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Dispersive readout of valley splittings in cavity-coupled silicon quantum dots
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The band structure of bulk silicon has a sixfold valley degeneracy. Strain in the Si/SiGe quantum well system
partially lifts the valley degeneracy, but the materials factors that set the splitting of the two lowest lying valleys
are still under intense investigation. Using cavity input-output theory, we propose a method for accurately
determining the valley splitting in Si/SiGe double quantum dots embedded in a superconducting microwave
resonator. We show that low lying valley states in the double quantum dot energy level spectrum lead to readily
observable features in the cavity transmission. These features generate a “fingerprint” of the microscopic energy
level structure of a semiconductor double quantum dot, providing useful information on valley splittings and
intervalley coupling rates.
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I. INTRODUCTION

Silicon is a promising material system for spin-based
quantum information processing due to weak spin-orbit and
hyperfine couplings [1]. Electron spin lifetimes as long as
T1 = 3000 s were measured as early as 1959 in phosphorous
doped silicon [2]. In natural abundance silicon, electron spin
coherence times T2 = 60 ms have been reported [3]. Isotopic
enrichment has extended the quantum coherence time to
T2 = 10 s [4]. Moreover, the ability to dope silicon with a
wide range of donors and acceptors is particularly exciting,
as heavy elements such as 209Bi (with nuclear spin quantum
number I = 9/2) have a complicated energy level structure
that results in so-called “clock transitions” that are first-order
insensitive to magnetic field fluctuations [5]. Coupling to the
nuclear spin of a single phosphorous donor also allows access
to an additional quantum degree of freedom that can be used
as a long-lived quantum memory [6,7].

In terms of its ability to support quantum coherence, the
trajectory of the silicon material system is quite impressive [8].
On the other hand, silicon presents severe materials challenges
in quantum devices, where control at the level of single
electrons is desired. Electrons confined in Si/SiGe quantum
wells have an effective mass m∗ = 0.19 me (roughly three
times larger than the GaAs/AlGaAs quantum well system),
where me is the free electron mass [9,10]. As a result, Si
quantum devices must be significantly smaller than their GaAs
counterparts to achieve similar orbital excited state energies.
Over the past several years, the effective mass challenge has
been effectively solved through the development of novel
overlapping gate architectures, and the isolation of single
electrons in accumulation mode Si/SiGe quantum dots (QD)
is becoming routine [11–15].

A major remaining challenge is to understand the factors
that limit the valley splitting in silicon [16]. The bulk electronic
band structure of Si has six equivalent minima (termed valleys)
that are located 0.85 of the way from the Brillouin zone edge
[9]. In Si/SiGe quantum well systems, the 4% larger lattice
constant of Ge strains the Si quantum well, raising in energy
the four in-plane �4 valleys and lowering in energy the two
perpendicular-to-the-plane �2 valleys [10]. In view of the
interplay between the spin and valley degrees of freedom in

multielectron systems [17], the ability to probe and, ultimately,
control the splitting between the remaining quasidegenerate
valleys in Si/SiGe quantum well systems represents an
urgent challenge on the way towards scalable spin qubits in
Si/SiGe QDs.

Theory suggests that the vertical electric field sets the
overall scale of the valley splitting [18]; a prediction that
has been experimentally verified in Si MOS (metal-oxide-
semiconductor) QDs [19]. However, in the Si/SiGe system, the
valley splitting is known to substantially vary in QD devices
fabricated on the same heterostructure. Work by Borselli et al.
reports valley splittings in the range of 120 to 270 μeV
[20]. In recent work by Zajac et al., valley splittings in the
range of 35–70 μeV were extracted in the same multiple
QD device [14]. Measurements by Shi et al. show that the
valley splitting can be tuned by using gate voltages to laterally
shift the position of the electronic wave function in the
two-dimensional electron gas [21]. These experiments suggest
that the microscopic structure of the QD system (interface
roughness, step edges, etc.) plays a strong role in determining
the valley splitting [22]. Unfortunately magnetospectroscopy
measurements are time consuming to perform and the data
can often be ambiguous, especially when the valley splitting
is of the order of kBT , where kB is Boltzmann’s constant
and T is the electron temperature. Therefore, the develop-
ment of new probes of valley splitting will benefit the QD
community.

