimensional

density of states per spin and valley, and λ4(Ug) =
(1 + 3

4

2

vb+t2
⊥+U 2

g

δE2
bg

). One can see that σ 2H
v,H vanishes for Ug → 0,

but σ 2H
s,H remains finite. When Ug is of the order of 
cb, the

first term on the r.h.s of Eqs. (12) and (13), which is related
to the interlayer contribution to the Berry curvature, is larger
than the second term. Moreover, this term changes sign as Ug

is changed from Ug < 
cb to Ug > 
cb and we expect that
this leads to a sign change in σ 2H

v,H and σ 2H
s,H . It is interesting to

note that in, e.g., lattice Chern insulators such a sign change of
the off-diagonal conductivity was associated with a topological
transition. In our case, the sign change of σ 2H

v,H andσ 2H
s,H happens

as the ↓ (↑) bands first become degenerate at the K (−K) point
and then the degeneracy is lifted again as the electric field is
increased further.

Regarding the Ug = 
cb case when two spin-polarized
bands become degenerate [see Fig. 4(c)], in good approxi-
mation only the bands that remain nondegenerate have finite

TABLE II. The calculated δEQK values for 2H and 3R bilayers
without (no SOC) and with (SOC) taking into account the SOC.

noSOC SOC

2H 9 meV 10 meV
3R 75 meV 51 meV

valley and spin Hall conductivity (see Appendix D). Therefore
the magnitude of σ 2H

v,H and σ 2H
s,H is the same (apart from the

fact that they are measured in different units). Summing up the
contributions of the two ↑ (↓) bands in the K (−K) valleys,
one finds that σ 2H

v,H ≈ τ e2

h̄
σ̃v,H and σ 2H

s,H ≈ σ̃v,H , where

σ̃v,H ≈ 1

2

(
εcc

4π
cb

− ρ2d
cb

(
γ3

δEbg

)2

λ5

)
(14)

and λ5 = (1 + 3
4

(
vb)2+t2
⊥

δE2
bg

). We do not discuss here the case

when not all four spin-split bands below the EF are occupied
because we expect that relatively large doping levels may be
needed to suppress many-body effects, which are beyond the
scope of the present work.

VI. THE Q VALLEYS

As one can see in, e.g., Figs. 1(a) and 1(b), the local
minimum of the CB at the Q point of the BZ is almost
degenerate with the K valley, especially for 2H stacking. In
our DFT band-structure calculations, the band edge is at the
K point for both stackings and the Q valleys would only
be populated for a relatively strong n doping. We show the
calculated δEQK values, i.e., the energy difference between the
bottom of the Q and the K valleys, without/with taking into
account SOC, in Table II below. We note that in the case of
monolayers it was found that δEQK depends quite sensitively
on the lattice constant, exchange-correlation potential [23], and
it may also depend on the level of theory (DFT or GW ) used
in the calculations. The same is expected to be the case for
bilayers as well, where in addition the interlayer separation
used in the calculations may also influence the location of the
band edge.

Irrespective of the exact value of δEQK in DFT calculations,
it is of interest to understand if the six Q valleys can affect the
valley Hall conductivity described in Sec. V because strain or
interaction with a substrate may also affect energy difference
between the bottom of the K and Q valleys. The calculations
of Ref. [38] indicate that the Berry curvature is very small at
the Q point of monolayer TMDCs, therefore, in our case, it is
only the interlayer contribution that needs to be considered. We
find that, generally, the Berry curvature should be significantly
smaller in the Q valley than in the K valley for bilayer MoS2

(see Appendix C). This is mainly because the bands are split
by a momentum independent tunneling amplitude t⊥,Q, which
is much larger than the energy scale for momentum dependent
coupling and the intralayer spin splitting. Therefore, as long
as intervalley scattering between the K and Q valleys is not
strong, the Q valleys should have only a minor effect on the
valley Hall and spin Hall conductivities. Moreover, since the
intralayer spin-orbit coupling 
Q is one order of magnitude
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larger than 
cb at the K point, we do not expect that in double
gated devices a topological transition similar to the one at the
K point can take place.

VII. DISCUSSION AND SUMMARY

In a very recent work [39], a different type of electrically
controllable valley Hall effect, due to the Rashba type SOC,
was proposed in gated monolayer TMDCs. In order to obtain
appreciable Rashba SOC in monolayer MoS2, one would
need rather strong displacement fields [40] of the order of
0.3–0.4 eV Å [41], which are attainable, e.g., in ionic liquid
gated devices. In contrast, given an interlayer distance of
d = 2.975 Å, a displacement field of 0.04 eV Å would lead to
an interlayer potential difference Ug ≈ 13 meV, which would
give a roughly twofold increase of �z,cb in 2H bilayers with
respect to the monolayer value. Thus we think that the Berry
curvature is more easily tunable in bilayer TMDCs than in
monolayers.

Another way of investigating the Berry curvature may be
offered by optical methods, where one can make use of the
selection rules for circularly polarized light for intralayer
excitonic transitions at the ±K point. As it was shown in
Refs. [42,43] for monolayer TMDCs, the Berry curvature acts
as a momentum-space magnetic field and therefore it can split
the energies of excitons that have nonzero angular momentum
number. By extending this argument to bilayers, one may
expect that the Berry curvature should lead to a splitting
of intralayer excited excitonic states with nonzero angular
momentum number and the effect would be more pronounced
than in monolayers, especially in 2H bilayers. Note that the
Berry curvature of both the CB and the VB would contribute
to this effect [42,43]. This would constitute a novel mechanism
to influence intralayer excitonic properties: the other layer does
not only provide screening, but acts through the changing of
the Berry curvature of the electrons and holes.

