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We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant
exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension
of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-
Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity
coupling strength in a Jaynes-Cummings Hamiltonian and find that dipole transitions between two states with
an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective
coupling between two RX qubits in a shared cavity yields a universal two-qubit iSWAP gate with gate times on
the order of nanoseconds over distances on the order of up to a millimeter.
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I. INTRODUCTION

Quantum computation with single-electron spins confined
in semiconductor quantum dots (QDs) [1] has been inves-
tigated within a wide range of implementations yielding
long decoherence times on the order of microseconds [2–5].
Gallium arsenide (GaAs) [6,7] and silicon [8] are the most
common choices of host materials for the QDs. By comparison,
charge qubits decohere much faster (within approximately
nanoseconds [9–11]) due to the strong coupling between the
charge and the electromagnetic fields in the environment [12].
Therefore, the aim of many implementations is substantial
protection against electrical noise to achieve long qubit
decoherence times in order to be able to perform as many
qubit operations (gates) as possible while the qubit is coherent.
Experiments show high-fidelity state manipulation and long
coherence times for scalable implementations using single
or multiple QDs [13–20]. One promising candidate is the
resonant exchange (RX) spin qubit, a modification of the
exchange-only qubit [21], which allows for all-electric control
of the qubit for the price of a triple quantum dot (TQD)
scheme. This implementation possesses a high robustness
against electrical noise at the sweet spot [22–24] but is
still susceptible to electromagnetic fields at the resonance
frequency allowing for additional qubit control through radio-
frequency or microwave signals [17,22]. It was shown that
two-qubit gates between RX qubits can be implemented with
the exchange coupling, using a single exchange pulse [25].

The coherent transport of quantum information, e.g., long
distance entanglement [26], combined with state preparation
and readout is investigated within a wide range of implemen-
tations [27] in quantum optics. Adapting techniques from
this field, long distance coupling between two solid-state
QD spin qubits can be envisioned, which could complement
the existing short-range interactions, such as the exchange
coupling between nearby QD spin qubits. In order to achieve
long distance coupling between spin qubits, a long-range
interaction is needed, e.g., the coupling of the qubits to
an electromagnetic field with specific photon modes [28]
or by the coupling of the qubit to a ferromagnet [29]. In
this paper, we focus on long-distance coupling between RX
qubits based on the electromagnetic fields in a microwave
cavity (Fig. 1).

Coupling spin qubits via electromagnetic cavities has been
proposed for spin qubits in nitrogen-vacancy (NV) centers
in diamond. NV centers can be coupled with photons in the
optical spectrum [30–32], while QD spin qubits usually react
to microwave or radio-frequency signals. Since microwave
cavities with a high finesse exist [33], this long-range coupling
is feasible between QD spin qubits in solid-state materials,
e.g., coupling spin qubits to photons in a cavity via electric
dipole or gate potentials [28,34,35]. Experiments have shown
evidence of strong coupling between qubits in single or double
QDs to a microwave cavity through the charge [36–39] or the
spin [40,41]. Here, we present an implementation of such a
long distance interaction between two RX qubits enabled in a
TQD scheme at time scales on the order of nanoseconds.

This paper is organized as follows. In Sec. II we introduce
our model for the long distance interaction. Subsequently, in
Sec. III we calculate the associated transition dipole matrix
elements used to determine the corresponding qubit-cavity
coupling parameter and identify the underlying coupling
mechanism. Finally in Sec. IV, we combine these results to
present a step-by-step prescription for a universal two-qubit

FIG. 1. (Color online) Schematic illustration of the proposed
setup for long distance interaction. The setup consists of two linearly
arranged TQDs (RX qubits) inside a superconducting stripline cavity.
For an optimal setup the two qubits should be located at the field
maxima (antinodes) in order to achieve a strong qubit-cavity coupling.
The green environment surrounding the RX qubits illustrates the
coupling of the qubit to the electromagnetic field of the cavity (blue).
As a result, the RX qubit can be coupled by using photons as
mediators. The gray layer illustrates the two-dimensional electron
gas (2DEG) in which the quantum dots are embedded.

1098-0121/2015/92(20)/205412(12) 205412-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.205412


MAXIMILIAN RUSS AND GUIDO BURKARD PHYSICAL REVIEW B 92, 205412 (2015)

iSWAP gate between two RX qubits in a shared cavity. We
conclude in Sec. V with a summary and an outlook.

II. MODEL

We consider two linearly arranged triple QDs (TQDs),
where each QD has a single available orbital, occupied by three
electrons. Both TQDs are assumed to lie in a superconducting
microwave cavity with a single available photon mode (see
Fig. 1). We describe this system with the Hamiltonian

H =
2∑

i=1

(
Hi + Hint,i

) + Hcav, (1)

where Hi describes the dynamics of the electrons in the ith
isolated TQD, Hint,i is the interaction between the electrons in
the ith TQD and the photons in the cavity, and Hcav describes
the photons in the cavity.

For the qubit we use the RX Hamiltonian [22,24] Hi

derived from the three-site extended Hubbard Hamiltonian
which describes a linearly arranged TQD [see Fig. 2(a)]. We
work in the RX regime in which only the charge states (1,1,1),
(2,0,1), and (1,0,2) are accessible. The spin qubit lies in the
subspace with spin quantum numbers S = Sz = 1

2 , spanned by

(a)

(b)

FIG. 2. (Color online) (a) Schematic illustration of the triple
quantum dot confinement potential V (x). The hopping matrix element
between QD 1 (QD 3) and QD 2 is denoted by tl (tr ). We also show the
response of the system to two electrically controlled bias parameters,
the difference ε between the energy levels of the outer two QDs,
and the effective difference � of the energy levels in QD 2 and
the mean of the outer QDs (including Coulomb repulsion). Here, we
assume that the TQD is filled with three electrons. We also include the
Coulomb repulsion in the center QD, EC = U − 2UC . (b) Schematic
illustration of the orbital wave functions of the electrons in the TQD.
The interdot distances al (ar ) between QD 1 (QD 3) and QD 2 need
to be sufficiently small to allow for a sizable overlap Sl (Sr ) between
the orbital wave functions.