In this paper we propose a cavity-based measurement
of the low lying energy level structure of few-electron
semiconductor double quantum dots (DQD) in the circuit
quantum electrodynamics (cQED) architecture. Hybrid DQD-
cQED systems have been used to demonstrate electric dipole
couplings g0/2π ranging from 10 to 100 MHz [23–26],
quantum control and readout of spin-orbit qubits [25], and
spin-photon coupling [27]. In essence, these experiments probe
the electric susceptibility χ of a mesoscopic system with a
sensitivity well beyond that of a single electron [28]. The
susceptibility is the largest at a DQD interdot charge transition,
where a single electron can tunnel from the left dot to the right
dot, resulting in an electric dipole moment that is roughly
1000 times larger than in atomic systems [24]. Here we show
that the low lying valley structure of a few electron Si/SiGe
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QD is directly accessible in a hybrid cQED system. The
amplitude response of the cavity generates a fingerprint of
the DQD energy level structure, providing not only access to
the energy level splittings, but also the interdot and intervalley
coupling rates. We model the system response using realistic
parameters that should be accessible in future experiments.
While our theory is focused on valley-orbit coupled states, we
note that coupling of the spin degree of freedom to a cavity
can be achieved via gradient magnetic or hyperfine fields in
double quantum dots [29], ferromagnetic contacts coupled
to double quantum dots [30], the interplay of exchange and
spin-orbit coupling in antiferromagnetic molecular magnets
[31], cavity-field-dependent tunneling between quantum dots
[32], direct magnetic coupling [33], and via spin-orbit coupling
for electron spins [34,35] and hole spins [36].

II. MODEL

A. Cavity-coupled double quantum dot

Figure 1(a) illustrates the proposed experimental system.
A DQD containing a single excess electron is electric-dipole
coupled to a high quality factor superconducting resonator. We
model the DQD as a four-level system consisting of the left
dot ground state |L〉 = |(1,0)〉, left dot excited state |L′〉 =
|(1′,0)〉, right dot ground state |R〉 = |(0,1)〉, and right dot
excited state |R′〉 = |(0,1′)〉. The left dot valley splitting EL =
E|L′〉 − E|L〉 is often different than the right dot valley splitting
ER . The energy difference between the left dot ground state
|L〉 and the right dot ground state |R〉 is set by the detuning ε.
In general, this system could be used to measure a variety of
low lying excited states, such as orbital excited states, valley
states, and Zeeman split states [27]. We focus on the Si/SiGe

FIG. 1. (a) A cavity-coupled DQD is probed using a small input
field ain with frequency ωR . Charge dynamics in the DQD result
in changes in the transmitted field aout. The DQD is coupled to
source (S) and drain (D) electrodes. (b) DQD energy levels plotted
as a function of energy level detuning ε. In general, the left dot
valley splitting EL is different than the right dot valley splitting
ER . For this plot, EL = 76 μeV, ER = 58 μeV, t = 25 μeV, and
t ′ = 13 μeV.

QD system, where valley splittings are typically <200 μeV in
energy [14,20].

The cavity field is sensitive to charge dynamics in the
DQD due to the large electric dipole coupling that is achieved
in cQED systems [24]. In typical experiments, the cavity is
probed by driving it with an input field ain with frequency
ωR and detecting the transmitted field aout. Measurements
of the cavity response provide useful information about the
mesoscopic systems (e.g., a quantum dot) embedded in the
cavity [23,37]. Both the amplitude and phase of the transmitted
signal provide useful information. As an example, sequential
tunneling through a voltage biased DQD was recently shown
to result in microwave frequency amplification, such that
|aout/ain| > 1 [38–40].

For the one-electron case probed here, the spin does not play
any role. Applying a Zeeman field will result in two avoided
crossings for every avoided crossing in the spinless model.
However, the low-energy avoided crossing involving the spin-
down states and the high-energy avoided crossings involving
the spin-up states will be centered at the same value of ε,
giving a cavity response that is nearly identical to a spinless
system. Despite the irrelevance of spin for the one-electron
system, the information gained from the described readout
of valley splittings will have important consequences for the
two-electron case, where the exchange coupling between two
electrons couples both spins and valleys [17]. The interplay
between spin and valley also manifests itself in the Pauli spin-
valley blockade [41].