In summary, we have studied the Berry curvature properties
and the corresponding valley Hall conductivities of bilayer
MoS2. We have considered both 3R and 2H stacked bilayers
and found intralayer as well as interlayer contributions to the
Berry curvature, a situation not discussed before for layered
materials. Due to the interlayer contribution, the Berry curva-
ture is gate tunable. Moreover, we found that in 3R stacked
bilayers the Berry curvature is much larger for electronic
states in one of the layers than in the other one, i.e., it is
effectively localized to one of the layers. For 2H stacking,
on the other hand, it is usually much larger in the CB than
in the VB, but it has the same magnitude in both layers. We
studied the consequences of the Berry curvature for n-doped
samples. Firstly, the valley Hall conductivity will be finite
if inversion symmetry is broken. Secondly, if the intrinsic
SOC of the constituent layers is taken into account, the spin
Hall conductivity is finite. Due to the SOC, in 3R bilayers,
all bands are nondegenerate and spin-polarized, while in 2H
bilayers the spin-polarized bands of the monolayer constituents
are energetically degenerate as long as inversion symmetry is
not broken. In 2H bilayers, the interplay of SOC and finite
interlayer potential can lead to a topological transition for one
pair of spin-polarized bands. This leads to a change in the
sign of the interlayer contribution to the valley and spin Hall

effects, while the intralayer contribution does not change sign.
Our work highlights the role of the stacking, intra and interlayer
couplings on certain topological properties and can be relevant
to a wide range of van der Waals materials.
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APPENDIX A: DERIVATION OF k · p HAMILTONIANS OF
BILAYER TMDCS

We remind that the symmetry properties of a band η at
a given k-space point can be deduced by considering the
transformation properties of Bloch states of the form [21]∣∣�t(b)

η (k,r)
〉 ≡ ∣∣�t(b)

l,m (k,r)
〉

= 1√
N

∑
Rn

eik(Rn+tt(b)
Mo )Ym

l

(
r − [

Rn + tt(b)
Mo

)]
,

(A1)

where Ym
l (r) are rotating orbitals formed from the atomic

orbitals that contribute with large weight to a given band η

at a given k-space point, Rn are lattice vectors in the direct
lattice, and tt(b)

Mo give the positions of the Mo atoms in the top
(t) and bottom (b) layers in the 2D unit cell. In the case of 2H
bilayers in an external electric field, the label t corresponds
to the layer at +Ug potential, while the label b to the layer
at −Ug potential. For zero electric field, the labels t and b

are somewhat arbitrary, nevertheless, for convenience we will
keep them in the discussion that follows. (More rigorously, if
the geometric position of the threefold rotation axis is fixed,
then each band can be labeled by an irreducible representation
of the pertinent group of the wave vector. Our choice of the

FIG. 5. Schematic top view of the crystal lattice of (a) 3R and (b)
2H bilayer TMDC. For 3R bilayers in (a), the positions of the metal
atoms in the unit cell are given by the vectors tt

Mo = a

2 (1,−1/
√

3)T and
tb
Mo = (0,0)T . Metal atoms in different layers are shown by different

colors. For 2H bilayers, in (b), only atoms in the top layer are visible.
The position of the metal atoms in the unit cell are given by the
vectors tt

Mo = a

2 (1,−1/
√

3)T and tb
Mo = a

2 (1,1/
√

3)T . Here, a is the
lattice constant.
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FIG. 6. The Brillouin zone with the six Q points and the ±K

valleys.

lattice vectors and the coordinate system is shown below in
Fig. 5.) The situation is different for 3R bilayers: as explained
in the main text, here the two layers are not equivalent and one
can define unambiguously the layer indices t and b.

The k · p Hamiltonian at a given k-space point (see
Fig. 6 for the Brillouin zone) can be then found by consid-
ering the transformation properties of the matrix elements
〈�ν

η (k,r)|p̂|�ν ′
η′ (k,r)〉, whereν,ν ′ = {t,b} and p̂ = (p̂x,p̂y) are

momentum operators (for details see, e.g., Refs. [21,23]). In
this way, one can arrive at a 7 × 7 model of a monolayer
TMDCs [23] and a corresponding 14 × 14 model for bilayers.
Similarly, the SOC matrix elements can be found by consider-
ing 〈�ν

η (k,r)|L̂ · Ŝ|�ν ′
η′ (k,r)〉, where L̂ is a vector of angular

momentum operators and Ŝ is a vector of spin operators. In
some cases, especially for effective Hamiltonians, it is easier
to use the theory of invariants [44]. Both approaches lead to
the same results. We will use the following notation. The Pauli
matrices σx,y,z act in the space of top (t) and bottom (b) layer,
while the Pauli matrices sx,y,z act in the space of the spin degree
of freedom. ↑ and ↓ denote the eigenstates of sz. Finally, the
Pauli matrix τz describes the valley degree of freedom, and
whenever convenient, we use its eigenvalues τ = ±1 for the
same purpose.

APPENDIX B: k · p HAMILTONIANS AT THE ±K POINT
OF THE BRILLOUIN ZONE

1. 2H bilayer

a. k · p Hamiltonian

In the discussions below, we will refer to the group of the
wave vector at the k = ±K = ± 4π

3a
(1,0)T points of the BZ,

which is D3 for this stacking (a is the length of the lattice
vectors a1, and a2). The character table of D3 is given below
in Table III.

We remind that in monolayer TMDCs the atomicdz2 orbitals
of the metal atoms contribute with largest weight to the CB
at the ±K points of the BZ. Regarding the VB, the dxy and

TABLE III. Character table of the point group D3.

E 2C3 3C2

�1 1 1 1
�2 1 1 −1
�3 2 −1 0

dx2−y2 orbitals are important at the ±K points. Taking into
account that in 2H bilayers one of the monolayers is rotated by
180◦ with respect to the other [26], one finds that the minimal
basis set to describe the CB are the Bloch wave functions
|�t(b)

2,0 (K,r)〉 and for the VB the |�t
2,−2(K,r)〉, |�b

2,2(K,r)〉
(This means that the top layer “inherits” the convention we
used in Refs. [21,23] for monolayer TMDCs, which is that at
the K point the Bloch wave function of the valence band is
|�2,−2(K,r)〉).