the states

|0〉 = |S〉13 |↑〉2 = 1√
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√
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†
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†
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†
3,↓−c

†
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†
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†
3,↑)|vac〉 ,

|2〉 ≡ |S1,1/2〉 = c
†
1,↑c

†
1,↓c

†
3,↑ |vac〉 ,

|3〉 ≡ |S3,1/2〉 = c
†
1,↑c

†
3,↑c

†
3,↓ |vac〉 , (2)

where |vac〉 denotes the vacuum state and c
†
i,σ (ci,σ ) creates

(annihilates) an electron in QD i with spin σ . We have further
used the notations |S〉 = (|↑↓〉 − |↓↑〉)/2, |T+〉 = |↑↑〉, and
|T0〉 = (|↑↓〉 + |↓↑〉)/2 for the singlet and two of the triplet
states of two electrons. Here, (m,n,l) denote the number of
electrons in the first (n), second (m), and third (l) QDs. In this
basis, we obtain for the Hubbard Hamiltonian [22,24]

H̄ =

⎛
⎜⎜⎜⎝

0 0 tl/2 tr/2

0 0
√

3tl/2 −√
3tr/2

tl/2
√

3tl/2 � + ε 0

tr/2 −√
3tr/2 0 � − ε

⎞
⎟⎟⎟⎠, (3)

where tl,(r) is the hopping between the left (right) and the
center QDs, ε is the energy difference between the outer
QDs, and � is the effective energy difference between the
center QD and the outer QDs in which Coulomb repulsion
is included [see Fig. 2(a)]. In the RX regime (|ε| < |�| and
tl,r � |� ± ε|) states |0〉 and |1〉 are nearly eigenstates, while
states |2〉, with a charge configuration (2,0,1), and |3〉, with a
charge configuration (1,0,2), are only virtually occupied and
can be eliminated via a second-order Schrieffer-Wolff (SW)
transformation, yielding a Heisenberg model, HHeis = Jl S1 ·
S2 + Jr S2 · S3, with the exchange energies Jl ≡ t2

l /(� + ε)
and Jr ≡ t2

r /(� − ε). In its eigenbasis which we consider our
logical qubit space, the Hamiltonian takes the form

HRX = �

2
ωRXσz, (4)

in which �ωRX ≡
√

(Jl + Jr )2 + 3(Jl − Jr )2/2 is the reso-
nance frequency of the qubit. Periodic driving of the detuning
parameters ε and � allows Rabi transitions between the
two eigenstates that are hence interesting for cavity quantum
electrodynamics (cQED).

For the resonator we consider a superconducting stripline
cavity whose resonance frequency is in the gigahertz regime
and matches the energy splitting of the RX qubit [17,22,24].
Since the relevant dynamics of the cavity mostly depends
on the dynamic of a single electromagnetic mode near the
qubit resonance frequency, the Hamiltonian is that of a single
mode [42],

Hcav = �ωph
(
a†a + 1

2

)
, (5)

where a† (a) is the bosonic creation (annihilation) operator of
a photon with frequency ωph. The associated eigenenergies
are Ecav = �ωph(nph + 1/2), where nph ≡ 〈a†a〉 counts the
number of photons with the cavity frequency ωph.
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For the qubit-cavity interaction, we consider the minimal
coupling Hamiltonian in the dipole approximation near the
resonance [42]

Hint = − e

meff

(
�

2ε0εV ωph

)1/2

εp · p(a + a†), (6)

where ε (ε0) describes the dielectric constant of the material
(vacuum), V is the volume of the cavity, and εp is the
polarization of the photons. In the logical qubit subspace, the
dipole matrix element of interest is

gr ≡ − e

2m

(
�

2ε0εV ωph

)1/2

〈0| εp · p |1〉 , (7)

which describes the photon-induced transition between our
two qubit states |0〉 and |1〉.

III. QUBIT-CAVITY COUPLING

A. Phenomenological approach

To describe the coupling of a qubit to the cavity, we
quantize the two detuning parameters ε,�. This yields ε →
ε + κ(a + a†) and � → � + κ ′(a + a†), where κ and κ ′ are
parameters that include both the amplitude seen by the qubit for
a given polarization and the vacuum amplitude of the electric
field and a† (a) is again the creation (annihilation) operator
of a photon in the cavity with frequency ωph. Assuming
κ〈a + a†〉 � ε and κ ′〈a + a†〉 � �, we can expand the RX
Hamiltonian in terms of κ(a + a†) and κ ′(a + a†). As a result,
we find [24]

HRX = 1
2 [(�ωRX + δωz)σz + δωxσx], (8)

represented in the eigenbasis of the unperturbed sys-
tem with the longitudinal coupling δωz = −(JδJ +
3jδj )(a + a†)/ωRX and the transversal coupling δωx =√

3(Jδj − jδJ )(a + a†)/ωRX. Here, we used J ≡ (Jl +
Jr )/2, δJ ≡ ∂εJ κ + ∂�J κ ′, j ≡ (Jl − Jr )/2, δj ≡ ∂εj κ +
∂�j κ ′ and the derivatives ∂εJ = ∂�j = (εJ − �j )/(�2 −
ε2), ∂εj = ∂�J = (εj − �J )/(�2 − ε2). Neglecting higher-
order terms of the expansion which correspond to two-photon
processes and higher, we obtain

HJC = �ωs

2
σz + gs σx(a + a†) + �ωph(a†a + 1/2), (9)

with the coupling parameter

gs =
√

3(Jδj − jδJ )/ωRX (10)

and a photon-dependent resonance frequency ωs ≡ ωRX −
(JδJ + 3jδj )(a + a†)/ωRX. For certain alignments of the
TQD and the cavity, the coupling parameters can be set; for
example, for an alignment as in Fig. 3(a) we expect κ ′ ≈ 0 due
to the long wavelengths of the cavity photons, while for the
alignments in Fig. 3(b) κ is negligible. In the case κ ′ = 0, we
obtain

gs =
√

3κ
�

ωRX

t2
l t2

r

(�2 − ε2)2
, (11)

and in the case κ = 0, we find

gs =
√

3κ ′ ε

ωRX

t2
l t2

r

(�2 − ε2)2
. (12)