B. Hamiltonian

We model the single electron Si/SiGe DQD using the
Hamiltonian

H̃0 =

⎛
⎜⎝

ε/2 + EL 0 t t ′
0 ε/2 −t ′ t

t −t ′ −ε/2 + ER 0
t ′ t 0 −ε/2

⎞
⎟⎠, (1)

which is expressed in the local valley eigenbasis |L′〉, |L〉,
|R′〉, |R〉. The valley eigenstates |L〉 and |L′〉 (|R〉 and |R′〉) of
the left (right) QD are split by the valley splitting EL (ER). In
general, the excited states may have a different projection onto
the ±z valley basis states (see the Appendix). Therefore, the
matrix elements that couple the four levels are distinct. The
states |L〉 and |R〉 are hybridized by the (intravalley) interdot
tunnel coupling t near ε = 0 while |L′〉 and |R′〉 are hybridized
near ε = ER − EL. The valley state |L′〉 (|R′〉) is coupled to
|R〉 (|L〉) by the intervalley matrix element t ′ leading to avoided
crossings near −EL (ER).

The DQD energy levels are plotted as a function of the
detuning parameter ε in Fig. 1(b). The left (right) dot energy
levels increase (decrease) in energy with increasing ε. In
Fig. 1(b) we take EL = 76 μeV, ER = 58 μeV, t = 25 μeV,
and t ′ = 13 μeV. For reference, the cavity frequency f0 =
7.8 GHz corresponds to an energy of 32 μeV.

C. Electric dipole coupling

We assume that the DQD is irradiated with a classical probe
field with angular frequency ωR . The probe field generates an
oscillating voltage inside the superconducting resonator. This
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voltage is directly coupled to the DQD detuning parameter,
making it time dependent: ε(t) = ε0 + δε cos(ωRt). Here ε0 is
a static energy level detuning, which can be slowly varied
in experiments using dc gate voltages. The parameter δε

describes the magnitude of the detuning modulation. The
interaction with the probe field thus gives rise to a term in
the Hamiltonian

H̃P = 1
2δε cos(ωRt)σz, (2)

where, in the same basis used in Eq. (1) above,

σz =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠. (3)

Here we have assumed that the electric dipole coupling is
valley independent. In principle, there could be an electric
dipole transition between the two valley states within each
dot separately. However, the dipole matrix element within
a single dot is much smaller than that for the transition
between two dots, and very likely too small to be observed.
Furthermore, such intervalley transitions within a single dot are
only relevant if by coincidence the probe frequency matches
the valley splitting in one of the dots, otherwise this transition
is off-resonant.

The coupling of the DQD to a single quantized mode of a
microwave cavity with resonance frequency f0 = ω0/2π can
be described as

H̃I = 2g0(a + a†)σz, (4)

where a† and a are the bosonic creation and annihilation
operators for the cavity photons and a + a† is proportional to
the electric field of the cavity mode. The cavity mode evolves
according to the Hamiltoninan H̃C = ω0a

†a in units where
� = 1. We take g0/2π = 30 MHz in what follows.

In order to describe the dissipative dynamics of the DQD-
cavity system, including its steady state, it is convenient to
work in the eigenbasis of H̃0. Writing U0 for the unitary
operator that diagonalizes H̃0, we have

H̄0 = U0H̃0U
†
0 =

3∑
n=0

Enσnn, (5)

where E0 � E1 � E2 � E3 are the ordered eigenvalues of
H̃0, σmn = |m〉〈n|, and |n〉 denotes an eigenstate of H̃0 with
eigenvalue En. The dipole operator σz then needs to be
transformed into the eigenbasis of H̃0,

D = U0σzU
†
0 =

3∑
m,n=0

dmnσmn, (6)

where the matrix elements dmn = d∗
nm determine the dipole

transition matrix elements between energy eigenstates. When
transforming the full Hamiltonian H̃ = H̃0 + H̃P + H̃C + H̃I

into the eigenbasis of H̃0, we have H̄ = U0H̃U
†
0 , where in H̄P

and H̄I the operator σz is replaced by D.
To remove the time dependence from our description, we

transform the Hamiltonian H̄ into a frame rotating at the
frequency ωR and make a rotating wave approximation. Note
that in a system with more than two levels, the choice of a

rotating frame is not unique; here we choose a rotating frame
that allows us to describe transitions between levels adjacent
in energy. The transition to the rotating frame can be described
using the unitary

UR(t) = exp

[
−it

(
ωRa†a +

3∑
n=0

nωRσnn

)]
. (7)

In the rotating frame we have

H = URH̄U
†
R + iU̇RU

†
R = H0 + HP + HC + HI , (8)

with

H0 =
3∑

n=0

(En − nωR)σnn, (9)

HP � 1

4
δε

2∑
n=0

dn+1,nσn+1,n, (10)

HC = �0a
†a, (11)

HI � 2g0

(
a

2∑
n=0

dn+1,nσn+1,n + H.c.

