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Optimizing electrically controlled echo sequences for the exchange-only qubit
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Recently, West and Fong [New J. Phys. 14, 083002 (2012)] introduced an echo scheme for an exchange-
only qubit, which relies entirely on the exchange interaction. Here, we compare two different exchange-based
sequences and two optimization strategies, Uhrig dynamical decoupling and optimized filter function dynamical
decoupling, which were introduced for a single spin qubit and are applied in this paper to the three spin
exchange-only qubit. The calculation shows that the adaption of the optimization concepts can be achieved
by straightforward calculation. We consider two types of noise spectra, Lorentzian and Ohmic noise. For both
spectra, the results reveal a slight dependence of the performance on the choice of the echo sequence.
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I. INTRODUCTION

The concept of exchange-only quantum computation [1]
relies on all-electrical qubit control. Exchange-only qubits
are defined as two-dimensional subspaces of three electron
spins. Given the advantages of all-electrical control of these
qubits, it is important to investigate the possible decoherence
mechanisms and their mitigation using appropriate techniques.
While a homogeneous magnetic field of unknown strength
does not harm the qubit state, an inhomogeneous magnetic
field, which might occur due to nuclear spins in the host
material, can cause decoherence and leakage. In the case
of the resonant-exchange qubit [2,3], the degeneracy of the
qubit (and leakage) states is partially lifted by the always-on
exchange coupling. In an external magnetic field, the leakage
can be suppressed completely and dephasing may be corrected
by an echo sequence resembling the single spin qubit spin
echo [4]. For the degenerate exchange-only qubit, the situation
is more complicated due to the existence of a leakage state
[5]. Applying spin-echo techniques to each spin individually
is not favorable as this requires magnetic control which
contradicts the concept of exchange-only quantum computing
[4]. West and Fong [6] introduced an echo scheme for the
exchange-only qubit which is based on SWAP operations
between neighboring spin states. Here, the SWAP operation
swaps the states of two spins. These operations are provided
directly by the exchange interaction. The basic idea is to
average the acquired phases of the spin states by permuting
their positions within the triple quantum dot. A sequence
which also corrects erroneous SWAP gates was introduced
by Hickman et al. [7].

In this paper, we focus on optimization strategies for
the timing of the pulses in exchange-based echo schemes.
We assume that the pulse lengths are negligible and the
decoherence occurs between the pulses. West and Fong [6]
already applied Uhrig dynamical decoupling (UDD) [8,9]
to their SWAP-based sequence for the exchange-only qubit.
Here, we transfer the concept of the optimized filter function
dynamical decoupling (OFDD) [10] from the single spin to
the three spin system. Furthermore, we consider two different
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SWAP sequences and compare their performance for a simple
Carr-Purcell-Meiboom-Gill (CPMG) timing of the pulse as
well as for UDD and OFDD.

The paper is organized as follows. In Sec. II, a model for
the system of interest is introduced. Section III contains the
calculation to obtain the fidelity in dependence of the pulse
sequence and the noise spectrum. In Sec. IV the optimization
strategies for the timing of the pulses are discussed and the
results for the fidelity compared to the unchanged qubit are
presented. Finally, we conclude in Sec. V.

II. EXCHANGE-ONLY QUBIT IN A RANDOM
MAGNETIC FIELD

The system which we consider here consists of three
quantum dots hosting one electron spin each; see Fig. 1. The
electron spins are coupled by the exchange interaction and
influenced by local magnetic fields:

H = J12

4
σ 1 · σ 2 + J23

4
σ 2 · σ 3 +

3∑
i=1

Bi · σ i , (1)

where the exchange couplings J12 and J23 can be electrically
controlled [11,12]. Here, σ i = (σix,σiy,σiz)T denotes the
vector of Pauli operators for the spins in dots i = 1,2,3.
The magnetic field Bi = Bextez + BO

i consists of an external
magnetic field Bext in the z direction and the Overhauser field
as a classical model for the interaction with the nuclear spin
bath. In the case Bext � |BO

