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Recent experimental studies of out-of-plane straining geometries of transition metal dichalchogenide (TMD)
monolayers have demonstrated sufficient band-gap renormalization for device application, such as single-photon
emitters. Here, a simple continuum-mechanical plate-theory approach is used to estimate the topography of TMD
monolayers layered atop nanopillar arrays. From such geometries, the induced conduction-band potential and
band-gap renormalization are given, demonstrating a curvature of the potential that is independent of the height
of the deforming nanopillar. Additionally, with a semiclassical WKB approximation, the expected escape rate
of electrons in the strain potential may be calculated as a function of the height of the deforming nanopillar.
This approach is in accordance with experiment, supporting recent findings suggesting that increasing nanopillar
height decreases the linewidth of the single-photon emitters observed at the tip of the pillar and predicting the
shift in photon energy with nanopillar height for systems with consistent topography.
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I. INTRODUCTION

Transition metal dichalchogenide (TMD) monolayers are
atomically thin semiconducting crystals boasting optically
active direct band gaps and strong spin-orbit coupling which
in turn introduces optically addressable spin-valley coupling
[1–4]. Chemically, semiconducting TMD monolayers are de-
scribed as MX2, consisting of one transition metal atom M =
Mo or W for every two chalcogen atoms X = S or Se arranged
in a staggered hexagonal two-dimensional (2D) lattice, similar
to graphene but with a broken inversion symmetry. This
allows for the electrons to possess the time-reversal symmetric
valley-isospin degree of freedom (K/K ′), whereas the broken
inversion symmetry opens a direct optical range band gap
about these valleys. Additionally, the transition metal atoms
introduce a strong spin-orbit coupling, correlating the spin
and valley degrees of freedom, forming twofold-degenerate
Kramers pairs |K ↑〉/|K ′ ↓〉 and |K ′ ↑〉/|K ↓〉. Since mono-
layer isolation, a number of possible devices exploiting the
novel spin-valley and 2D material physics have been theorized
and demonstrated. These include low-dimensional van der
Waals heterostructure field-effect transistors [5–7], photo-
voltaic systems, photodetectors [8–10], as well as spintronic
[11–13] and valleytronic [14–16] devices.

Several standard material manipulation and combination
techniques have already become part of the standard toolbox
of monolayer engineering, including metal electrode gating
and layered heterostructure composites [5–8,10–16]. Recently,
a number of studies into out-of-plane straining as a novel
manipulation technique have been experimentally investigated
for deterministically implementing quantum light sources
[17–19]. Similar to other low-dimensional crystals, such as
graphene and hexagonal boron nitride, TMDs exhibit great
flexibility and mechanical strength. It is known that TMD
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monolayers can withstand tensile strain up to the order of
10% [20] before rupture, thus the ongoing interest in TMDs
for flexible substrate technologies [21,22]. As such, there
have been notable density functional theory (DFT) studies
into the electronic response of TMD monolayers to tensile
strain [23,24]. Interestingly, it is believed that all TMD species
form a type-II quantum well (electron confining but hole
repulsive) of the conduction and valence bands under strain
with the exception of WSe2 which forms type-I quantum dots
(QDs) (electron and hole confining). One noticeable change
in the behavior of specifically sulphide semiconducting TMDs
(MS2) under strain is a direct to indirect band-gap transition
that has been observed at 2.5% tensile strain in WS2 [25] and
calculated to be at about 2% for MoS2 [23].

Single-photon emitters (SPEs) had previously been ob-
served in a TMD monolayer at strained defect points along
the edge of a monolayer flake [26]. With out-of-plane strain-
ing, this effect has now been shown to be deterministically
implementable by creating strain fields with an appropriate
renormalization of the band gap to funnel excitons to a given
location in WSe2 by placing the TMD on a substrate that
selectively deforms the monolayer. Similarly, it has previously
been suggested that an atomic force microscope (AFM) tip
may be used to strain MoS2 monolayers for electron collection
in photovoltaic devices [9]. It is clear that the flexibility, strain
band response, and durability of TMD monolayers opens up
the novel device implementation tool of strain manipulation by
exploiting the third dimension of a 2D material. Out-of-plane
strain field engineering has the potential to become part of the
standard toolbox of TMD device implementation to be used
as an additional tool to help manipulate the conduction and
valence bands. The potential for strain engineering for quantum
emitters is now well demonstrated, but a similar method could
be combined with other known manipulation techniques to
allow for hybrid strain-gated electronic devices.