)
, (12)

where �0 = ω0 − ωR is the detuning between the cavity
resonance frequency and probe frequency. Here En and
dn+1,n = d∗

n,n+1 have to be obtained from the (numerical) di-
agonalization of H̃0. The Hamiltoninan described by Eqs. (8)–
(12) forms the basis of the following theoretical analysis of
the dispersive readout of the valley splitting in a DQD.

III. INPUT-OUTPUT THEORY

The response of the DQD system to a microwave probe
field can be determined using input-output theory [42]. We
begin by finding the stationary solution for the equations of
motion of the operators a and σn,n+1 in the Heisenberg picture,
ȧ = i[H,a] and σ̇n,n+1 = i[H,σn,n+1], including the relevant
dissipative terms,

ȧ = −i�0a − κ

2
a + √

κ1ain,1 + √
κ2ain,2

− 2ig0

2∑
n=0

dn,n+1σn,n+1, (13)

σ̇n,n+1 = −i(En+1 − En − ωR)σn,n+1 − γ

2
σn,n+1

+√
γF − 2ig0dn+1,n(pn − pn+1)a, (14)

where κ = κ1 + κ2 + κi is the total cavity decay rate, with κ1,2

the decay rates through the input and output ports, and κi the
internal decay rate. ain,1 and ain,2 denote the incoming parts
of the external field at the two ends of the cavity, and γ and
F are the decay rate and quantum noise within the DQD. For
simplicity we have assumed γ to be equal for all transitions and
temperature independent. In the following we assume a cavity
quality factor Q = f0/κ = 2500 and an electronic dephasing
rate of γ = 2.4 GHz. Although this is a conservative estimate,
we have checked that the relevant features in the transmission
coefficient are still visible for even stronger dephasing, γ =
5 GHz.
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A previous work considered the cavity-coupled dynamics
with the DQD restricted to the ground state energy level
[25]. Thermal population of low lying excited states may be
important in the Si/SiGe system due to small valley splittings.
To account for finite temperature effects, we have replaced the
operator σn,n by the occupation probability pn = 〈σn,n〉 of the
nth DQD level. We assume a thermal population of the DQD
levels with

pn = e−En/kBT∑
n e−En/kBT

. (15)

The stationary solution is found by setting σ̇n,n+1 = 0 in
Eq. (14), neglecting the quantum noise F , and solving for
σn,n+1, with the result

σn,n+1 = −2g0dn+1,n(pn − pn+1)

En+1 − En − ωR − iγ /2
a ≡ χn,n+1a, (16)

where we have introduced the electric susceptibility χn,n+1

pertaining to the n → n + 1 transition. Solving for a in the
stationary limit (ȧ = 0) and calculating the outgoing field
aout = √

κ2a, we find

A = aout

ain
= −i

√
κ1κ2

�0 − iκ/2 + 2g0
∑2

n=0 dn,n+1χn,n+1

, (17)

with the real-valued microwave transmission probability |A|2
and phase shift �φ = − arg(A), which represents the main
analytical result of this paper. In general, the cavity input port
is driven with a weak coherent microwave tone, i.e., ain = α

with the coherent-state amplitude α.

IV. RESULTS

Our goal is to extract information about the valley splittings
ER and EL, as well as the valley-dependent tunneling matrix
elements t and t ′, from measurements of the cavity trans-
mission. We expect that the electric dipole matrix elements
at the avoided crossings in Fig. 1(b) will lead to features in
the amplitude and phase of the microwave field transmitted
through the DQD. The distances between these four features
are determined by ER and EL, thus potentially allowing for
the extraction of those two parameters from the analysis
of the spectrum. For brevity, we restrict our discussion to
the cavity amplitude response. The phase response provides
similar information [25].