i |, the dephasing is dominated by
the z component of the Overhauser field under the condition
that it is time independent; see Appendix A. This still holds
for the Overhauser field changing slowly in time compared to
the Larmor precession caused by Bext within a rotating wave
approximation [13]. In the following we consider only the
magnetic field in the z direction. Thus, states with different
total spin in the z direction will not be coupled. The qubit
subspace of the exchange-only qubit is the two-dimensional
space characterized by the total spin s = 1/2 and the spin
in the quantization (z) direction sz = 1/2; see [1]. Therefore,
leakage is possible to the state with s = 3/2 and sz = 1/2 in
the presence of a magnetic field gradient in the z direction
[4]. In this work we assume that the exchange coupling is
only switched off for the negligibly short time of an echo
pulse and the dephasing in the Overhauser field happens
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FIG. 1. Sketch of the system of three quantum dots each hosting
an electron represented by a large red (gray) dot and arrow. The
electron spin states in dots 1 and 2 (2 and 3) can be coupled via
the exchange interaction J12 (J23), while there is no direct coupling
between dots 1 and 3. The electron spins in each dot experience
the influence of the nuclear spins, which are represented by small
yellow (light gray) arrows, via the hyperfine coupling. We describe
this influence of the nuclear spins by fluctuating Overhauser fields.

for J12 = J23 = 0. Dephasing in the presence of a nonzero
exchange coupling has been considered by Ladd [14].

III. ECHO SEQUENCES

West and Fong [6] introduced an echo scheme relying only
on the exchange interaction in agreement with the concept of
the exchange-only qubit. They suggested to interchange the
spin information of neighboring dots in such a way that any
spin state spends equal time in each of the three dots. The
operations which are needed are SWAP gates for the dots 1
and 2 and for the dots 2 and 3, SWAP12 and SWAP23. These
operations are provided directly by the exchange coupling.
It is assumed that this coupling can be tuned to values
much larger than the differences in the Zeeman splitting
between the dots. In this case, the exchange coupling is not
disturbed by the Overhauser field and the gate times can be
negligibly short. West and Fong considered sequences using
the gates P = SWAP23SWAP12 and P −1 = SWAP12SWAP23

in alternating pairs, P → P → P −1 → P −1 → P → P →
P −1 → P −1 and so on. They showed that the concept of
UDD [8,9] removing the influence of the noise up to mth
order in time (m = 0,1,2,3, . . .) can be applied to this
three spin problem. In the present paper, we compare the
sequence of alternating pairs of P and P −1 to the sequence
using only the cyclic permutation of the spin states, P .
Furthermore, we additionally use the concept of optimized
noise filtration [10]. Both OFDD and UDD were originally
introduced for a single qubit dephasing without leakage states.

We now consider the sz = +1/2 subspace, starting from
the product basis {|↑↑↓〉,|↑↓↑〉,|↓↑↑〉}. In this basis the
term in the Hamiltonian describing the effect of a time-
dependent magnetic field in the z direction is diagonal. The
corresponding time evolution for the states |↑↑↓〉, |↑↓↑〉, and
|↓↑↑〉 evokes the phase factors, e−i(φ1+φ2−φ3), e−i(φ1−φ2+φ3),
and e−i(−φ1+φ2+φ3), respectively. Formally, we track the spin
state when a SWAP gate transfers it to another quantum dot.
The time evolution at time T for the spin state which is in the
first dot at time t = 0 is

U1(T ) = e−iφ1σ̃1z with φ1 =
∫ T

0
dt h1(t), (2)

where σ̃1z is the Pauli matrix for the individual spin state
labeled here with 1 although the state is stored in dots 2 and 3
for some time. This spin state experiences the magnetic field
h1(t), which is the field in the dot where the spin state is stored
at time t . For the spin states initially stored in the dots 2 and
3, the time evolution is given in full analogy by U2(T ) and
U3(T ). We use the states

|±〉 = |↑↑↓〉 + e±i2π/3|↑↓↑〉 + e∓i2π/3|↓↑↑〉√
3

(3)

as an orthogonal basis of the qubit subspace. In the corre-
sponding Bloch sphere, with the poles |±〉, the eigenstates of
the exchange interactions between neighboring dots lie in the
equatorial plane. Therefore, SWAP23 and SWAP12 interchange
|+〉 and |−〉, i.e., SWAP12|±〉 = |∓〉 and SWAP23|±〉 =
e±i2π/3|∓〉. Thus P and P −1 change only the phase when
applied to the states |+〉 and |−〉, P |±〉 = e∓i2π/3|±〉 and
P −1|±〉 = e±i2π/3|±〉. If the initial quantum state is a super-
position of |+〉 and |−〉, the different phase factors can lead
to a different state at the end of the sequence. In the following
we will assume that those changes are reversed at the end of
the sequence by applying further exchange pulses. The only
relevant leakage state is

|L〉 = |↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉√
3

(4)

with the quantum numbers s = 3/2 and sz = 1/2. In the basis
{|+〉,|−〉,|L〉} the time evolution is represented by the matrix