As a first step, let us neglect the SOC. Using the coordinate
system shown in Fig. 5(b), one can easily show that |�t

2,0(K,r)〉
and |�b

2,0(K,r)〉 transform as partners of the two-dimensional
irreducible representation (irrep) �3 of D3. This means that the
CB is doubly degenerate at theK point. We have checked that in
our DFT calculations this is indeed the case (within numerical
accuracy). Regarding the VBs, |�t

2,−2(K,r)〉 transforms as one
of the partners of the irrep �3, while |�b

2,2(K,r)〉 transforms
as irrep �1. Since the Bloch wave functions of the VBs of
the t and b layers transform according to different irreps, the
VB of the bilayer is not degenerate. One can also notice that
the operators p̂± = p̂x ± ip̂y also transform as partners of the
irrep �3. Using the basis {|�t

cb〉,|�t
vb〉,|�b

cb〉,|�b
vb〉}, the above

considerations then lead to the following k · p Hamiltonian:

H 2H
K =

⎛
⎜⎝

εcb γ3 q+ γcc q− γcvq+
γ3 q− εvb γvcq+ t⊥
γcc q+ γvcq− εcb γ3q−
γcvq− t⊥ γ3q+ εvb

⎞
⎟⎠. (B1)

Here, t⊥ is a momentum independent tunneling amplitude
between the VBs, γ3 is the intralayer coupling between the
VB and the CB in each layer, while γcc and γvc = γcv are
interlayer couplings. Here, q± = τqx ± iqy denotes the wave
number measured from the K (or −K) point of the BZ and
τ = ±1 is the valley index. A similar Hamiltonian to (B1),
which only considered t⊥ and neglected all other interlayer
coupling, was derived in Ref. [26]. We found that close to
the K point the dispersion of the CB and VB obtained from
DFT calculations can be fitted quite well by assuming that
the interlayer interband coupling constant γcv is small and
therefore we neglected this term. In contrast, the term ∼γcc

is needed both to accurately fit the DFT band structure and for
the Berry curvature calculations.

b. Spin-orbit coupling

For simplicity, we will only discuss here the case of zero
external electric field. Time reversal and inversion symmetries
dictate that all bands are spin-degenerate throughout the BZ.
In the simplest approximation, we may take into account
only the SOC in the constituent monolayers. Using the basis
|{�t

cb↑〉,|�t
cb↓〉,|�b

cb↑〉,|�b
cb↓〉} for the CB (and an analogous

basis set for the VB), the SOC Hamiltonian is

H
(1)
cb(vb),SOC = 
cb(vb)τzσzsz. (B2)

Our DFT calculations show that the monolayer values 
cb and

vb are indeed very close to the values 
bl

cb, 
bl
vb found in

bilayers. The term in Eqs. (B2) is the most important one close
to the ±K points.
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Strictly speaking, however, H
(1)
cb(vb),SOC is not the only SOC

term allowed by symmetries. Further terms can be obtained
by using an extended k · p model for the monolayers as in
Ref. [23]. For bilayers, this extended basis contains 28 basis
states. The resulting SOC Hamiltonian has matrix elements that
connect basis states within the same layer as well as interlayer
matrix elements. To simplify the discussion, we project the
SOC onto the CBs and the VBs closest to the band gap.
Then one can also use the theory of invariants to derive the
SOC terms that appear in this effective low-energy model. For
example, as already mentioned, the basis states |�t

2,0(K,r)〉
and |�b

2,0(K,r)〉 transform as partners of the two-dimensional
irreducible representation �3 of D3. This means that for the
CB one can adapt the results derived for bilayer graphene
[45–47] and silicene [48], where the low-energy sector of the
Hamiltonian is also spanned by basis vectors transforming
according to irrep �3 of D3. One finds that in lowest order
of k, in addition to the Eq. (B2), one more term is allowed:

H
(2)
cb,SOC = 


(2)
cb(vb)σz(sxqy − syqx). (B3)

Similarly to the CB, one finds that a term

H
(2)
vb,SOC = 


(2)
vb σz(sxqy − syqx) (B4)

can be added to the low-energy Hamiltonian in the VB. As one
can see H

(2)
cb(vb),SOC introduces a Rashba-like coupling within

each of the layers.
We note that although H

(2)
cb(vb),SOC is diagonal in the layer

space, a similar term is absent in monolayers. This follows
from the different symmetries of monolayers and bilayers.
In monolayer TMDCs, the pertinent symmetry group at ±K

points is the C3h point group. This point group contains the
symmetry element σh corresponding to a horizontal mirror
plane. Polar vectors (such as qx and qy) and axial vectors (such
as sx and sy) transform differently under σh and therefore terms
that contain their products, such as those in Eq. (B3), are not
allowed. In the case of bilayer TMDCs, the pertinent point
group for the wave vector is D3, which does not discriminate
between polar and axial vectors and hence terms containing
the products of wave number and spin components become
admissible.

From a more microscopic point of view one can show
that H

(2)
cb,SOC and H

(2)
vb,SOC are both due to an interplay of (i)

wave-number-dependent intralayer coupling to higher or lower
energy orbitals and (ii) certain off-diagonal intralayer SOC
matrix elements. The details of these calculations will be given
elsewhere. The coupling constant 


(2)
cb and 


(2)
vb appear to be

small in MoS2 and we could not reliably extract them from our
DFT calculations.

2. 3R bilayer

a. k · p Hamiltonian

The 3R bilayer has lower symmetry than 2H bilayers, e.g.,
as already mentioned in the main text, the crystal structure
lacks inversion symmetry. The group of the wave vector at the
±K points of the BZ is C3, for the character table see Table IV.

One can see that all irreps of C3 are one-dimensional. This
suggest that the bands of 3R bilayers are nondegenerate in the
±K valleys.