It is the goal of this paper to develop a satisfying ap-
proximate analytical model of the TMD topography due to
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a deforming element, such as a nanopillar grown from a
substrate. Thereafter the strain-induced potentials from such
geometries will be calculated, and predictions of the band-gap
renormalization, single-particle energy spectra, and probabil-
ity of tunneling out of the strain-defined potential region will
be made.

This paper is structured as follows. An analytical description
of a TMD monolayer deformed about a nanopillar grown out
of a silica substrate is theoretically derived in Sec. II followed
by an analysis of the strain-induced potential from the derived
deformation in Sec. III. In Sec. IV the energy levels of electrons
confined by the strain-induced potential are given, and in Sec. V
the semiclassical WKB approximation is used to estimate
electron leakage from the given potentials. Finally, a discussion
of the possible devices single-particle strain-induced potential
wells allow is provided in Sec. VI, and a summary of the
presented paper is given in Sec. VII.

II. DEFORMATION TOPOGRAPHY

In this paper we calculate the out-of-plane deformation
topography of the TMD monolayers layered atop nanopillars
using continuum-mechanical plate theory. The full set of
elastostatic equilibrium equations [27] assuming rotational
symmetry are
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where ζ is the deformation coordinate (height field) of the
TMD, χ is the stress function, h is the thickness of the TMD,
E is the Young’s modulus, P is the externally applied force
per unit area, and D is the flexural rigidity of the TMD defined
as

D = Eh3
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, (2)

where σ is Poisson’s ratio. The stress function χ is defined as
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where u = (ur,uθ ) is the displacement vector. Note that
� = ∇2 where � is the Laplacian operator and ∇ is the
gradient whereas �2 is the biharmonic operator. The first of
these equations (1a) is derived from energetic considerations
whereas the second (1b) describes the stress-strain relation-
ship. In this paper, we study similar topographies to those
used in experiments where the TMD monolayer is passively
strained (lacking clamping of the edges and allowing for elastic
equilibrium). In such a regime, the contribution from the stress
function to the overall strain in the TMD will be five orders
of magnitude lower than that of the contribution from the
height-field topography. As such, a pure bending regime is
assumed where the elastostatic equations may be simplified to

D�2ζ − P = 0, (4)

where (1b) may no longer be satisfied.

There are a number of choices for force per unit area to be
considered; P = 0 with boundary conditions, van der Waals
attraction between the TMD and the substrate [28],

PVDW = HTMD-Sub

(h/2 + ζ )3
, (5)

where HTMD-Sub is the Hamaker constant between the choice
TMD and substrate and a constant force per unit area P = Pc

approximation. The van der Waals force topography may be
calculated numerically whereas the height fields of the P = 0
and P = Pc models may be exactly solved to give
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and
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respectively, where H is the height of the deforming nanopillar,
i.e., the height at which the TMD is held at at the origin, R is
the tenting radius, i.e., the radius at which the TMD meets the
substrate, and β is defined as

β = Pc

64D
= 3Pc(1 − σ 2)

16h3E
. (8)

Both of these models for the height field assume “clamped”
boundary conditions ∂rζ (r)|r=0,R = 0. The values of R and H

need to be assumed for the P = 0 model as all mechanical
properties of the TMD are lost, whereas for the P = Pc model
the relationship between R and H is given as R = 4

√
H/β.

Figure 1 demonstrates the difference between the topogra-
phies given by the three proposed P functions. As is evident,
the P = Pc model aligns well with the P = PVDW model close
to the origin (where electron confinement takes place) whereas
close to the tenting radius the P = Pc model aligns with the
P = 0 model. As such, the P = Pc will be used to give a
reasonable analytical approximation to experimental works
which we aim to model.

FIG. 1. Two-dimensional radial deformation topography of WSe2

derived from the P = 0 (purple line), P = Pc (blue line), and P =
PVDW (red line) assuming a nanopillar height of 135 nm with a tenting
radius of 400 nm as chosen from experimental examples [17].
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FIG. 2. Height-field ζ (x,y) as a function of the x and y coordi-
nates on the TMD plane of a WSe2 monolayer layered atop a 200 nm
tall nanopillar.