U (T ) = 1

3

⎛
⎜⎝

eiϕ3 + eiϕ2 + eiϕ1 eiϕ3 + ei(ϕ2+ 2π
3 ) + ei(ϕ1− 2π

3 ) eiϕ3 + ei(ϕ2− 2π
3 ) + ei(ϕ1+ 2π

3 )

eiϕ3 + ei(ϕ2− 2π
3 ) + ei(ϕ1+ 2π

3 ) eiϕ3 + eiϕ2 + eiϕ1 eiϕ3 + ei(ϕ2+ 2π
3 ) + ei(ϕ1− 2π

3 )

eiϕ3 + ei(ϕ2+ 2π
3 ) + ei(ϕ1− 2π

3 ) eiϕ3 + ei(ϕ2− 2π
3 ) + ei(ϕ1+ 2π

3 ) eiϕ3 + eiϕ2 + eiϕ1

⎞
⎟⎠ (5)

with ϕj = 2φj − φ1 − φ2 − φ3. In this matrix, we denote the
upper left 2×2 block, which describes the dynamics within the
qubit subspace, by UQ(T ). We compare this operation with
the perfect storage of the qubit, UQ(T ) = 1. In this context, T
denotes the desired storage time of the qubit. The fidelity of
the time evolution with respect to the identity operation is [15]

F = Tr(U †
QUQ) + | Tr(UQ)|2

6
. (6)

Note that UQ is not unitary. From Eq. (5), we obtain

F = 4

9
+ 5

27

∑
i<j

cos(2[φi−φj ]). (7)

We assume that the Overhauser fields can be described by a
Gaussian distribution. Then the same holds for the acquired
phases; thus we obtain

〈cos(2[φi − φj ])〉 = e−2〈(φi−φj )2〉, (8)

205434-2



OPTIMIZING ELECTRICALLY CONTROLLED ECHO . . . PHYSICAL REVIEW B 93, 205434 (2016)

in analogy with the case of a single spin [9]. In order to
calculate 〈(φ1 − φ2)2〉, West and Fong [6] introduced the
functions fj (t), j = 1,2,3, which are defined according to
the position of the spin states: For the initial positions, (1,2,3),
where the numbers 1, 2, and 3 are the labels of the spin states,
the values of the functions are {f1,f2,f3} = {1,−1,0}. For
the positions (2,3,1), the functions are {f1,f2,f3} = {−1,0,1},
and for the positions (3,2,1) they are {f1,f2,f3} = {0,1,−1}.
The Overhauser fields are labeled according to the quantum
dot where they can be found by Bj (t) for dot number j ; see
Eq. (1). Then the phase difference between two spin states at
time T is given by [6]

φ1(T )−φ2(T ) =
∫ T

0
dt [h1(t) − h2(t)]

=
∫ T

0
dt [f1(t)B1(t)+f2(t)B2(t)+f3(t)B3(t)].

(9)

The expressions for φ2 − φ3 and φ3 − φ1 can be obtained by
permuting the indices of the functions fj (t). The variance is

〈(φ1(T ) − φ2(T ))2〉

=
〈∫ T

0
dt1 [f1(t1)B1(t1) + f2(t1)B2(t1) + f3(t1)B3(t1)]

×
∫ T

0
dt2 [f1(t2)B1(t2) + f2(t2)B2(t2) + f3(t2)B3(t2)]

〉

=
∑

i,j∈{1,2,3}

∫ T

0
dt1

∫ T

0
dt2fi(t1)fj (t2)〈Bi(t1)Bj (t2)〉

= 1

π

∑
i,j∈{1,2,3}

∫ ∞

0
dω yi(ωT )y∗

j (ωT )
pij (ω)

ω2
(10)

with yj (ωT ) := ω
i

∫ T

0 dt eiωtfj (t) being, up to the factor of
ω/i, the Fourier transform of the switching function fj (t),
j = 1,2,3. The function pij (ω) is the power spectrum of
〈Bi(t)Bj (0)〉, pij (ω) = 2