TABLE IV. Character table of the group C3. Here, ω =
e2iπ/3.

E C3 C2
3

�1 1 1 1
�2 1 ω ω2

�3 1 ω2 ω

Using the coordinate system shown in Fig. 5(a), the basis
state |�t

2,0(K,r)〉 (|�b
2,0(K,r)〉) in the CB of the top (bottom)

layer transforms as �2 (�1) of C3. Regarding the VB, one finds
that |�t

2,−2(K,r)〉 (|�b
2,−2(K,r)〉) transforms as �1 (�3). In

the basis {|�b
cb〉,|�b

vb〉,|�t
cb〉,|�t

vb〉}, these symmetry consid-
erations then lead to the following general form of the k · p
Hamiltonian:

H 3R
K =

⎛
⎜⎜⎝

εb
cb γ3 q+ γcc q− tcv

γ3 q− εb
vb γvcq+ γvv q−

γcc q+ γvcq− εt
cb γ3q+

tcv γvvq+ γ3q− εt
vb

⎞
⎟⎟⎠. (B5)

Here we assumed that the diagonal elements εt and εb can be
different in the two layers. This can be motivated by noticing
that the Mo atoms in the two layers have different chemical
environment, since one of them is above a sulfur atom of
the other layer, while the second Mo atom can be found
in a hollow position. In contrast, in the crystal structure of
2H bilayers, the metal atoms in the two layers have the
same chemical environment and therefore one expects that
the diagonal elements of the effective Hamiltonians are the
same in the two layers, see Eq. (B1). This argument can also
be formulated from a symmetry point of view: in 2H bilayers
the metal atoms are connected by symmetry operations of the
crystal lattice, while this is not the case in 3R bilayers.

Looking at Eq. (B5), one can notice that the tunneling
amplitude tcv , in principle, introduces a band repulsion between
the CB of the bottom layer and the VB of the top layer even
for q = 0. This looks similar to the situation in 2H bilayers,
where such a tunneling element appears between the two VB
states, see Eq. (B1). Indeed, in a recent work [20] on the
selection rules of optical transitions in 3R bilayers an estimate
of tcv ≈ 50 meV was given, which is comparable to t⊥ in
2H bilayers. However, the analysis of our DFT calculations
suggests that tcv in 3R bilayers is much smaller than t⊥. To
substantiate this claim, we show firstly the weight of the atomic
orbitals in the highest energy VB of 2H bilayers at the K

point, as obtained from DFT calculations, in Table V. Only
atomic orbitals with nonzero weight are included. As one can
see, the atomic orbitals of both layers contribute with equal
weight to this band. This agrees with the conclusion that one
could draw from the Hamiltonian (2): by diagonalizing it at
q = 0, one can see that the VB states of the two layers form
“bonding” and “antibonding” states due to the tunneling t⊥.
In these new states, the weight of the states from each layer
is the same. Moreover, we find the same atomic weights as
shown in Table V for the second highest energy VB, which
again supports the above interpretation.

In the case of 3R bilayers, a similar argument would suggest
that both atomic orbitals belonging to the bottom layer and
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TABLE V. The weight of the atomic orbitals in the highest valence
band of 2H bilayer MoS2 at the K point of the BZ. Mo(b) (Mo(t)) stands
for the molybdenum atom in the top (bottom) layer. Similarly, S(b)

1 and
S(b)

2 (S(t)
1 and S(t)

2 ) stands for the two sulfur atoms in the two layers.

py px dxy dx2−y2 tot

Mo(b) 0.0 0.0 0.166 0.166 0.333
Mo(t) 0.0 0.0 0.167 0.167 0.334
S(b)

1 0.017 0.017 0.0 0.0 0.034

S(b)
2 0.017 0.017 0.0 0.0 0.034

S(t)
1 0.017 0.017 0.0 0.0 0.034

S(t)
2 0.017 0.017 0.0 0.0 0.034

orbitals belonging to the top layers would have finite weight
in one of the CBs. In Tables VI and VII, we show the weight
of the atomic orbitals in the first and second CB of 3R bilayer
MoS2, respectively. The SOC is neglected in these calculations
since it is not important for the argument that we make.

According to our DFT calculations the atomic orbitals
from the two layers are not admixed, i.e., the two layers are
practically decoupled at the K point. The results in Table VI
and VII therefore suggest that tcv , although allowed to be
nonzero by symmetry considerations, is probably very small.
We think that the splitting of both the VB and CB states that
can be clearly seen in Fig. 1(a) of the main text is due to the
difference between the band edge energies εb

cb and εt
cb (εb

vb and
εt
vb). This is the reason why we neglected tcv in the effective

k · p model used in the main text.

b. Spin-orbit coupling

Since inversion symmetry is broken by the lattice
in 3R bilayers, the bands need not be spin-degenerate
when SOC is taken into account. We will use the basis
{|{�b

cb↑〉,|�b
cb↓〉,|�t

cb↑〉,|�t
cb↓〉} and an analogous basis for

the VB. Considering only the SOC coupling of the constituent
monolayers, the SOC Hamiltonians are

H
(1)
cb(vb),SOC = 
cb(vb)τzsz, (B6)

for the CB and the VB, respectively. Note that, in contrast to
the 2H bilayers [see Eq. (B2)] the Hamiltonian (B6) does not
depend on σz, i.e., it is independent of the layer index. This is

TABLE VI. The weight of the atomic orbitals in the first conduc-
tion band of 3R bilayer MoS2 at the K point of the BZ. Mo(b) (Mo(t))
stands for the molybdenum atom in the top (bottom) layer. Similarly,
S(b)

1 and S(b)
2 (S(t)

1 and S(t)
2 ) stands for the two sulfur atoms in the top

(bottom) layer.