This paper will focus on the TMD monolayer species of
MoS2 and WSe2. WSe2 is considered since it has been the
focus of past TMD strain experiments [17–19] that measured
quantum emitters in strained regions of the monolayer. WSe2’s
optical response on- and off-resonance may be greatly en-
hanced [29] and, as has been shown in DFT studies [23],
exhibits exciton funneling under strain. MoS2 is also con-
sidered as this material has been studied for its possible
spintronic and valleytronic applications, such as quantum dots
[30] for quantum information [4,31], due to its relatively small
spin-orbit splittings. Values for the Young’s modulus [32,33],
Poisson’s ratio [34,35], and layer thickness [36,37] are all taken
from mechanical experiments, whereas a reasonable value for
the applied force is approximated from the tenting radii of a
nanopillar strained TMD experimental study [17].

A deformation topography of WSe2 and MoS2 may be
drawn (Fig. 2) and compared (Fig. 3), deformed by nanopillars
within the height range of 50–200 nm. This range has been
chosen to coincide with the experimental possibilities for
nanopillar growth and should not strain the monolayers to
the point of perforation. These topographies will lay the
foundation for the band-gap renormalization and conduction-
band potential calculations performed below.

FIG. 3. Two-dimensional radial deformation topography of WSe2

(solid lines) and MoS2 (dashed lines) monolayers layered atop
nanopillars of heights 50 nm (black lines), 100 nm (purple lines),
150 nm (blue lines), and 200 nm (red lines).

FIG. 4. Radial dependence of the strain-induced potential in the
conduction band of WSe2 monolayers deformed by nanopillars of
heights 50 nm (black line), 100 nm (purple line), 150 nm (blue line),
and 200 nm (red line). The curvature of the potential is unaffected by
the pillar height whereas the depth depends on the height.

III. STRAIN-INDUCED POTENTIAL

With the deformed TMD monolayer topography derived
in (7), the strain-induced potential is given as [38]

V =
(

δvD 0
0 δcD

)
, (9)

where δc and δv are the strain response parameters for the
conduction and valence bands, respectively, and D is the trace
of the strain tensorD = Tr[εij ]. In plate theory, the strain tensor
is defined as [27]
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Using the above, D = Tr[εij ] may be simplified to

D = (2σ − 1)h

1 − σ
�ζ. (11)

Therefore, the strain-induced potential in the conduction
and valence bands from the derived topography has the fol-
lowing (truncated) harmonic form:

Vc/v(r) =
{

− 8hδc/v (2σ−1)(2r2β−√
Hβ)

σ−1 , r � R,

0, r > R.
(12)

Notably, as can be seen in Fig. 4, the height of the de-
forming nanopillar does not affect the curvature of the induced
potentials in the conduction and valence bands, yet does affect
the overall band-gap shift (Fig. 5) and potential-well depth
(Fig. 4), i.e., the difference in potential between r = 0 and
r > R. Although our assumptions are modest, this result aligns
with experiment [17] where the linewidth of single-photon
emitters observed at the tip of deforming nanopillars was
shown to scale with nanopillar height. In the experiment no
discernible relationship between the nanopillar height and the
emitted photon energies was observed, most likely due to
the uncontrolled topographical variance between the observed
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FIG. 5. Strain-induced potential-well height �V = V (r > R) −
V (r = 0) in the conduction band (solid lines) and band-gap shift
�Ebg = Ebg − [Vcb(r = 0) − Vvb(r = 0)] (dashed lines), induced by
deforming nanopillars of height H for WSe2 monolayers (red lines)
and MoS2 monolayers (black lines).

strain-induced quantum emitters. However, although the shifts
in photon energy compared to unstrained monolayers seen
experimentally are approximately equal to those predicted by
the band-gap renormalization calculated, if the experimental
systems offered greater consistency in topography with varying
nanopillar height, we predict that there should be a shift in the
photon energy by the predicted band-gap shift shown in in
Fig. 5.

The quadratic form of this potential also allows for further
extrapolations of the properties of the strained potential wells to
be performed, such as an estimation of single-particle energy
spectra and expected leakage. Other tight-binding approach
studies of strain in TMDs [38,39] have shown the rise of
fictitious gauge fields acting like pseudomagnetic fields on
the plane of the monolayer due to curvature. In the systems
considered here, this effect may be treated as a perturbation, as
for these curvatures, the effective magnetic-field energy is on
the order of ∼μeV, which is a few orders of magnitude below
the confining potentials considered here.