(a) (b)

FIG. 3. (Color online) Two possible arrangements of the electric
field E (blue arrow) in a cavity. (a) The TQD is arranged parallel to
the electric field, resulting in a finite coupling κ to the parameter ε

and in a vanishing transversal qubit-cavity coupling κ ′ to � due to
the long wavelength of the cavity photons compared to al,r . (b) The
opposite case in which the two outer gates of the QDs are connected
to the same potential and the electric field E is aligned from the center
QD, which results in vanishing qubit-cavity coupling κ due to a static
ε and a finite κ ′.

Considering incoherent and broadband electromagnetic
fields, we find the same expression, Eq. (8), for the RX
qubit under the influence of charge noise [24]. This is not
surprising since in both cases the RX qubit is disturbed
by electromagnetic fields. Hence, increasing the qubit-cavity
coupling also increases the coupling to charge noise, and
moving to a sweet spot, where the qubit is robust against
this noise [22,24], we expect a weak qubit-cavity coupling as
a trade-off. This phenomenological model does not provide
a microscopic description of the coupling parameters κ and
κ ′. We consider a more realistic model for an alignment as in
Fig. 3(a) in Sec. III B, which will also allow us to estimate κ .

B. Microscopic theory

Coupling the qubit states of the RX qubit in the TQD to
the cavity via the emission and absorption of a cavity photon
requires a strong electric-dipole transition element gr between
the two qubit states. We consider an alignment of the TQDs
as shown in Fig. 3(a) with the electric field in the cavity
pointing in the x direction. To find a finite electric-dipole
transition in this system, the following conditions have to be
fulfilled. First, the TQD has to be coupled by interdot exchange
interactions, i.e., hopping between neighboring QDs. We find
that the matrix element is approximately proportional to the
energy splitting between the qubit states (�tl tr ) which matches
with past calculations with a double quantum dot (DQD) [28].
However, there are still two independent symmetries which
have to be broken for a nonvanishing matrix element.

The first symmetry arises from the spin-conserving nature
of the electric-dipole transitions and corresponds to inversion
symmetry. To distinguish the product states of three electrons
in a linearly arranged TQD we use three quantum num-
bers [43]. The first two are the total spin S and its z component
Sz, which are identical for the qubit states, while the third
quantum number is the total spin SO of the two electrons in
the outer QDs 1 and 3, which distinguishes them, SO |0〉 = 0
and SO |1〉 = 1; hence, they cannot be transferred into each
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other by an interaction O with [SO,O] = 0. The influence of
states |2〉 and |3〉 with asymmetric charge configuration breaks
this symmetry for Jl = Jr , e.g., through a gate detuning ε = 0.

The second symmetry that needs to be broken is an orbital
symmetry between the electrons in the outer QDs. The orbital
wave functions of an electron in QDs 1 and 3 have identical
parity under the assumption that all three QDs have the
same lowest orbital confinement potential. To overcome this
symmetry either the confinement potentials of the two outer
QDs need to be different or the interdot distance between the
TQDs has to be asymmetric; hence, al = ar , where al,(r) is the
interdot distance between QD 1 (QD 3) and the center QD [see
Fig. 2(b)].

1. Wave functions

To calculate the transition dipole matrix element gr ∝
〈0| εp · p |1〉 between the qubit states, we need orbital wave
functions which are pairwise orthogonal since the isolated
orbital wave functions have a finite overlap [see Fig. 2(b)].
For orthogonal states, these finite overlaps Sl = 〈ϕ1|ϕ2〉, Sr =
〈ϕ3|ϕ2〉, and S13 = 〈ϕ1|ϕ3〉 have to be zero, which is not the
case here. Therefore, we transform the nonorthogonal basis
{|ϕ1〉 , |ϕ2〉 , |ϕ3〉} into an orthonormal basis of the Wannier
orbitals {|�1〉 , |�2〉 , |�3〉} which fulfill the orthonormality
condition 〈�i |�j 〉 = δij , with i,j ∈ {1,2,3}. Here, these states
are chosen such that they describe the dynamics in the ith
QD and converge for long distances to the isolated electron
wave functions, limal ,ar→∞ |�i〉 = |ϕi〉. Hence, we obtain in
the general case

|�1〉 = 1

N1
(|ϕ1〉 + a1 |ϕ2〉 + b1 |ϕ3〉),

|�2〉 = 1

N2
(|ϕ2〉 + a2 |ϕ1〉 + b2 |ϕ3〉),

|�3〉 = 1

N3
(|ϕ3〉 + a3 |ϕ2〉 + b3 |ϕ1〉),

(13)

where ai and bi are bounded, real parameters. However,
these Wannier states are not uniquely defined since the
orthogonality condition yields only a linear equation system
with three equations but with nine independent parameters.
Three parameters (N1,N2,N3) can be eliminated immediately
by the normalization condition,

N1 =
√

1 + 2a1 Sl + 2b1 S13 + 2a1 b1 Sr + a2
1 + b2

1,

N2 =
√

1 + 2a2 Sl + 2b2 Sr + 2a2 b2 S13 + a2
2 + b2

2,

N3 =
√

1 + 2a3 Sr + 2b3 S13 + 2a3 b3 Sl + a2
3 + b2

3.