We first demonstrate that the cavity transmission is sensitive
to low lying valley states by evaluating the microwave
transmission probability |A|2 as a function of ε and T by
numerically diagonalizing H̃0 for every value of ε and filling
the states according to Eq. (15). A two-dimensional plot of
|A(ε,T )|2 is shown in Fig. 2(a). Figures 2(b) and 2(c) show cuts
through this plot at temperatures of T = 1 K and T = 250 mK.
At low temperatures, most of the population is in the DQD
ground state and correspondingly, only the lowest avoided
crossing near ε = 0 is visible. This avoided crossing results in
a reduction in the cavity transmission, as has been observed in
GaAs and InAs DQDs [24,25]. As the temperature is increased
the population of the higher-lying states increases following
Eq. (15) and these states start contributing to the cavity
response. The |L′〉 − |R〉 avoided crossing appears as a smaller

FIG. 2. (a) Microwave transmission coefficient |A|2 as a function
of the DQD detuning ε and temperature T . The vertical red dotted
lines indicate the anticrossings in the DQD spectrum (cf. Fig. 1). The
horizontal yellow lines indicate two cuts at temperatures T = 1 K
and T = 250 mK for which the transmission coefficient is plotted
separately in (b) and (c). The tunneling matrix elements between the
QDs are assumed to be t = 25 μeV, while those between opposite
valleys are t ′ = 13 μeV. The microwave resonator frequency is f0 =
ω0/2π = 7.8 GHz = 32 μeV and the probe field is on resonance with
the cavity ωR = ω0. The valley splittings are chosen as EL = 76 μeV,
and ER = 58 μeV.

dip around ε = −EL ≈ −80 μeV. Due to the smaller left dot
valley splitting, the |L〉 − |R′〉 avoided crossing has a larger
contribution to the cavity response, resulting in a deeper dip
in the cavity transmission around ε = ER ≈ 60 μeV. These
simulations demonstrate that valley states can be observed in
the cavity response.

We next show that the cavity response is sensitive to the
magnitude of the valley splitting. Figure 3 shows the cavity
transmission as a function of detuning and right dot valley
splitting. In these simulations the left dot valley splitting is
EL = 70 μeV and T = 250 mK. With ER = 0, the cavity
transmission is dominated by the |L〉 − |R〉 ground state
anticrossing and the |L′〉 − |R〉 anticrossing. Here the cavity
response is asymmetric with respect to ε = 0. As the right
dot valley splitting increases, a dip in cavity transmission is
observed, which is associated with the |L〉 − |R′〉 anticross-
ing. The competition between valley splitting and thermal
excitation becomes apparent as the valley splitting is further
increased because the cavity response is only sensitive to states
that are occupied. As a result, the dip in cavity transmission
that is associated with the |L〉 − |R′〉 anticrossing becomes
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FIG. 3. (a) Cavity transmission as a function of the interdot bias
ε and the right dot valley splitting ER , with EL = 76 μeV, f0 =
ω0/2π = 7.8 GHz = 32 μeV, ωR = ω0, t = 25 μeV, t ′ = 13 μeV,
and T = 250 mK. The horizontal yellow lines indicate two cuts at
valley splittings: (b) ER = 100 μeV and (c) ER = 10 μeV. The
vertical red dotted lines indicate the anticrossings in the DQD
spectrum (cf. Fig. 1) at ε = −EL and ε = ER; the other avoided
crossings are not shown due to their vicinity to the |L〉 − |R〉 avoided
crossing at ε = 0.

less pronounced with valley splittings beyond ≈150 μeV. A
second dip in the cavity response emerges for ε > 0 when
ER > 80 μeV. This feature is associated with the higher
lying |L′〉 − |R′〉 avoided crossing.