∫ ∞
0 dt cos(ωt)〈Bi(t)Bj (0)〉. Under

the assumption that the Overhauser fields in the dots have
the same variance and the same power spectrum while being
independent of each other, pij (ω) = δijp(ω), the variance of
the phase differences can be written as

〈(φ1(T ) − φ2(T ))2〉
= 〈(φ2(T ) − φ3(T ))2〉 = 〈(φ3(T ) − φ1(T ))2〉

= 1

π

∫ ∞

0
dω [|y1(ωT )|2 + |y2(ωT )|2 + |y3(ωT )|2]︸ ︷︷ ︸

=FF (ωT )

p(ω)

ω2
.

(11)

Here FF (ωT ) is the filter function of the SWAP-based echo
sequence which determines the values of fj (t) at times
t ∈ (0,T ). The assumption that the Overhauser fields are
described by the same random distribution also leads to a
further simplification of the expression Eq. (7) for the fidelity,
which assumes the form

F = 4
9 + 5

9e−2〈(φ1−φ2)2〉. (12)

The value for 〈(φ1 − φ2)2〉 will depend on the noise spectrum
p(ω), the pulse sequence, and the time T . Here we focus on
Ohmic noise,

pOhm(ω) = ω�(ω1 − ω), (13)

with a cutoff described by the Heaviside function �(·), and
Lorentzian noise,

pLorentz(ω) = ω1

1 + (
ω
ω1

)2 . (14)

The latter has been used for a model to explain experiments
with a nuclear spin bath [16]. In the situation considered in
this paper, the random field is also assumed to originate from
the nuclear spins. Nevertheless, we perform the calculations
for the Ohmic noise spectrum as well to demonstrate that the
method can be applied to different noise spectra. Note that the
parameter ω1 is a sharp cutoff in Eq. (13) while it is a parameter
determining the width of the spectrum in Eq. (14). Here we are
interested in the scaling behavior of the fidelity with respect
to the parameter ω1. Therefore, it is possible to set the relative
noise strength to one; see Ref. [10]. The generalization to an
arbitrary noise strength is straightforward. As done by Uys
et al. in Ref. [10] we express the integral in Eq. (11) by using
the dimensionless variables T ′ = T ω1 and ω′ = ω/ω1. Then
the variance of the phase difference reads

〈(φ1 − φ2)2〉 =
∫ ∞

0
dω′ FF (ω′T ′)

p̃(ω′)
ω′2 , (15)

where the noise spectrum is rescaled:

p̃(ω′) = p̃Ohm(ω′) = ω′�(1 − ω′) (16)

or

p̃(ω′) = p̃Lorentz(ω′) = 1

1 + ω′2 . (17)

The filter function depends on the sequence of applied SWAP
operations via the switching functions fj (t), j = 1,2,3. First
we consider the same operation P = SWAP23SWAP12 applied
at the times T δj , j = 1, . . . ,n. Then the switching functions
are periodic with respect to the time intervals [δj ,δj+1) with
period 3. The switching functions f1 and f2 at time t are given
by

{f1,f2} =
⎧⎨
⎩

{1,−1} if t/T ∈ [δj ,δj+1), j mod 3 = 0
{−1,0} if t/T ∈ [δj ,δj+1), j mod 3 = 1
{0,1} if t/T ∈ [δj ,δj+1), j mod 3 = 2

.

(18)

The third function is always determined by f3(t) = −[f1(t) +
f2(t)]. For convenience, δ0 = 0 and δn+1 = 1 have been
introduced. For the sequence with alternating pairs of P and
P −1, which was considered in Ref. [6], the switching functions
at time t are

{f1,f2} =
⎧⎨
⎩

{1,−1} if t/T ∈ [δj ,δj+1), j mod 4 = 0
{−1,0} if t/T ∈ [δj ,δj+1), j mod 4 = 1 or 3
{0,1} if t/T ∈ [δj ,δj+1), j mod 4 = 2

,

(19)
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and again f3(t) = −[f1(t) + f2(t)]. We compare the results
for the exchange based SWAP sequences to individual spin
echoes, where a σx gate is applied on each spin at times δjT ,
j = 1, . . . ,n. This single spin manipulation is not compatible
with the concept of exchange-only quantum computing as it
requires single spin manipulation with a time-dependent local
magnetic field. It is considered here for comparison of the effi-
ciency of the echo sequences only. In the notation used here, the
switching functions for the single spin operations are f1(t) =
(−1)j if t/T ∈ [δj ,δj+1), f2(t) = −f1(t), and f3(t) = 0.
For more details on the computation of the fidelities see
Appendix B.