(14)

In a long distance approximation, we neglect the over-
lap between QD 1 and QD 3 and set S13 = b1 = b3 = 0.
This reduces the number of free parameters by two and
yields simpler expressions for the normalization param-
eter, N1 =

√
1 + 2a1 Sl + a2

1 , N3 =
√

1 + 2a3 Sr + a2
3 , and

N2 =
√

1 + 2a2 Sl + 2b2 Sr + a2
2 + b2

2 . The last parameter we
adapt from the condition of maximally localized Wannier
orbitals, where we minimize the localization functional [44]
F = ∑3

i=1 (〈�i | x̂2 |�i〉 − 〈�i | x̂ |�i〉2) (see Sec. B 1). We
found at lowest order a simple behavior for parameters

a1 and a3, in particular, a1 = ξaSl + O(Sr,S
2
l ) and a3 =

ξdSr + O(Sl,S
2
r ) and ξa = ξd , which yields the final condition

a1/a3 = Sl/Sr . As a result, we obtain analytical expressions
for the parameters, a1 = −2Sl , a2 = Sl/(1 − 2 S2

l − 2 S2
r ),

b2 = Sr/(1 − 2 S2
l − 2 S2

r ), and a3 = −2Sr within the scope
of the approximation. A detailed parameter discussion can be
found in Sec. B 2.

2. Transition dipole matrix elements

Having found pairwise orthonormal wave functions in
position space we first calculate the matrix elements of the
position operator x̂ in the one-particle basis which we use to
calculate 〈0| px |1〉 and finally gr . Therefore, we express the
position operator x̂ in the orthonormal basis of the Wannier
functions {|�1〉 , |�2〉 , |�3〉}, each combined with one of the
two spin states |↓〉 , |↑〉 in order to describe the electron spin
dynamics. As a result, we obtain

x̂ =
3∑

i,j=1

∑
σ=↑↓

xij c
†
i,σ cj,σ , (15)

where xij = 〈�i | x̂ |�j 〉, with i,j ∈ {1,2,3}, and the operator
c
†
1,↑ (c1,↑) in Eq. (2) creates (annihilates) an electron in

the orthonormalized Wannier orbital with spin σ ∈ {↑↓}. In
the next step, we construct the qubit states |0〉 , |1〉 and the
asymmetric states |2〉 , |3〉 in terms of the spin Wannier states
|�i,σ 〉 ≡ |�i〉 |σ 〉. Keeping this in mind, we now express the
position operator x̂ in the {|0〉 , |1〉 , |2〉 , |3〉} basis as

x̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑3
i=1 xii 0 1√

2
x12

1√
2
x32

0
∑3

i=1 xii

√
3
2x12 −

√
3
2x32

1√
2
x21

√
3
2x21 2x11 + x33 −x31

1√
2
x23 −

√
3
2x23 −x13 x11 + 2x33

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

We obtain the elements of the momentum operator in
the same basis through the relation p = − i m

�
[HHub,x] [42].

Here, HHub is the full Hamiltonian in this basis given in
Eq. (3), and the square brackets denote the commutator. An
analytical expression can be obtained and is shown in (D2). The
simplified expression in Eq. (D3) can be obtained considering
real matrix elements, xij = xji , with i,j ∈ {1,2,3}.

3. Interaction Hamiltonian

We now have almost all the tools for calculating the qubit-
cavity coupling gr in Hint. However, due to the Schrieffer-Wolff
transformation the qubit states in the expression for the RX
Hamiltonian in Eq. (4) are not exactly the states defined in
Eq. (2); in particular they have a small contribution from the
asymmetric states |2〉 and |3〉. Therefore, we have to shift into
the qubit basis by the same transformation and hence compute
p̃ = eS pe−S ≈ p − [ p,S], where S is the SW transformation
matrix [22,24]. Considering only the matrix elements in the
logical subspace of the RX qubit {|0〉 , |1〉} and neglecting all
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FIG. 4. (Color online) Schematic illustration of the qubit-cavity
coupling mechanism. Photons induce dipole transitions between
the virtually coupled states |2〉 and |3〉 (top line) which have an
asymmetric charge configuration due to the double occupation of
one QD. These two asymmetric states couple weakly through some
hopping matrix elements, here denoted as t̃l,r , to the qubit states. The
arrows in |0〉 and |1〉 show only one of the possible spin configurations.

other elements, we obtain as a result (see Appendix D)

p̃x =
√

3m

�

tl trε

�2 − ε2
Re(x13)σy

+ m

�

[
tl trε

�2−ε2
Im(x13)+

√
2tr Im(x23)−

√
2tlIm(x12)

]
σz

−
√

6m

�
[tlIm(x12) + tr Im(x23)]σx, (17)

where irrelevant terms proportional to the identity operator in
the qubit space have been omitted.

Comparing this result for p̃x including nonvanishing matrix
elements with the one for the bare momentum operator p̂x

in the top left corner of Eq. (D2), one finds that in the
latter, only the imaginary part of the single-electron matrix
elements appears, e.g., Im(x23), whereas Eq. (17) also contains
the real part of x13. Hence, we conclude that the physical
mechanism of the coupling between the qubit states of the
RX qubit is due to the coupling to the asymmetric states |2〉
and |3〉 since in our case xij ∈ R, with i,j ∈ {1,2,3} (see
Appendix E). In particular, the electromagnetic field of the
cavity induces electronic transitions, where one electron from
a doubly occupied QD is transferred to the singly occupied
QD and not the empty one, hence between states |2〉 and |3〉
(see Fig. 4). In this case, we find

p̃x =
√

3m

�

tl trε

�2 − ε2
x13σy. (18)

It should be noted at this point that a nonperfect alignment
of the TQD or electric field in the x direction, e.g., a tilting
angle in the xy plane, gives rise to an imaginary contribution to
the dipole transition matrix elements, hence allowing for other
electronic transitions [see Eq. (17)]. However, this contribution
is small if the projection on the y axis, i.e., the tilt angle, is
small.