In semiconductor DQD charge qubit experiments the
interdot tunnel coupling can be tuned using electrostatic gate
voltages. Tunability of the tunnel coupling is observed in
charge sensing and photon assisted tunneling measurements
[43–45]. In contrast, little is known about the experimental
tunability of the intervalley coupling. We now show that the
cavity response is sensitive to changes in the intervalley matrix
element t ′. The cavity transmission is plotted as a function
of ε and t ′ in Fig. 4. Here the valley splittings are fixed at
ER = EL = 60 μeV, t = 25 μeV, and T = 250 mK. For
small values of t ′ the |L〉 − |R〉 ground state anticrossing
dominates the cavity response leading to a significant reduction
in the cavity transmission near ε = 0. The disappearance of
the side peaks for very small t ′ represents a limitation of
the presented method because it prevents the determination
of the valley splittings. This may be improved with lower
frequency resonators, e.g., using simple lumped circuits [46].
As t ′ is increased, the dispersive features associated with the
|L′〉 − |R〉 and |L〉 − |R′〉 anticrossings broaden and become

FIG. 4. (a) Cavity transmission as a function of ε and the
intervalley matrix element t ′. The horizontal yellow lines indicate
two cuts at intervalley tunnel couplings: (b) t ′ = 12 μeV and
(c) t ′ = 4 μeV. Here we use a fixed t = 25 μeV, EL = ER = 60 μeV,
and f0 = ω0/2π = 7.8 GHz = 32 μeV, ωR = ω0, T = 250 mK.
The vertical red dotted lines indicate the anticrossings in the DQD
spectrum (cf. Fig. 1).

more pronounced [see Fig. 4(b)]. The avoided crossings in the
energy level diagram begin to merge and are not well defined
for t ′ > 20 μeV. As a result, a broad dip is observed in the
cavity transmission, centered around ε = 0. These theoretical
predictions show that measurements of the cavity transmission
may lead to useful characterization of the intervalley coupling
rate.

As long as the local valley eigenstates of the individual QDs
do not differ too much from the ±z valley basis states, we can
expect that t ′ � t . However, one can envision other situations
where t ′ exceeds t , where, e.g., t ∼ 0 and t ′ > 0. In Fig. 5 we
have analyzed the cavity transmission for this case as a function
of t ′. There is no dispersive feature around zero detuning for
t ∼ 0 due to the absence of an avoided crossing between the
|R〉 and |L〉 charge states at ε = 0 and between the |R′〉 and
|L′〉 charge states at ε = ER − EL. The remaining two avoided
crossings with splittings 2t ′ at ε = −EL and ε = ER lead
to two dispersive features. For 2t ′ < f0, the probe frequency
matches the level spacing for a pair of values of ε to the left
and right of each of these anticrossings, thus the appearance
of two double peaks. These double peaks merge around the
resonance 2t ′ ∼ f0 and then fade out for 2t ′ > f0 where the
probe frequency becomes off-resonant with the DQD level
spacing.
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FIG. 5. Cavity transmission as a function of ε and the intervalley
matrix element t ′ for t ∼ 0. Here we use EL = ER = 60 μeV, and
f0 = ω0/2π = 7.8 GHz = 32 μeV, ωR = ω0, T = 250 mK. The
yellow horizontal line indicates t ′ = f0/2 where the double lines
merge into single lines. The vertical red dotted lines indicate the
anticrossings in the DQD spectrum (cf. Fig. 1).

V. CONCLUSIONS

cQED-based approaches to quantum information science
have been very productive [47]. They have allowed long-range
coupling of qubits, high fidelity readout of cavity-coupled
quantum devices, and investigations of mesoscopic physics. In
this paper we have demonstrated that the cQED architecture
can be used as a sensitive probe of low-lying valley states. For
realistic device parameters, the cavity transmission exhibits
dips that are associated with energy level anticrossings with
low lying valley states. The position of these dips in cavity
transmission yields the valley splittings. The temperature
dependence of the cavity response also gives information
on the magnitude of the valley splitting. Since the cavity
probes the susceptibility of the DQD, it is also sensitive to the
curvature of the energy levels, and can be used to extract the in-
tervalley matrix elements. Due to the high energy resolution of
narrow-band microwave spectroscopy, coupling Si/SiGe QDs
to microwave cavities may allow for efficient measurements
of valley splittings in an approach that is complementary to
existing approaches, such as magnetospectroscopy [20,48] or
the quantum Hall effect [49,50]. The method presented in this
paper can potentially be applied to probe the energy level
structure of different types of quantum dots, e.g., Zeeman
energies for spin sublevels in a gradient field [51] or spatially
varying g factors in strong spin-orbit systems [52].
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APPENDIX: VALLEY-DEPENDENT MODEL OF A
DOUBLE QUANTUM DOT

Here we derive our model Eq. (1) for a single electron in a
DQD with a single valley-degenerate orbital in each QD. We
start from a description of the DQD in a common valley basis
for both QDs because it allows us to formulate a model for
valley-preserving tunneling through the smooth electrostatic
barrier between the two QDs. We then obtain Eq. (1) by
changing into the local valley eigenbasis in each QD.