s px py dz2

Mo(b) 0.0 0.0 0.0 0.0
Mo(t) 0.043 0.0 0.0 0.743

S(b)
1 0.0 0.0 0.0 0.0

S(b)
2 0.0 0.0 0.0 0.0

S(t)
1 0.0 0.017 0.017 0.0

S(t)
2 0.0 0.017 0.017 0.0

TABLE VII. The same as in Table VI but for the second conduc-
tion band of 3R bilayer MoS2 at the K point of the BZ.

s px py dz2

Mo(b) 0.043 0.0 0.0 0.744
Mo(t) 0.0 0.0 0.0 0.0
S(b)

1 0.0 0.016 0.016 0.0

S(b)
2 0.0 0.017 0.017 0.0

S(t)
1 0.0 0.0 0.0 0.0

S(t)
2 0.0 0.0 0.0 0.0

in agreement with the findings of Ref. [14]. H
(1)
cb(vb),SOC leads

to the splitting of the otherwise spin degenerate CB and VB in
each of the layers. These bands are therefore nondegenerate
and the spin polarization of the bands is the same in both
layers.

Similarly to the 2H case, further SOC terms become possi-
ble if one considers virtual intralayer and interlayer processes.
To simplify the discussion, we project the SOC onto the CBs
and the VBs closest to the band gap. We list here the possible
terms for the CBs, the same terms, albeit with different SOC
strength, can be obtained for the VBs. Firstly, the intralayer
processes give rise to a term similar to Eq. (B3):

H
(2,t(b))
cb,so = 


(2,t(b))
cb (sxqy − syqx), (B7)

where in general the SOC coupling strengths are different in the
two layers: 


(2,b)
cb �= 


(2,t)
cb . Due to the lower symmetry of the

3R stacking, one finds further three nonzero interlayer SOC
terms. Defining σ± = (σx ± iσy)/2 and sτ

± = (sx ± iτ sy)/2,
one may write the first one as

H
(3)
cb,so = i


(3)
cb (σ+sτ

− − σ−sτ
+) = 


(3)
cb

2
(τzσxsy − σysx),

(B8)
where 


(3)
cb describes direct spin-flip tunneling between the

CBs of the two layers. The second one reads

H
(4)
cb,so = iτ


(4)
cb (σ+sτ

+qτ
+ − σ−sτ

−qτ
−)

= −

(4)
cb

2
[σx(sxqy + syqx) + τzσy(sxqx − syqy)],

(B9)

and the third one is

H
(5)
cb,so = 


(5)
cb [σ+qτ

− + σ−qτ
+]sz = 


(5)
cb [σxqx + τzσyqy]sz.

(B10)

One can show that the last two terms, H (4)
cb,so and H

(5)
cb,so are due

to the interplay of a spin-dependent intralayer hopping to a
higher or lower energy orbital followed by a spin-independent
interlayer tunneling or vice versa, a spin-independent in-
tralayer hopping followed by a spin-dependent interlayer
tunneling.

Our DFT calculations suggest that in MoS2 the terms
corresponding to Eqs. (B7)-(B10) are much smaller than the
monolayer SOC term Eq. (B6). Moreover, we find that δEcc =
(εb

cb − εt
cb)/2 � 


(1)
cb , which means that the low-energy CB

bands are localized to the top layer. In contrast, δEvv =
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(εb
vb − εt

vb)/2 and 

(1)
vb are of similar magnitude in MoS2 and

following the convention of Ref. [23], whereby 
vb < 0 at the
K point, the highest energy state at K is |�b

vb↓〉, followed by
|�t

vb↓〉, |�b
vb↑〉, and finally |�t

vb↑〉.
Looking beyond MoS2, in other MX2 bilayers, it may

happen that the crystal-field splitting δEcc and the SOC
strength 


(1)
cb are of comparable magnitude. In this case, the

two lowest energy CB bands would be localized on different
layers, in the same way as in the VB of bilayer MoS2.

APPENDIX C: k · p HAMILTONIANS AT THE Q POINTS
OF THE BRILLOUIN ZONE

In addition to the valleys at the ±K points, there are six Q

valleys in the CB, see Fig. 6. Although in our DFT calculations
the band edge in the CB can always be found at the ±K point,
the minima at the Q points is close in energy to the minima
at the ±K point (see Sec. VI in the main text). For finite doping,
therefore, it may happen that both the ±K and the Q valleys
are populated. For this reason, it is of interest to understand the
Berry curvature properties of the Q valleys.

Firstly, we note that the numerical calculations of Ref. [38]
indicate that the Berry curvature in the CB of monolayer MoS2

is much smaller at the Q point than at the ±K point. We will
argue that this is also the case in bilayer TMDCs, i.e., in contrast
to the ±K point, interlayer coupling does not give a significant
contribution to the Berry curvature in the Q valleys.

To show this, we remind that according to DFT calculations
(see, e.g., Ref. [23]), in monolayer TMDCs the dz2 , dxy and
dx2−y2 atomic orbitals of the metal atom have large weight at
the Q points. Therefore, in contrast to the ±K point where
in the simplest approximation only the dz2 orbital needs to be
considered in the construction of Bloch wave functions, here
it is necessary to take into account two other d orbitals of the
metal atom. Considering, for concreteness, the Bloch wave
function at the Q1 point, it can be written:

|�cb(Q1,r)〉 = c1|dz2 (Q1,r)〉 + ic2|dxy(Q1,r)〉
+ c3|dx2−y2 (Q1,r)〉, (C1)

where |dz2 (Q1,r)〉, |dxy(Q1,r)〉, and |dx2−y2 (Q1,r)〉 are Bloch
wave functions of the form shown in Eq. (A1) and c1, c2, c3 are
real numbers. The fact that c1, c2, and c3 are real can be shown
by noticing that the valleys at Q1 and −Q1 are related by both
time reversalT and the vertical reflection σ

y
v with respect to the

y axis, see Fig. 5(b). One can then use the combined symmetry
σ

y
v T to obtain restrictions on the wave function and hence on

the coefficients c1, c2, and c3. The same considerations apply
to the Q2 and Q3 points as well.