IV. FOCK-DARWIN ENERGY LEVELS

From DFT studies [23], the behavior of the conduction
and valence bands under strain for the four most common
TMD species (MX2 with M = Mo, W and X = S, Se) is well
characterized. Notably, WSe2 is the only compound which
exhibits hole attraction, i.e., an increase in the valence-band
energy about the K(K ′) point, under strain. Conversely, the
other three TMD species are believed to demonstrate hole
repulsion, i.e., an increase in the valence-band energy at the
K(K ′) point, under strain. This is partly why WSe2 has been
the material of choice of optical strain experiments searching
for quantum emitters in determined strained regions as the
strain potential shape of both bands should allow for exciton
funneling to a strain maximum. It can also be argued that
strain-induced single-particle devices, such as quantum dots
may be implemented in the other TMD types, such as MoS2

[9] due to the hole repulsion.

Here we calculate the single-particle energy spectra of the
strain-induced quantum dots, given deformed topography and
induced strain potential described in Secs. II and III, in the
presence of an external magnetic field. We begin by assuming
the potential depth of the well described in (12) to be deep
enough that a harmonic potential may be assumed. Then the
Fock-Darwin energy levels of the quadratic portion of the
potential may be obtained from the single-particle energy
given by seven-band k · p theory analysis of an electron in a
perpendicular magnetic-field B confined in a TMD monolayer
[4], combined with the band-gap shift of (12). Thus the single
band electron energy E

τ,s
n,l in a strain-induced potential with an

external magnetic field is given as

E
τ,s
n,l = EFD + ESO + ETRSV + EZS, (13)

where τ = ±1 labels the valley-isospin K(K ′), respectively,
s = ±1 labels the electron spin ↑ (↓) along the z direction,
respectively. In 13, EFD gives the Fock-Darwin energy levels
of a 2D harmonic potential quantum dot defined by the strain
potential,

EFD = (n + 1)

√
(h̄ω

τ,s
c )2

4
− 32h̄2hβδc(2σ − 1)

m
τ,s
eff (σ − 1)

− h̄ωτ,s
c l

2
+ 8hδc(2σ − 1)

√
Hβ

σ − 1
, (14)

where ωτ,s
c is the cyclotron frequency given by the valley- and

spin-dependent effect massm
τ,s
eff . ESO gives the energy splitting

due to spin-orbit coupling of the Kramers pairs,

ESO = τs�cb, (15)

where �cb is the splitting in the conduction band about the
K(K ′) points. ETRSV gives the of the valley degeneracies due
to the violations of time-reversal symmetry,

ETRSV = (1 + τ )sgn(B)

2
h̄ωτ,s

c , (16)

and finally EZS gives the valley and spin Zeeman splittings,

EZS = μBB

2
(τgv + sgs), (17)

where gv is the valley-Zeeman splitting g factor and gs is the
spin-Zeeman splitting g factor. The quantum numbers are the
principal quantum number n = 0,1,2, . . ., which is defined as
n = 2nr + |l| with the radial quantum number nr of the wave
function and the azimuthal quantum number l = −n, − n +
2, . . . ,n − 2,n.

The energy spectra with out-of-plane magnetic field of the
first few states in MoS2 is shown in Fig. 6. The larger spin-
orbit splitting and lower magnetic response in WSe2 give rise
to a relatively unchanged magnetic spectrum when compared
to other confinement methods in TMD monolayers. However,
the MoS2 levels demonstrate greater magnetic sensitivity than
those derived for quantum dots assuming a hard wall potential
of electrostatic gating [4] with clear Landau levels present at
magnetic-field strengths of ∼5 T.

Notably, the energy spectra depicted here are calculated
with constants mimicking previous experimental setups [17].
As such, the dots assumed are particularly large (∼1 μm in di-
ameter), which limits some of their potential for single-particle
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FIG. 6. Fock-Darwin energy spectra with external perpendicular
magnetic-field B of an electron confined within the strain-induced
potential well of an MoS2 monolayer deformed by a nanopillar of
height 200 nm up to n = 2, l = ±2,0. Here, the K(K ′) states are
given by the black (red) lines and the ↑ (↓) states are given by the
solid (dashed) lines.

applications and scalability. In Sec. VI, possible methods of
maintaining the spectra shown here for topographies more
conducive to dot applications are discussed.