The state of the electron on the left (right) QD is denoted
|l〉 (|r〉), and we introduce the Pauli operators in this left-
right orbital Hilbert space as σz|l〉 = +|l〉 and σz|r〉 = −|r〉,
and σx |l〉 = |r〉, etc. The valley-independent part of the DQD
Hamiltonian can be written as

Hd = ε

2
σz + tcσx, (A1)

where ε represents the DQD energy detuning (bias) energy and
tc the interdot tunneling matrix element which we can choose
to be real.

The two low-energy valley states in the extended two-
dimensional electron system in a Si/SiGe quantum well are
denoted | ± z〉, and we introduce the corresponding valley
Pauli operators τ ′

z| ± z〉 = ±| ± z〉, τ ′
x | + z〉 = | − z〉, etc. The

most general two-level valley Hamiltonian for each of the
two individual QDs can then be written as δi · τ ′/2, where
i = l,r and δi is an arbitrary vector whose length determines
the bare valley splitting in QD i. Using the sum and difference
δ± = (δl ± δr )/2, we can write the valley Hamiltonian of the
DQD as

H ′
v = 1

2

∑
i=l,r

|i〉〈i| δi · τ ′ = 1

2
(δ+ + σzδ−) · τ ′. (A2)

Rotating the valley basis such that the common τz valley
quantization axis is parallel to δ+ and the τx axis along the
projection of δ− into the plane perpendicular to δ+, we find

H ′
v = δ

2
τz + 1

2
(δzτz + δxτx)σz. (A3)

Combining Hd and H ′
v , we obtain

H ′
0 = Hd + H ′

v =
(

HL tc1
tc1 HR

)
, (A4)

where 1 denotes the 2 × 2 identity matrix and

HL = ε

2
+ EL

2
+ EL

2

(
cos θL sin θL

sin θL − cos θL

)
, (A5)

HR = −ε

2
+ ER

2
+ ER

2

(
cos θR sin θR

sin θR − cos θR

)
, (A6)

with the valley splittings and angles

�L = δ + δz, (A7)

�R = δ − δz, (A8)
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EL,R =
√

�2
L,R + δ2

x, (A9)

tan θL,R = δx

�L,R

. (A10)

We have shifted the definition of ε by (EL − ER)/2 and
omitted an irrelevant constant energy shift by

√
δ2 + δ2

x , in
order to center the level crossing of the lower valley eigenstates
in the left and right QD at ε = 0 and zero energy. In order to
obtain Eq. (1), we rotate the valley basis about the y axis by θi

in QD i, using the transformation

U =

⎛
⎜⎜⎜⎝

cos θL

2 sin θL

2 0 0

− sin θL

2 cos θL

2 0 0

0 0 cos θR

2 sin θR

2

0 0 − sin θR

2 cos θR

2

⎞
⎟⎟⎟⎠, (A11)

and obtain

H̃0 =UH ′
0U

†=

⎛
⎜⎝

ε/2 + EL 0 t t ′
0 ε/2 −t ′ t

t −t ′ −ε/2 + ER 0
t ′ t 0 −ε/2

⎞
⎟⎠,

(A12)

with

t = tc cos

(
θL + θR

2

)
, (A13)

t ′ = tc sin

(
θL + θR

2

)
. (A14)

Here, since tc was chosen real, both t and t ′ will be real.
The Hamiltonian Eq. (A12) is expressed in the local valley
eigenbasis,

|L′〉 = |l〉
(

cos
θL

2
| + z〉 + sin

θL

2
| − z〉

)
, (A15)

|L〉 = |l〉
(

− sin
θL

2
| + z〉 + cos

θL

2
| − z〉

)
, (A16)

|R′〉 = |r〉
(

cos
θR

2
| + z〉 + sin

θR

2
| − z〉

)
, (A17)

|R〉 = |r〉
(

− sin
θR

2
| + z〉 + cos

θR

2
| − z〉

)
. (A18)
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