IV. WAITING TIME OPTIMIZATION STRATEGIES

In this section we apply different concepts for optimizing
{δ1, . . . ,δn}. These concepts have been introduced for single
spin echoes but can be applied for the three spin system as
well. The calculation of the filter function is straightforward
for a given sequence and 〈(φ1 − φ2)2〉 can be calculated with
Eq. (15) by solving the respective integrals.

A. CPMG sequence

The CPMG sequence [17,18] is defined by δ1 = 1/(2n),
δj = δj−1 + 1/n for j = 2, . . . ,n. The waiting times tw
between consecutive pulses are always the same. The waiting
time between initialization and the first pulse equals the
waiting time between the last pulse and the measurement at
time T and is half as long as tw. We do not expect this timing
to be ideal for the exchange-based echoes because it does not
necessarily lead to a situation where each spin state spends the
same time in each quantum dot during the storage time, i.e., in
general, y1, y2, and y3 do not vanish in first order. Nevertheless,
we include CPMG timed pulses here for comparison with
UDD and OFDD timing; see below. The infidelity 1 − F for
the CPMG timing is presented in Fig. 2. The fidelity F can be
increased with an increasing number of pulses. Applying the
echo sequences is more effective for the Ohmic noise, which
is stronger at higher frequencies compared to the Lorentzian
noise. Note that the better scaling behavior of the infidelity in
Fig. 2 for the all cyclic sequence and n = 3 (P → P → P )
originates from the fact that yj (j = 1,2,3) vanishes up to first
order for this sequence if n is an integer multiple of 3. But for
larger values of T ′, the sequences with n = 4 and 10 can have
a more significant effect on the fidelity than n = 3.

B. Applying Uhrig-type dynamical decoupling

The concept of UDD [8,9] requires that the functions
yj (ω′T ′) (j = 1,2,3) should be zero up to an order m, i.e.,

(
∂

∂(ω′T ′)

)k

yj (ω′T ′)
∣∣∣∣
ω′T ′=0

= 0, (20)

for k = 0, . . . ,m. The equation for k = 0 is fulfilled by the
definition of yj . If Eq. (20) is fulfilled for j = 1 and 2,
it automatically holds for j = 3. Uhrig showed that the
respective condition for single spin storage can be achieved
by n = m pulses [8]. Moreover, the values for δj are given

FIG. 2. Infidelity 1 − F for Ohmic noise (a) and Lorentzian noise
(b) in dependence of dimensionless storage time T ′ for pulse times
chosen according to the CPMG scheme. The number of applied pulses
n is n = 3 (cyan, light gray), n = 4 (green, dark gray), and n = 10
(black). The applied sequences are the all cyclic permutations realized
by applying P = SWAP12SWAP23 at every time T δj (solid lines), the
sequence of pairs of P and P −1 (dotted lines), and the single spin
operations (dashed lines).

by the analytical expression δj = {1 − cos(πj/[n + 1])}/2
[8] in this single spin case. West and Fong [6] extended
this concept to the exchange-only qubit for the sequence
P → P → P −1 → P −1 . . .. In this situation the number of
pulses has to be n = 2m. Here, we also apply the concept
to the sequence P → P → P . . . again with n = 2m. For
both sequences, the sequence introduced by West and Fong
and the all P sequence, one has to solve a system of 2m

polynomial equations for δ1, . . . ,δ2m with powers up to m.
Finding these systems of equations is straightforward for
the given switching functions. The values of δj for the P

only sequence are different from the values in the West-Fong
sequence for n > 2. In Table I we present the values for δj

for orders m = n/2 = 1, . . . ,7. For n = 2 the two sequences
are identical. In Fig. 3, we also present the infidelities for
n = 4 and for 10. In general, the values of δj can be found
numerically while a closed expression is unknown for the
SWAP-based sequences; see also [6]. Comparing Fig. 3 to
Fig. 2, we see that UDD can outperform the CPMG sequence
where the improvement is more significant for the Ohmic noise
than for the Lorentzian noise. Experimental constraints might
set a lower limit to the time between two pulses. Therefore, it
can be useful to consider the minimum pulse interval [19,20],
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TABLE I. UDD-optimized pulse times for the all cyclic sequence
and the West-Fong sequence from Ref. [6]. Note that the pulse
times not included in the table are given by δj = 1 − δ2m+1−j . The
numerical results for the West-Fong sequence (m = 5,6,7) are from
Ref. [6]. For m = 1, not only the pulse times but the entire all cyclic
and West-Fong pulse sequences are identical.