1. 2H bilayer

Let us first assume zero external electric field and no
coupling between the layers. At the Q1 point, the small group
of the wave vector is C2, which contains the identity element
and the rotation Cx

2 by π around the x axis, see Fig. 5(b). Bloch
wave functions in the uncoupled top and bottom layers are also

related by this symmetry and therefore they are given by∣∣�(t)
cb (Q1,r)

〉 = c1

∣∣d (t)
z2 (Q1,r)

〉 + ic2

∣∣d (t)
xy (Q1,r)

〉
+ c3

∣∣d (t)
x2−y2 (Q1,r)

〉
, (C2a)∣∣�(b)

cb (Q1,r)
〉 = c1

∣∣d (b)
z2 (Q1,r)

〉 − ic2

∣∣d (b)
xy (Q1,r)

〉
+ c3

∣∣d (b)
x2−y2 (Q1,r)

〉
. (C2b)

The minus sign appearing in the expression for |�(b)
cb (Q1,r)〉

with respect to |�(t)
cb (Q1,r)〉 is due to the transformation rule

Cx
2 dxy = −dxy of these atomic orbitals, while dz2 and dx2−y2

are not changed by Cx
2 .

In the simplest approximation, one may assume that to
describe the low-energy states of bilayer MoS2 at the Q1

point it is sufficient to consider the states given by Eqs. (C2).
Neglecting, as a first step, the SOC and up to second order in
the wave number the corresponding k · p Hamiltonian H 2H

Q1
for

the bilayer case reads

H 2H
Q1

= h̄2q2
x

2mx,Q

+ h̄2q2
y

my,Q

+ t⊥,Qσx + γxqxσx + γyqyσy.

(C3)
Here, qx,y are measured from the Q1 point and one can show
that t⊥,Q and γx,y are real numbers. The first two terms describe
the dispersion at the Q1 point of the isolated monolayers [23],
t⊥,Q is a wave-number independent interlayer tunneling, and
the last two terms describe wave-number dependent interlayer
coupling.

Let us consider the �-K line of the BZ, where qy = 0. Ne-
glecting, as a first step, the wave-number dependent interlayer
coupling given by γxqxσx , the spectrum of H 2H

Q1
consists of two

parabolas shifted in energy: E± = h̄2q2
x

2mx,Q
± t⊥,Q. This allows

to estimate the value of t⊥,Q using the DFT band-structure
calculations and we find t⊥,Q ≈ 205 meV. If now γxqxσx is
taken into account, by calculating the eigenvalues of H 2H

Q1
, one

can see that the minima of the two parabolas are not at qx = 0
but they can be found at slightly different qx points. This agrees
with results of the DFT band-structure calculations. One can
use this observation to extract the ratio γx/t⊥,Q ≈ 0.82 Å and
one may use this value as an order of magnitude estimate for
γy/t⊥,Q as well.

Regarding the SOC, we make the same approximation as
for the K point and take into account only the intralayer SOC
of the constituent monolayers. Thus we use the Hamiltonian

Qτzσzsz, where the SOC amplitude 
Q ≈ 70 meV is found
from calculations in monolayer MoS2 [23]. The SOC splits
the CB in both layers but in 2H bilayers, the bands are
spin-degenerate, as it is required by the time reversal and
inversion symmetries. If an interlayer potential difference Ug

is present due to an external electric field, then the effective
Hamiltonian reads H̃ 2H

Q1
= H 2H

Q1
+ Ugσz + 
Qτzσzsz. Since

inversion symmetry is broken, all bands are now spin ↑ or
↓ polarized. This behavior is qualitatively the same as for the
K point, see Fig. 6(a) in the main text.

Using the eigenstates of H̃ 2H
Q1

to calculate the Berry cur-
vature for the lowest-in-energy spin-split CB bands, one finds
that |�(0)

z,cb(q = 0)| ∼ γxγy

t2
⊥,Q


Q±Ug

t⊥,Q
, where the + (−) sign is for ↑

(↓) polarized band (we remind that q is measured from the Q1
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point). Given the above estimate of γx

t⊥,Q
, γy

t⊥,Q
, and 
Q/t⊥, �(0)

z,cb

is typically much smaller than the corresponding interlayer
contribution in the ±K valley. On the other hand, as already
mentioned, previous work [38] indicated that the intralayer
contribution is also very small at the Q point. We may thus
conclude that even if both Q and K valleys are populated, the
important contribution to the valley Hall effect should come
from the K valleys.

2. 3R bilayer

The derivation of the effective Hamiltonian for the Q valley
in 3R bilayers is very similar to the case of 2H bilayers, see
Appendix C 1. The general form of the Bloch wave functions
at the Q1 point of the isolated monolayers is

∣∣�(t)
cb (Q1,r)

〉 = c
(t)
1

∣∣d (t)
z2 (Q1,r)

〉 + ic
(t)
2

∣∣d (t)
xy (Q1,r)

〉
+ c

(t)
3

∣∣d (t)
x2−y2 (Q1,r)

〉
, (C4a)∣∣�(b)

cb (Q1,r)
〉 = c

(b)
1

∣∣d (b)
z2 (Q1,r)

〉 + ic
(b)
2

∣∣d (b)
xy (Q1,r)

〉
+ c

(b)
3

∣∣d (b)
x2−y2 (Q1,r)

〉
, (C4b)

where c
(t)
1 , c

(t)
2 , and c

(t)
3 in the top layer need not be exactly the

same as c
(b)
1 , c

(b)
2 , and c

(b)
3 in the bottom layer. The effective

Hamiltonian reads

H 3R
Q1

= h̄2q2
x

2mx,Q

+ h̄2q2
y

my,Q

+ δEcc,Qσz

+ t⊥,Qσx + γxqxσx + γyqyσy, (C5)

where δEcc,Q is the band-edge energy difference. This term is
allowed since the top and bottom layers are not related by any
symmetry of the crystal lattice.