V. STATE LEAKAGE

One important comparison that needs to be made when
comparing strain-induced potential wells in TMDs with other
confinement methods is the state leakage probability. Demon-
stration of low leakage confinement by just out-of-plane
straining of the monolayer crystal would open up the discussion
for strained TMDs for quantum dots, whose purposes extend
past SPEs, to single electron dots that may be coupled to
other dots in a strain array for quantum information purposes.
The transmission of an electron through a potential barrier,
such as the ones discussed in this paper may be calculated
by the semiclassical WKB method. The unitless transmission
coefficient T is given in the following form:

T
τ,s
n,l = exp

[
− 2

h̄

∫ R

r0

√
2m

τ,s
eff

[
V (r) − E

τ,s
n,l

]
dr

]
, (18)

where r0 is the radial coordinate of the classical turning point
at which (12) yields V (r0) = 0, below which tunneling is not
allowed, and above which the WKB approximation is valid.
The full form of r0 is given as follows:

r0 =
√√

H

2β
+ E

τ,s
n,l (σ − 1)

16hβδc(1 − 2σ )
. (19)

As can be seen from Figs. 7 and 8, the transmission coeffi-
cient of electrons out of the potential well in the classically
allowed region (E > 0) is a function of the height of the
deforming nanopillar exhibits a sharp cutoff point at which
the electron may be assumed to be well confined. This sharp
dependence of confinement with the nanopillar height aligns
well with experimental results demonstrating the decreased
SPE linewidth with increased nanopillar height [17]. As is

FIG. 7. Transmission coefficient of electrons in the |K↓〉, n = 0,

l = 0 state with magnetic-fields B = 0 T (black line), B = 2.5 T
(purple line), B = 5 T (blue line), and B = 10 T (red line) in potential
wells induced by nanopillars of heightH in WSe2 monolayers as given
by the Fock-Darwin energy levels.

also visible in Fig. 7 the WKB approximation breaks down
at T ≈ 1.

For states below the classically forbidden region (E < 0),
the potential well, no tunneling outside the strained area should
occur, unless aided by some thermal process. For MoS2 this
is very promising, as theoretically these strained dot arrays, if
prepared properly and held at a sufficiently low temperature,
should demonstrate low leakage. Additionally, the potential
well depth may be tuned for state selection. If the height of
the nanopillar is chosen such that the ground-state energy of
one of Kramers pairs lies below the external zero-energy line,
whereas the opposite Kramers pair lies above the line, with
time, the dot will deliberately leak the unwanted Kramers
pair, isolating only the desired Kramers pair. Additionally,

FIG. 8. Transmission coefficient spectrum of electrons in MoS2

monolayers of energies E in potential wells induced by nanopillars
of height H .
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an external magnetic field may be applied perpendicular to
the dot to further tune the dot to confine only one spin-valley
combination within the low-energy Kramers pair. This state
selection process may be difficult in MoS2 since due to the
relatively low spin-orbit splitting, high precision in the process
may be required. However, TMD monolayers, such as WX2

where the spin-orbit splitting is an order of magnitude greater
and hole repulsion due to strain is still present, this Kramers
isolation energy alignment may more easily be attained.

This demonstration of possible low leakage confinement
in strain dots may be the key to opening up the possibility
of strain-defined technologies in the TMD monolayers. For
example, if an array of confining nanopillars may be grown
underneath a TMD monolayer with patterned electronic gates
atop the TMD, the strain would confine the electrons in the
dots, whereas the gates may be used for local potential offsets
to tune the coupling between each of the dots.

VI. DISCUSSION

Many possible electronic, photonic, spintronic, and val-
leytronic applications of TMD monolayers are in discussion as
these materials offer a number of interesting physics. Strain-
induced potential engineering is quickly becoming one of the
many tools available for device implementation. Strain-defined
quantum dots and wires in the monolayers can be used in com-
bination with other confinement techniques, such as electronic
gating and patterned etching or cutting of the monolayers.
Additionally, strain engineering is also compatible with van
der Waals few-layer heterostructure devices. This extensive
toolbox of device engineering may allow for a new dimension
of TMD devices to be explored. Here, we discuss the possibility
of hybrid device implementations, building on the notion of
strained well arrays introduced in Sec. V.

The previously introduced idea of an electrically tunable
quantum dot array strained by nanopillars does present some
problems, primarily; how would gating such an array affect
the exploited mechanical properties of the TMD monolayer?
Traditional metal contacts deposited on the TMD will certainly
give regions of counterproductive stiffness to the monolayer,
either limiting the strain response exploited in this paper,
or increasing the probability of perforation or rupture. One
possible solution is the replacement of the metal contacts
with van der Waals heterostructure contacts. Some realizations
of TMD-gated devices have used separate graphene sheet
contacts either side of the device to tune the potential in lieu of
or as intermediate interface with metal contacts [40,41]. These
heterostructure would impact the mechanical properties to a
certain extent, stiffening the Young’s modulus and Poisson’s
ratio, but not enough to nullify the results presented here, addi-
tionally, the heterostructure should not affect the likelihood of
monolayer damage. Positioning will be key in implementing
a hybrid heterostructure gated-strain dot array, such as to
correctly align nanopillars with the contacts. Thus, thin-finger-
like graphene nanoribbons or even carbon nanotubes contacts
would provide a positioning challenge while reducing the risk
from perforation that etching provides.