As a last step, we directly compute the single-particle matrix
elements in order to find the qubit-cavity coupling gr . The
calculation of the associated matrix element x13 with the help

of the orthonormalized Wannier functions |�i〉 yields

p̃x = −
√

3 m

�

tl trε

�2 − ε2
ãrel(al − ar )SlSrσy , (19)

where ãrel is close to 1. An explicit calculation can be found
in Appendix E. Substituting the resulting momentum operator
into Eq. (6), we obtain for the interaction Hamiltonian

Hint = gr σy(a + a†), (20)

with the effective coupling strength

gr = −
√

3 e E0

2�ωph

tl trε

�2 − ε2
ãrel(al − ar )SlSr (21)

40 60 80 100 120

103

1

10- 3

10- 6

10- 9

10- 12
61.8 64.1 66.6

0.5

1

2

15 20 25 30 35 40 45

103

1

10- 3

10- 6

10- 9 27.3 28.3 29.2

0.5

1

2

FIG. 5. (Color online) Qubit-cavity coupling gr as a function
of the interdot distance al for (top) GaAs and (bottom) Si. The
parameters are chosen as ar = 1.1 al , ε = 0.2 meV, � = 0.3 meV,
B = 310 mT, ω0 = 3.1 μeV, and ωph = ωRX ≈ 19.54 μeV [24]. We
use hopping parameters tl and tr from numerical calculations [45] for
the black dots, while we consider the expression for a DQD tl,r �
�ωQD[(al,r/a0)2 + (ω0/ωQD)]Sl,r/2(1 − S2

l,r ) for the gray curve [46].
Here, a0 = √

�/m ω0 is the confinement radius, with �ωQD being
the confinement energy of the QDs. Typical values are, for a GaAs
QD, ωQD,GaAs = 3.1 meV and, for a silicon QD, ωQD,Si = 5.9 meV
due to their different effective masses, mGaAs = 0.067m0 and mSi =
0.191m0, with m0 being the free-electron mass. For the volume
V = Ld1d2 in the vacuum amplitude of the electric field we set the
length L = 1 mm, the width d1 = 1 μm, and the height d2 = 100 nm
of the stripline cavity. The red, blue, and green dashed lines indicate
three appropriate values for quantum gate operations.
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and the vacuum amplitude of the electromagnetic field in
the cavity E0 ≡ (�ωph/2ε0εV )1/2. Identifying gr = gs from
Eq. (11), we find

κ = E0e
al − ar

2
Sl Sr

ωRX

ωph

ε

�

�2 − ε2

tl tr
. (22)

On closer examination, the long distance behavior of gr is
mostly determined by the overlap parameters Sl,r ∝ e−a2

l,r /4a2
S

from Eq. (A4), while the short distance is mostly determined
by the hopping parameters. However, we note that from a
realistic point of view the shortest distance in Fig. 5 is given
by the size of the QDs, which is far outside the scope of our
approximation, al,r > 40 nm for GaAs and al,r > 18 nm for
Si (see Fig. 9 in Sec. B 2). Additionally, only al − ar = 0
leads to gr = 0 since, otherwise, the parities of |�1〉 and
|�3〉 are identical. In Fig. 5 we have plotted the calculated
coupling strength gr as a function of the interdot distance al

for fixed ar/al = 1.1. Both al = ar and ε = 0 are required
to break orbital and spin symmetries, allowing for gr = 0.
We find that strong qubit-cavity coupling, e.g., gr ≈ 2 MHz
(red dashed line in Fig. 5), becomes accessible for an
interdot distance al � 60 nm, which is inside the scope of our
approximation.

IV. IMPLEMENTATION OF LONG
DISTANCE INTERACTION

The coupling of the RX qubit to the electromagnetic field
of a surrounding cavity enables the coherent transfer of infor-
mation between the qubit system and the cavity. Therefore, if
two RX qubits are coupled to the same cavity, one can transfer
information between them via the electromagnetic field. The
distance of this transfer is limited by only the extension of
the cavity. Inserting the interaction Hamiltonian (20) into the
two-qubit Hamiltonian (1), we obtain

HRW =
2∑

i=1

[
�ωi

2
σz + i gi(σ+a − σ−a†)

]
+ �ωpha

†a (23)

in the rotating-wave approximation, where we neglect the
counterrotating terms due to gr � ωRX ≈ ωph. Here, σ± ≡
(σx ± iσy)/2 are the ladder operators, and ωi are the resonance
frequencies of the ith RX qubit, with i ∈ {1,2}. Hence,
we can eliminate the cavity mode by a second-order SW
transformation [28,47]. As a result, we obtain

Htot = H1Q + Hint =
2∑

i=1

εeff

2
σ i

z + geff(σ
1
+σ 2

− + σ 1
−σ 2

+), (24)

with the Stark-shifted energy εeff = �ωi + g2
i (a†a + 1/2)/

[2�(ωi − ωph)] and an effective two-qubit coupling parameter
geff = g1g2{1/[�(ω1 − ωph)] + 1/[�(ω2 − ωph)]}, where gi is
the coupling strength between the ith RX quit and the cavity.
A review of the calculation can be found in Appendix F.

The first expression H1Q in Eq. (24) yields control over
rotations around the z axis of the qubits, while the interaction
part Hint = geff(σ 1

+σ 2
− + σ 1

−σ 2
+) leads to a universal two-qubit

gi = 2 MHz
gi = 1 MHz
gi = 0.5 MHz

1 10 100 1000

0.1

1

10

100

1000

Ω (kHz)

t g
(n

s)

FIG. 6. (Color online) Doubly logarithmic plot of the gate time tg
of the photon-mediated long distance interaction as a function of the
detuning  = |ωph − ωi |/2π . The red, blue, and green lines relate
to the correspondingly labeled qubit-cavity coupling frequencies
gi/(2π�) in Fig. 5. For simplicity, we assume that the two coupling
frequencies fr ≡ g1,2/(2π�) and resonance frequencies ω1,2 each are
identical, which leads to tg = /8f 2

r .

gate. We obtain for the corresponding time evolution

U (t,t0) = exp(−itHint/�)

=

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos(geff t/�) i sin(geff t/�) 0

0 i sin(geff t/�) cos(geff t/�) 0

0 0 0 1

⎞
⎟⎟⎟⎠, (25)

which after the time tg = �π/(2geff) yields the universal iSWAP

gate [48]. In summary, we obtain the iSWAP gate with the
following four steps:

(1) Prepare both RX qubits to be off resonant from the
cavity frequency, ωi = ωph.