One can again consider the �-K line of the BZ, where
qy = 0. By comparing the eigenvalues of H 3R

Q1
with DFT band-

structure calculations, one can find that
√

t2
⊥,Q + δE2

cc,Q ≈
170 meV. The values of δEcc,Q and t⊥,Q cannot be extracted
independently, but assuming a similar value for δEcc,Q as at
the K point, where it is ≈ 30 meV, we obtain an estimate of
t⊥ ≈ 167 meV. Using the difference between the positions of
the band-edge minima along the �-K line, one finds γx/t⊥,Q ≈
1.5 Å and one can take this value as an estimate for γy/t⊥,Q as
well.

One can use the eigenstates of H 3R
Q1

to calculate the Berry
curvature due to the interlayer coupling. (In the approximation
where only intralayer SOC is taken into account, the energy
scale 
Q drops out from the calculations.) One finds that the
interlayer Berry curvature close to the Q valley minima is

|�0
z,cb(q = 0)| ≈ γxγy

t2
⊥,Q

δEcc,Q

t⊥,Q
≈ 0.4 Å

2
, which is again signifi-

cantly smaller than the Berry curvature at the ±K points.
We also note that according to our DFT calculations the

energy difference δEQK is larger in 3R bilayers than in 2H
bilayers, see Sec. VI. Therefore the Q valleys would be
populated only for stronger doping. We may conclude that the
contribution of the Q valleys to the valley Hall conductivities
should be small in 3R bilayers.

3. Remark on the model in Appendices C 1 and C 2

Looking at Eqs. (C3) and (C6), one would expect that
interlayer coupling would only weakly affect the effective
mass mQ,x (along the �-K line) and therefore the two lowest
energy bands at the Q point would have equal effective masses.
To check the validity of the two-band model introduced in
Appendixes C 1 and C 2, we have fitted the results of DFT
band-structure calculations to extract m

(1)
x,Q and m

(2)
x,Q for these

two bands. For 2H bilayer, the difference between m
(1)
x,Q and

m
(2)
x,Q is around 4%–5%, while it is 22%–25% for 3R bilayers.

Within the k · p formalism such an effective mass difference
can be understood as being due to coupling to other bands, not
included into the simple two-band model. This indicates the
limitations of the two-band model.

APPENDIX D: CALCULATION OF σ 2H
v,H AND σ 2H

s,H

We start by showing explicitly the results of the Berry
curvature calculations. For concreteness, we first consider the
K valley. As explained in the main text, for Ug > 0 the four
low-energy CBs of the K valley can be labelled by the spin
index ↑, ↓ and by the index ± depending on whether the band
edge can be found at ±Ug potential at the K point. For spin ↑
bands, one finds

�(0,±,↑)
z (q,Ug) = ∓1

2

(
γcc


cb + Ug

)2

f
3/2
1 (q,Ug), (D1a)

�(1,1,±,↑)
z (q,Ug) = ±1

2

(
γ3

δEbg

)2

λ
↑
3 (Ug)f 1/2

1 (q,Ug).

(D1b)

The function f1(Ug) is defined as f1(q,Ug) = 1

1+( γcc |q|

cb+Ug

)
2

and λ
(↑)
3 (Ug) = 1 + 3

4
(
vb−Ug )2+t2

⊥
δE2

bg

. For the spin ↓ bands, we

assume that Ug �= 
cb (the case Ug = 
cb will be considered
separately, see below), then the result is

�(0,±,↓)
z (q,Ug) = ∓sign(Ug − 
cb)

×1

2

(
γcc


cb − Ug

)2

f
3/2
1 (q,−Ug),

(D2a)

�(1,1,±,↓)
z (q,Ug) = ±sign(Ug − 
cb)

×1

2

(
γ3

δEbg

)2

λ
(↓)
3 (Ug)f 1/2

1 (q,−Ug),

(D2b)

where sign[x] = 1 if x > 0 and sign[x] = −1 if x < 0 and
λ

(↓)
3 (Ug) = λ

(↑)
3 (−Ug).

Repeating the calculations for the −K point, we find that
the results can be written in the following form. Introducing
the index s = 1 (s = −1) for ↑ (↓) spin-polarized bands and
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τ = 1 (τ = −1) for the K (−K) valley, for τ s = 1, one finds

�(0,±,s)
z (q,Ug) = ∓τ

2

(
γcc


cb + Ug

)2

f
3/2
1 (q,Ug),

(D3a)

�(1,1,±,s)
z (q,Ug) = ±τ

2

(
γ3

δEbg

)2

λ
(s)
3 (Ug)f 1/2

1 (q,Ug),

(D3b)

while for τ s = −1,

�(0,±,s)
z (q,Ug) = ∓sign(Ug − 
cb)

×τ

2

(
γcc


cb − Ug

)2

f
3/2
1 (q,−Ug),

(D4a)

�(1,1,±,s)
z (q,Ug) = ±sign(Ug − 
cb)

×τ

2

(
γ3

δEbg

)2

λ
(s)
3 (Ug)f 1/2

1 (q,−Ug).