If two nanopillars are placed close together with a TMD
layered above them, the resulting potential would resemble
two anharmonic wells with a near-square potential barrier of

FIG. 9. Cross section along the x axis of the height-field ζ (dashed
line) and potential V (solid line) induced in a WSe2 monolayer by
two 200-nm-high nanopillars separated 200 nm apart centered at r =
(±100 nm,0).

width equal to that of the distance between the nanopillars
(Fig. 9). If carbon nanotube contacts are placed atop the TMD
in between the nanopillars and on either side of the central
strained region, then these contacts may be used to tune the
barrier height between the two wells. In WSe2 such a device
could have interesting quantum optical applications. As it
is known that similar strained regions in WSe2 demonstrate
quantum emitters, two dots joined by a tunable tunneling
barrier would allow for a switchable coupling of the emitted
photons from the device. A similar principle could be used with
a MoS2 single-particle quantum dot where a variable potential
may be used tune the coupling constant of the dots, a necessary
feature in scaling semiconducting spin or Kramers qubit imple-
mentations. This would allow for control over a quantum dot
array while eliminating some of the charge noise compared to a
similar system that is purely electrically confined [42] as fewer
metallic gates would be needed to implement such a scheme.

The paper presented has focused on passively straining
monolayer specifically with nanopillars grown from silica
substrates. This method has been demonstrated to be useful
for exciton coalescing, allowing for arrays of deterministically
placed quantum emitters. For single-particle quantum dot
applications, the width of such purely strain-induced wells
may be too wide (∼500 nm) and the well depths too shallow
(∼70 meV) to be experimentally useful. However, the method
discussed in this paper is only straining the monolayers up to
∼0.5% as calculated from the trace of the strain tensor. This is a
very comfortable level of strain for a TMD monolayer as these
materials should be able to withstand straining up to ∼10%
before rupture and ∼2% before transitioning to an indirect
band gap in XS2-type monolayers. More active straining of
the TMDs could be implemented to engineer deeper smaller
dots but only up to these material limits. One method of
doing so while still using a nanopillar system could be from
material selection of the substrate to foster greater van der
Waals attraction between the substrate and the TMD or by
electrostatic attraction of the TMD to a back gate underneath
the substrate [43]. These methods have good compatibility as
they allow for degrees of control over the system parameter
β = H/R4. AFM tip straining is another proposed method
of tunable active straining for the TMD QD definition. This
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method offers a more addressable height to the radius ratio
of the dot at a greater risk of perforation and may not be as
compatible with the on-chip hybrid systems discussed.

An additional possibility of hybrid implementation is im-
purity compensation in the TMD QD implementations. Ex-
perimentally, lattice defect density in the TMD monolayers is
still problematic, randomly distributing local potential minima
within a gated dot region. Similar to using such strained
systems to deterministically place SPEs as opposed to rely
on randomly distributed lattice defects, an additional layer of
strain potential within a gated dot would limit the effect of the
random strain defects.

Deterministic straining in combination with more conven-
tional low-dimensional device control methods could poten-
tially open up more device possibilities or improved implemen-
tations of devices in TMD monolayers. This further addition
to the toolbox of low-dimensional material manipulation may
help further bolster the already fertile field next-generation
TMD-based technologies.

VII. SUMMARY

In this paper, an analytical description of the deformation
topography and strain-induced potentials in monolayer TMD

over nanopillars is derived from continuum-mechanical plate
theory. We find a potential-well shape that is independent of
the pillar height and a sharp drop-off of electron leakage with
nanopillar height as given by a WKB theory analysis, matching
observations in experiment while predicting the energy depen-
dence of the emitted photons with nanopillar height. It can then
be argued that the resulting strain potentials from such a setup
have further use in hybrid design TMD devices, offering an
additional layer of manipulation to a rapidly advancing field
of technology. We propose a simple double quantum dot setup
using adjacent nanopillars deforming a TMD with conducting
graphene heterostructure contacts allowing a tunable coupling
between two dots with fewer gates and thus lower electrical
noise than conventional semiconducting quantum dot arrays
and a method of compensating for lattice defects with con-
trolled strain within a traditionally gated TMD QD.
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