m δj All cyclic West-Fong sequence

1 δ1
1
3

1
3

2 δ1
3−√

5
6

1
6

δ2
1
3

1
3

δ1
3−√

6
9

4−√
10

9

3 δ2
9−√

33
18

5−√
10

9

δ3
6−√

6
9

4
9

δ1 0.033987060628007174 1
3 −

√
2
27

4 δ2 0.10778050263957079 5
12 −

√
35
432

δ3 0.24541246139134222 7
12 −

√
35
432

δ4 0.40712677534489696 2
3 −

√
2
27

δ1 0.0197219731840097 0.0422244245173296
δ2 0.0671399277438179 0.0940587956886883

5 δ3 0.1583859791807335 0.2172228408817372
δ4 0.27816415473255296 0.2838895075484039
δ5 0.42457938477024890 0.4518343711713587

δ1 0.013679963095182367 0.0313685011617312
δ2 0.046973639574998944 0.0691609286752199

6 δ3 0.11189155743938264 0.1617103538537611
δ4 0.19981242938137375 0.2161866929592387
δ5 0.31156471269738840 0.3514848584641742
δ6 0.43493416837050681 0.4258827585118745

δ1 0.0094699468692662485 0.0239219438795333
δ2 0.033350661076818913 0.0535688803938237
δ3 0.080564753596069461 0.1262566342290569

7 δ4 0.14684156194511558 0.1675244212375237
δ5 0.23329457080574879 0.2761133079137736
δ6 0.33333333333333333 0.3417044666375784
δ7 0.44366705640151921 0.4698392155798953

which is always δ1T for the sequences considered here. In
Fig. 4 we consider δ1 in dependence of the order m. For the all
cyclic sequence, δ1 is always smaller than for the West-Fong
sequence for m > 1. Furthermore, this difference becomes
more significant with increasing m.

C. Applying optimized noise filtration

Another strategy for minimizing the dephasing, OFDD, was
introduced by Uys et al. [10]. In this concept, the integral∫ 1

0
dω′ FF (ω′T ′) (21)

is minimized by finding a suitable set of {δ1, . . . ,δn}. In
Ref. [10] OFDD was explicitly considered for a single spin.
Here we apply the method for the three spin problem. The
integrals included in Eq. (21) can be treated analytically; see

FIG. 3. Infidelity 1 − F in dependence of dimensionless storage
time T ′ for Ohmic noise (a) and Lorentzian noise (b) for pulse times
chosen according to the UDD optimization strategy. The number of
applied pulses n is n = 2 (orange, light gray), n = 4 (green, dark
gray), and n = 10 (black). The applied sequences are plotted in the
same line styles as in Fig. 2. In (b) the results for the exchange-based
pulses with the all cyclic permutations and the pairs of P and P −1

are very similar, thus the solid and the dotted lines are on top of each
other. For n = 2 these sequences are identical by definition. The better
performance of the single spin pulses (dashed lines) compared to the
SWAP-based sequences for the same number of pulses, n, is due to
the fact that it allows for the filter function to be zero up to the order
n while it is only order n/2 for the SWAP-based pulse sequences.