(D4b)

Turning now to the calculation of the valley Hall conduc-
tivities, for concreteness we again take the K (τ = 1) valley.
When EF > 2(
cb + Ug) and therefore all four low-energy
CB bands are populated, one may write

σ̃
(0)
v,H = σ̃

(0,↑)
v,H + σ̃

(0,↓)
v,H

=
∑
n=±

∫
dq

(2π )2

[
f (↑)

n (q) �(0,n,↑)
z (q)

+ f (↓)
n (q) �(0,n,↓)

z (q)
]
, (D5)

σ̃
(1,1)
v,H = σ̃

(1,1,↑)
v,H + σ̃

(1,1,↓)
v,H

=
∑
n=±

∫
dq

(2π )2

[
f (↑)

n (q)�(1,1,n,↑)
z (q)

+ f (↓)
n (q)�(1,1,n,↓)

z (q)
]
, (D6)

where f
(↑,↓)
n (q) are Fermi-Dirac distribution functions. The

valley Hall conductivity is then given by σ 2H
v,H = e2

h̄
(σ̃ (0)

v,H +
σ̃

(1,1)
v,H ). Similarly, we may define σ

(0)
s,H = σ̃

(0,↑)
v,H − σ̃

(0,↓)
v,H and

σ
(1,1)
s,H = σ̃

(1,1,↑)
v,H − σ̃

(1,1,↓)
v,H . In terms of these quantities, the spin

Hall conductivity reads σ 2H
s,H = σ

(0)
s,H + σ

(1,1)
s,H .

We now explicitly calculate σ̃
(0,↑↓)
v,H and σ̃

(1,1,↑↓)
v,H . At zero

temperature, the integrals appearing in Eqs. (D5) and (D6) are
elementary. The upper limits of the integration, i.e., the Fermi
momentum q

(s)
F,±, s = ↑,↓ can be found from the dispersion

relations

EF = h̄2(q(↑)
F,±)2

2meff
±

√
(
cb + Ug)2 + (q(↑)

F,±)2γ 2
cc (D7a)

and

EF = h̄2(q(↓)
F,±)2

2meff
±

√
(
cb − Ug)2 + (q(↓)

F,±)2γ 2
cc. (D7b)

Using the notation x = Ug − 
cb, one finds

σ
(0)
v,H = 1

2

e2

h̄

εcc

2π
[f2(Ug) + sign(x)f2(−Ug)], (D8)

σ
(0)
s,H = εcc

4π
[f2(Ug) − sign(x)f2(−Ug)], (D9)

where f2(Ug) = 1√
(
cb+Ug )2+q2

F γ 2
cc

, qF =
√

2meff

h̄2 EF , and the

energy εcc is defined as εcc = 2meff

h̄2 γ 2
cc. Using the value forγcc =

0.071 eV Å that we obtained fitting our DFT band-structure
calculations and assuming, e.g., EF ∼ 10 meV, one finds
that typically qF γcc 
 |
cb ± Ug| and therefore q2

F γ 2
cc can be

neglected in f2(Ug) and f2(−Ug) (except when Ug − 
cb ≈ 0).
Regarding σ

(1,1)
v,H and σ

(1,1)
s,H , one obtains

σ
(1,1)
v,H = −1

2

e2

h̄
ρ2d

(
γ3

δEbg

)2

[λ(↑)
3 (Ug)[Ug + 
cb]

+ λ
(↓)
3 (Ug)[Ug − 
cb]], (D10)

σ
(1,1)
s,H = −1

2
ρ2d

(
γ3

δEbg

)2

[λ(↑)
3 (Ug)[Ug + 
cb]

− λ
(↓)
3 (Ug)[Ug − 
cb]]. (D11)

Here, ρ2d = meff/2πh̄2 is the two-dimensional density of

states per spin and valley, λ
(↑)
3 (Ug) = 1 + 3

4
(
vb−Ug )2+t2

⊥
δE2

bg

and λ
(↓)
3 = λ

(↑)
3 (−Ug). Note, that λ

(↑)
3 + λ

(↓)
3 = 2(λ3(0) +

3
4

U 2
g

δE2
bg

) = 2λ4(Ug) and λ
(↑)
3 − λ

(↓)
3 = −3
vbUg

δE2
bg

, hence for MoS2

typically λ
(↑)
3 + λ

(↓)
3 � λ

(↑)
3 − λ

(↓)
3 holds. Therefore terms that

are ∼λ
(↑)
3 − λ

(↓)
3 in Eqs. (D10) and (D11) can be neglected. By

repeating these calculations for the −K (τ = −1) valley, we
arrive to the results given in the main text.

Finally, we briefly discuss the Ug = 
cb case and for
concreteness, we consider the K valley. �(0,±,↑)

z and �
(1,1,±,↑)
z

[see Eqs. (D1a) and (D1b)] are smooth functions of Ug and
therefore one may write σ̃

(0,↑)
v,H = 1

2
εcc

2π
f2(
cb) and σ̃

(1,1,↑)
v,H =

− 1
2
cbρ2d ( γ3

δEbg
)2

λ
(↑)
3 (
cb). Assuming EF ∼ 10 meV, one

finds that typically qF γcc 
 2
cb and therefore f2(
cb) ≈
1

2
cb
and we may take λ

(↑)
3 (
cb) ≈ λ

(↑)
3 (0) = λ5 because


cb 
 
vb in MoS2.
Regarding the ↓ bands, since they are degenerate, only

�
(1,1,±,↓)
z is finite. We repeat the calculations and find

�(1,1,+,↓)
z = �(1,1,−,↓)

z ≈ 1

2

(
γ3

δEbg

)2

cb + 
vb

2δEbg

. (D12)

Strictly speaking, such term is also present for Ug �= 
cb, but
it was neglected in Eq. (D2b) because it is much smaller than
the one shown in Eq. (D2b). We have also neglected terms that
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are ∼q2. Using Eq. (D12) to calculate σ̃
(1,1,↓)
v,H , one obtains

σ̃
(1,1,↓)
v,H = 1

2

(
γ3

δEbg

)2

cb + 
vb

2δEbg

[
(q(↓)

F,+)2 + (q(↓)
F,−)2

4π

]
,

(D13)

where q
↓
F,± is determined by the dispersion relation EF =

h̄2(q(↓)
F,±)2

2meff
± γccq

(↓)
F,±. For EF ∼ 10 meV, one finds that σ̃ (1,1,↓)

v,H 

σ̃

(1,1,↑)
v,H ,σ̃

(0,↑)
v,H .
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