(2) Detune both RX qubits to be resonant to the cavity
frequency, ωi � ωph.

(3) Wait for the time tg = �π/(2geff).
(4) Detune both RX qubits to be off resonant from the cavity

frequency, ωi = ωph.
Together with arbitrary single-qubit gates this allows for

universal quantum computation over distances on the order of
the extension of the cavity. Figure 6 shows the pulsing time
tg as a function of the detuning i ≡ |ωph − ωi |/2π , with
i ∈ {1,2}, for specific values of the qubit-cavity couplings gi .
In order to obtain short gating times, we require either a small
detuning 1,2 or a strong qubit-cavity coupling gi . We find
gate times tg ≈ 1 ns for  ≈ 10 kHz and gi = 1 MHz, which
allows for up to 103 gate operations if the qubit decoherence
time amounts to Tϕ ≈ 1 μs [17,22,24].

V. CONCLUSION AND OUTLOOK

In this paper, we have proposed and analyzed an implemen-
tation of a long distance coupling of two RX qubits. We showed
that such a coupling can be achieved by placing two RX qubits
into a high-finesse cavity (Q factor exceeds 105) with the
condition that the resonance frequency of the cavity matches
the energy separation of the qubit states. By taking into account
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the wave functions associated with the RX qubit, we have
obtained a realistic description of the qubit-cavity interaction
which yields a microscopic mechanism for coupling the qubit
to the cavity, namely, by a transition of an electron between
the outer QDs. In particular, the cavity causes a transition
between states |2〉 and |3〉, which are coupled to the qubit
states by electronic hopping elements.

For the description of the wave functions and in order to
estimate the dipole transition matrix element between the qubit
states we have used the method of orthonormalized Wannier
orbitals to construct the electron wave functions by taking
only a small, finite overlap between the original electron
wave functions into consideration. As a result, we obtain the
qubit-cavity coupling strength as a function of the interdot
distances. Realistic parameter settings yield values on the order
of megahertz depending on the chosen distance. Combining
these elements enables coupling between two RX qubits in the
same cavity with gate times tg on the order of nanoseconds
depending on the detuning between the resonance frequency
between the cavity and the RX qubits and the qubit-cavity
couplings. Realistic parameter choices allow 103 operations in
the qubit coherence time.

Since the qubit-cavity coupling mechanism is based on
the transitions between the asymmetric states |2〉 and |3〉,
which are only virtually occupied in the RX regime, the
asymmetric resonant exchange (ARX) qubit [24] should have
a strong qubit-cavity coupling since in this implementa-
tion the asymmetric states are occupied most of the time.
However, this consideration requires a much deeper under-
standing of the associated wave functions. Nevertheless, we
encourage the investigation of these aspects in future studies
since they may strongly increase the qubit-cavity coupling
strength.

This far, we have considered in our analysis only a spin
degree of freedom which is appropriate for GaAs. However,
silicon has an additional sixfold degeneracy (twofold in typical
QDs) of the ground state, the so-called valley degree of
freedom, due to local inequivalent minima (maxima) in the
conduction (valence) band [8]. This leads to a more complex
structure of the single-electron wave functions [49,50]. In this
paper, we considered a nondegenerate ground state (strong
valley splitting) with the same valley ground state in all QDs.
In future studies, the valley degeneracy can be included since
this additional degree of freedom could possibly be helpful,
e.g., serving as additional qubits [51,52].

In our analysis, we assumed a harmonic confinement
potential of the QDs. Small anharmonicities can give rise to a
more complex structure of the wave functions than the one con-
sidered here. In future studies, these modified wave functions
can be included to acquire more accurate predictions which
will hopefully encourage future experimental implementations
of such a setup for long distance interaction.

ACKNOWLEDGMENTS
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APPENDIX A: ELECTRON WAVE FUNCTIONS

Here, we calculate the single-electron wave functions of
an isolated electron in a QD defined in a two-dimensional
electron system with a perpendicular external magnetic field
B applied. We assume that the potential of the quantum dot
is approximately harmonic. Hence, the corresponding wave
functions of the ground state are given by the following
expression [46]:

ϕ(x,y) =
√

m ωQD

π�
e−m ωQD(x2+y2)/2�. (A1)

For B = 0, �ωQD = �ω0 is the harmonic confinement energy
of the QD and typically on the order of 3 meV for GaAs,
which corresponds with a QD diameter aQD ≈ 20 nm, while
the higher confinement energy in Si, e.g., 6 meV, yields a
smaller diameter, aQD ≈ 9 nm. Due to the magnetic field, B ≈
310 mT, which is necessary to split off leakage states [22], the
wave functions are not properly described by Eq. (A1), and we
have to include the influence of the magnetic field. As a result,
we obtain the Fock-Darwin states, which are the harmonic
states compressed by a factor b ≡ ωQD/ω0, where �ωQD is
the confinement potential of the QD under the influence of
the magnetic field B [53]. Here, the modified confinement
potential is ωQD ≡

√
ω2

0 + ω2
L, with the Lamor frequency ωL ≡

eB/2m. Hence, fixing the origin of the coordinate system to
the center QD, we obtain for the single-electron wave function
in the center QD, ϕ2(x,y) = ϕ(x,y). The wave functions for
an electron in the left dot are shifted by x → x + al and for
the right dot by x → x − ar , where al (ar ) is the distance from
the center dot to the left (right) dot. However, due to the gauge
transformation of the magnetic field A = B(−y,x ∓ al,r ) →
B(−y,x) they also obtain a phase shift,