Appendix B. The values of δ1, . . . ,δn have to be determined
by numerical minimization of Eq. (21). As starting values for
this minimization we use the CPMG values. Presumably, using
UDD values as initial values would be an improvement but we
included n = 3 where UDD values are not available and we
want to use the same strategy for all n to avoid dependences of
the results on details which are not essentially part of the OFDD
optimization condition. The minimization program uses the
standard Broyden-Fletcher-Goldfarb-Shanno algorithm. If the
numerical found minimum lies outside the allowed values
δj < 0 or δj > 1 we replace this value with zero or one,
respectively. This typically happens at large values of T ′
where the infidelity 1 − F becomes large. Moreover, the found
minimum is not necessarily a global minimum. This clearly
happens for the single spin echo at small T ′ shown in Fig. 5
where the OFDD values are apart from the UDD values
although we know that UDD is ideal in the limit T ′ → 0. The
results for the infidelity in dependence of the dimensionless

205434-5



NIKLAS ROHLING AND GUIDO BURKARD PHYSICAL REVIEW B 93, 205434 (2016)

FIG. 4. Double logarithmic plot of δ1, which is the smallest pulse
interval, in dependence of the order m for UDD applied to the all
cyclic sequence (black circles), to the West-Fong sequence [red (gray)
circles, values from Ref. [6]], and for comparison to a single spin
problem (gray squares).

storage time T ′ are shown in Fig. 6. The kink in the infidelity
for the single spin operation for n = 10 (black dashed line) is
also a consequence of finding a nonglobal minimum. Despite
this numerical behavior, we find that, similar to the results
for the single spin [10], OFDD leads to improved fidelities
compared to UDD; see Fig. 7 where we compare the infidelities
1 − F for pulse times optimized with OFDD and UDD for
n = 10 pulses. For all echo sequences OFDD outperforms
UDD for the Ohmic noise while the results are very close to
each other for the Lorentzian noise spectrum.

In Fig. 5 we present the values of δ1, . . . ,δn for n = 3,4
in dependence of the dimensionless storage time. The results
show a symmetric behavior with respect to half of the storage
time except the n = 3 values for the West-Fong sequence
including two P pulses and one P −1 pulse. Comparing the

FIG. 5. OFDD values of δ1, . . . ,δn for n = 3 (a) and n = 4 (b) in
dependence of the dimensionless storage time T ′ considering single
spin echo (black dashed lines), all cyclic operations (red solid lines),
and the West-Fong sequence (dotted lines) where applying P is
indicated by red color and P −1 by blue color. For comparison the
UDD values of δj (j = 1, . . . ,n) are shown with gray lines in the
respective line style. Note that for n = 3 the UDD solution exists
only for the single spin operations.

FIG. 6. Infidelity 1 − F in dependence of dimensionless storage
time T ′ for Ohmic noise (a) and Lorentzian noise (b) for pulse times
chosen according to OFDD. The color codes and the line styles are
identical to Fig. 2.

values of δ1 in Fig. 5(b), we see that again for the all cyclic
sequence δ1 assumes smaller values than for the West-Fong
sequence.

FIG. 7. Comparison of UDD (gray) and OFDD (black) optimized
values of infidelity 1 − F in dependence of the dimensionless storage
time T ′ for Ohmic (a) and Lorentzian (b) noise. Results are shown
with dashed lines for single spin echoes, with solid lines for the all
cyclic sequence, and with dotted lines for the West-Fong sequence.
The number of pulses is n = 10.
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V. CONCLUSIONS

In this paper, we have considered exchange-only based echo
sequences for three electron spins. We have shown that, in
addition to the UDD-like optimized sequences introduced by
West and Fong [6], the concept of OFDD can be applied to this
three spin case as well. We compared two different sequences
of SWAP-based echo sequences, the one used in Ref. [6] and
one which applies the same operation at every time δjT . The
optimal times according to UDD and OFDD depend on the
choice of the sequence. The fidelity depends slightly on this
choice with a small advantage for the all cyclic permutation
while the larger value of the minimum pulse interval can be
an advantage of the West-Fong sequence in a realistic system.
The improvement of the fidelity by the optimization strategies
UDD and OFDD compared to the CPMG sequence is more
significant for Ohmic noise than for Lorentzian noise. This
could have been expected with respect to results for a single
spin under the influence of high- and low-frequency noise [10].
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APPENDIX A: FIDELITY OF A SPIN 1/2
IN A QUASISTATIC MAGNETIC FIELD

The fidelity of a quantum gate U acting on a single qubit in
comparison to a desired gate U0 is given by [15]

F = 2 + | Tr(U0U
†)|2

6
. (A1)

Here we define U0 as the single-qubit rotation around the z

axis about the angle Bextt , i.e., the time evolution operator at
time t for BO = 0. The operator U is the time evolution under
the Hamiltonian H = (Bextez + BO) · σ with an unknown, in
general nonzero Overhauser field BO . We find at time t