ϕ1(x,y) =
√

m ωQD

π�
e−iyal/2l2

B e−mωQD[(x+al )2+y2]/2�,

ϕ3(x,y) =
√

m ωQD

π�
eiyar /2l2

B e−mωQD[(x−ar )2+y2]/2�,

(A2)

with the magnetic length lB ≡ √
�/eB. For the overlaps

between the left and center QDs, Sl ≡ 〈ϕ1|ϕ2〉, between the
right and center QDs, Sr ≡ 〈ϕ3|ϕ2〉, and between the left and
right QDs, S13 ≡ 〈ϕ1|ϕ3〉, we obtain

Sl,r = exp
[−a2

l,r

/
4a2

S

]
, (A3)

S13 = exp
[−(al + ar )2/4a2

S

]
, (A4)

with the magnetic-field-dependent QD Bohr radius of the
electron wave functions

aS =
(

�

4 l4
b m ωQD

+ mωQD

�

)−1/2

. (A5)

For B = 0, we have aS = a0 = √
�/mω0. Typical values are

aS ≈ 9.5 nm for GaAs and aS ≈ 4 nm for Si. Without loss of
generality, we find that the overlaps Sl,r and S13 are always real
due to our choice of the wave functions and our assumptions
of identical confinement potentials ωQD in each QD.

Usually, the overlap S13 is negligible; for example, for a
symmetric setup, al = ar , we obtain for the overlaps of the
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neighboring QDs Sl = Sr ≡ S with S � 1 and for the overlap
between the left and right QDs S13 = S4, and we only have to
consider S13 for very small distances between the QDs.

APPENDIX B: ORTHONORMALIZED
WANNIER ORBITALS

1. Minimizing the localization functional

To determine the orthonormalized Wannier orbitals in the
long interdot distance approximation we use as an ansatz

|�1〉 = 1

N1
(|ϕ1〉 + a1 |ϕ2〉),

|�2〉 = 1

N2
(|ϕ2〉 + a2 |ϕ1〉 + b2 |ϕ3〉),

|�3〉 = 1

N3
(|ϕ3〉 + a3 |ϕ2〉),

(B1)

with parameters that are determined by the orthonormaliza-
tion condition 〈�i |�j 〉 = δij , with i,j ∈ {1,2,3}, except for
one parameter which we define as k = a1Sr/(a3Sl). In the
next step, we calculate the localization functional [44] F =∑3

i=1 (〈�i | x̂2 |�i〉 − 〈�i | x̂ |�i〉2) as a function of k, which
is straightforward since the Wannier orbitals are superpositions
of Gaussian wave functions. The minimizing conditions,
∂kF = 0, yield two solutions, k ∼ ±1, in the parameter regime
investigated here, al = 45–120 nm (more details are given
in Sec. B 2), where we neglect the negative solution since
it corresponds to a vanishing overlap between the wave
functions. Figure 7 shows the best parameter settings from the
minimizing condition from numerical calculations. In Fig. 8,
we plot the coefficients of Eq. (B1) as a function of the interdot
distance and k = 1.

ar = 1.1 al
ar = 1.05 al
ar = al

50 60 70 80 90 100 110 120
0.2

0.4

0.6

0.8

1.0

al (nm)

k

FIG. 7. (Color online) Maximally localized parameter settings
for k as a function of the interdot distance al with different
dynamically fixed values for ar . In the symmetric case, al = ar ,
the optimal setting is k = 1, while for the asymmetric case, al < ar ,
the optimal setting is 0.3 � k � 1 depending on the asymmetry
and the interdot distance. Note that for very long interdot distances
k → −1, which corresponds to |�i〉 → |ϕi〉.
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FIG. 8. (Color online) (a)–(c) Constitution of the orthonormal-
ized Wannier orbitals. The colored lines illustrate the overlaps
|〈ϕi |�j 〉| with i,j ∈ {1,2,3} as a function of al with ar = 1.1al and
wQD = 3.10 meV in GaAs.

2. Limitation of our model

The limitations of the orthonormalized Wannier orbitals are
illustrated in Fig. 9 as a function of the interdot distances. The
Wannier orbital wave functions |�i,s〉 describe only the long
interdot distance limit. As a condition for the validity of our
approach, we use

a2
l,r � −2a2

S log
(

1
2 − S2

r,l

)
. (B2)

Figure 9 shows the resulting limitations for a magnetic field of
B = 310 mT for different settings of the confinement energy
ωQD. Considering �ωQD = 3.1 meV, we obtain al,r > 40 nm
in GaAs and al,r > 18 nm in Si.

APPENDIX C: MATRIX ELEMENTS
OF THE POSITION OPERATOR x̂

For an estimation of the qubit-cavity coupling, the matrix
elements of the position operator from Eq. (15) in the
{|0〉 , |1〉 , |2〉 , |3〉} basis are needed. Therefore, we express all
three-electron states in terms of our orthonormalized Wannier
functions. In other words, c

†
i,σ (ci,σ ) creates (annihilates) an

electron in the ith Wannier orbital with spin σ . Hence, we have
to calculate the following matrix elements, using Eq. (15):

〈u| x̂ |v〉 =
3∑

i,j=1

∑
σ=↑,↓

xij 〈u| c†i,σ cj,σ |v〉 , (C1)

with u,v ∈ {0,1,2,3}. For the sake of brevity, we focus here
on one of the two relevant cases u = 2 and v = 3 for the
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FIG. 9. (Color online) Limitation of the use of orthonormalized Wannier orbitals in (a) a GaAs TQD and (b) a Si TQD in a magnetic field
B = 310 mT for different settings of the harmonic potential energies ωQD. Here, the area in red shows the case in which the overlap between
QD 1 and QD 3 cannot be neglected and our approximation breaks down.

qubit-cavity coupling,

〈2| x̂ |3〉 =
3∑

i,j=1

∑
σ=↑,↓

xij 〈vac| c3,↑c1,↓c1,↑

× c
†
i,σ cj,σ c

†
1,↑c

†
3,↑c

†
3,↓ |vac〉 . (C2)

Inserting x yields only one nonzero term since all others are
zero since 〈�i,σ |�j,σ ′ 〉 = δij δσσ ′ ; hence, we obtain

〈2| x̂ |3〉 = −x13. (C3)

The calculations for the other matrix elements can be done the
same way, in particular, 〈0| x |1〉 = 0, since two electrons have
to be transferred (or no electrons have to be transferred and a

spin has to be flipped). Combining all matrix element, we find
the expression in Eq. (16).