Tr(U0U
†) = 2 cos[(ω−Bext)t] − {cos[(ω−Bext)t]

− cos[(ω + Bext)t]}
(

1 − Bext + BO
z

ω

)
(A2)

with ω =
√

(Bext + BO
z )2 + (BO

x )2 + (BO
y )2. For Bext � |BO |

in lowest order,

1 − Bext + BO
z

ω
≈

(
BO

x

)2 + (
BO

y

)2

(Bext)2
, (A3)

which is negligible. Therefore the respective term in Eq. (A2)
is small and can be neglected for all times t . The fidelity F is
therefore approximated by

F ≈ 2 + 4 cos2
(
BO

z t
)

6
(A4)

for times t � 2π/(ω − Bext) where we expanded ω in linear
order in BO . This means that on relevant time scales, i.e., where
the gate fidelity F is still close to one, the dephasing due to

an Overhauser field is determined by the component parallel
to the (strong) external magnetic field. Therefore, we have to
deal only with commuting operators within the echo schemes
discussed in this paper.

APPENDIX B: DETAILS ON THE FILTER FUNCTION
AND THE FIDELITY CALCULATIONS

Here we give further details on our calculations. We
present the filter functions for the three echo pulse sequences
considered in this work. To avoid confusion we use the upper
indices SO, WF, and AC for the sequence with single spin
operations, the sequence introduced by West and Fong [6],
and the all cyclic sequence, respectively. We can always write

yk(ωT ) =
n+1∑
j=0

αkj e
iωT δj (B1)

with k = 1,2,3 and αkj being real. For the filter function we
obtain

FF (ωT ) =
n+1∑

j,j ′=0

βjj ′ cos(ωT [δj − δj ′ ])

=
n+1∑

j,j ′=0

βjj ′ {cos(ωT [δj − δj ′ ]) − 1}, (B2)

with βjj ′ = ∑3
k=1 αkjαkj ′ . The second relation in Eq. (B2)

holds because |yk(0)|2 = ∑n+1
j,j ′=1 αkjαkj ′ = 0. For all se-

quences, α10 = −α20 = 1 and α3j = −α1j − α2j .
For the single spin operations the coefficients αkj are given

by αSO
1,n+1 = (−1)n, αSO

1j = 2(−1)j (1 � j � n), and αSO
2j =

−αSO
1j . For the sequence introduced by West and Fong [6], the

coefficients are

{
αWF

1,n+1,α
WF
2,n+1

} =
⎧⎨
⎩

{−1,1} if n mod 4 = 0
{1,0} if n mod 4 = 1 or 3
{0,−1} if n mod 4 = 2

,

and for j ∈ {1, . . . ,n}

{
αWF

1j ,αWF
2j

} =

⎧⎪⎨
⎪⎩

{−2,1} if j mod 4 = 1
{1,1} if j mod 4 = 2
{−1,−1} if j mod 4 = 3
{2,−1} if j mod 4 = 0

.

The all P sequence has the coefficients

{
αAC

1,n+1,α
AC
2,n+1

} =
⎧⎨
⎩

{1,−1} if n mod 3 = 0
{−1,0} if n mod 3 = 1
{0,1} if n mod 3 = 2

,

and for j ∈ {1, . . . ,n}

{
αAC

1j ,αAC
2j

} =
⎧⎨
⎩

{−2,1} if j mod 3 = 1
{1,1} if j mod 3 = 2
{1,−2} if j mod 3 = 0

.

For OFDD we need to compute the integral∫ 1
0 dω′ FF (ω′T ′) which can be easily done as∫ 1

0
dω′ cos(ω′T ′�) = sin(T ′�)

T ′�
. (B3)
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To compute the integral in Eq. (15) we use for the Ohmic noise
spectrum the integral∫ 1

0
dω′ 1 − cos(ω′T ′�)

ω′ = Cin(T ′�), (B4)

where Cin(t) = ∫ t

0 dt ′ [1 − cos(t ′)]/t ′ is the cosine integral.
For calculating the fidelity in the case of Lorentzian noise the
following integral is used:∫ ∞

0
dω′ 1 − cos(ω′T ′�)

ω′2(1 + ω′2)
= π

2
(e−T ′� − 1 + T ′�). (B5)
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