APPENDIX D: MATRIX ELEMENTS
OF THE MOMENTUM OPERATOR p

Through the position-momentum relation p =
− i m

�
[HHub,x̂] we obtain for the momentum operator in

the x direction in the {|0〉 , |1〉 , |2〉 , |3〉} basis

p̂ =
(

A B

B† C

)
, (D1)

with the 2 × 2 blocks

A ≡

⎛
⎜⎝ im[tlx12−tlx21+tr (x32−x23)]

2
√

2�

i
√

3
2 m[tlx12−tlx21+tr (x23−x32)]

2�

i
√

3
2 m[tlx12−tlx21+tr (x23−x32)]

2�

3im[tlx12−tlx21+tr (x32−x23)]
2
√

2�

⎞
⎟⎠,

B ≡ −
(

im[tlx21−
√

2(�+ε)x12−tr x13−tlx22]
2�

−im[tr x22+tlx31+
√

2(�−ε)x32−tr x33]
2�

i
√

3m[tlx11−
√

2(�+ε)x12+tr x13−tlx22]
2�

i
√

3m[tr x22−tlx31+
√

2(�−ε)x32−tr x33]
2�

)
,

C ≡
(

− i
√

2mtl (x12−x21)
�

− im(
√

2tr x21−4εx31−
√

2tlx32)
2�

im(
√

2tr x12−4εx13−
√

2tlx23)
2�

i
√

2mtr (x23−x32)
�

)
.

(D2)
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In the case of real-valued matrix elements xij = xji ∈ R, with i,j ∈ {1,2,3}, in Eq. (D2) we obtain a simpler expression for
the parameters in Eq. (D1),

AR ≡
(

0 0

0 0

)
,

BR ≡ −
(

im[tlx11−
√

2(�+ε)x12−tr x13−tlx22]
2�

− im[tr x22+tlx31+
√

2(�−ε)x32−tr x33]
2�

i
√

3m[tlx11−
√

2(�+ε)x12+tr x13−tlx22]
2�

i
√

3m[tr x22−tlx31+
√

2(�−ε)x32−tr x33]
2�

)
,

CR ≡
⎛
⎝ 0 − im(

√
2tr x21−4εx31−

√
2tlx32)

2�

im
(√

2tr x12−4εx13−
√

2tlx23

)
2�

0

⎞
⎠.

(D3)

Shifting the momentum operator into the qubit basis of the RX regime acquired through a second-order Schrieffer-Wolff
transformation [22], p̃ = eS pe−S ≈ p − [ p,S] with the anti-Hermitian matrix S. We obtain

p̃ ≈ p − [ p,S] =
(

A + sB† + Bs† +B − As + sC

B† − s†A + Cs†C C − s†B − B†s

)
, (D4)

where s is the 2 × 2 block in the top right corner of matrix S. Inserting the expressions for A, B, C, and s we obtain the expression
p̃||0〉,|1〉 ≈ A + sB† + Bs† given in Eq. (17).

APPENDIX E: CALCULATION OF THE COUPLING STRENGTH gr

In order to obtain the qubit-cavity coupling gr , we have to calculate the matrix elements xij in Eq. (17), with i,j ∈ {1,2,3}, which
we can rewrite due to a transformation back into the nonorthogonal basis of {|ϕ1〉 , |ϕ2〉 , |ϕ3〉} as xij = ∑3

k,l=1 qkl 〈ϕk| x |ϕl〉, with
k,l ∈ {1,2,3} and qkl ∈ R. Due to the separability of the Fock-Darwin wave functions in position space, ϕk(x,y) = ϕk,x(x)ϕk,y(y),
where ϕk,x(x) ∈ R, the integrations over both space dimensions are independent,

〈ϕk| x̂ |ϕl〉 =
∫∫ ∞

−∞
dx dy ϕ∗

k (x,y) x ϕl(x,y) =
(∫ ∞

−∞
dxϕk,x(x) x ϕl,x(x)

)(∫ ∞

−∞
dyϕ∗

k,y(y)ϕl,y(y)

)
. (E1)

In the next step we prove that this integral is always real under the assumption that the confinement energy ωQD is identical in
each QD, even for a finite homogenous magnetic field. For the integration over x, this is true since the wave functions do not
acquire a phase in the x direction; hence, it has no imaginary contribution. Proving this statement for the second term, which is
just the overlap in the y direction, is more complicated due to the additional phase acquired by the magnetic field. We obtain,
e.g., for k = 1 and l = 2 for the second term,∫ ∞

−∞
dy ϕ∗

k,y(y)ϕl,y(y) =
∫ ∞

−∞
dy eialy/2l2

B e−y2/8aS =
∫ ∞

−∞
dỹ e−ỹ2/8a2

S e−a2
l a

2
S/2l4

B , (E2)

with ỹ = y − 2iala
2
S/ l2

B , which is a Gaussian integral shifted along the imaginary axis. Since this integral is real, xij is also real,
and the only relevant matrix element according to Eq. (17) is

x13 = 1

N1 N3
(〈ϕ1| + a1 〈ϕ2| + b1 〈ϕ3|)x̂(|ϕ3〉 + a3 |ϕ2〉 + b3 |ϕ1〉). (E3)

To calculate x13, we first consider the more general case of nonvanishing overlap S13 for our calculation and neglect S13 later.
Inserting the Fock-Darwin functions from Eq. (A2), we find

x13 = mωQD

π�N1N3

∫∫ ∞

−∞
dx dy

(
a1 exp

[
−mωQD(x2 + y2)

2�

]
+ exp

{
−mωQD[(al + x)2 + y2]

2�
+ ialy

2l2
B

}

+ b1 exp

{
−mωQD[(ar − x)2 + y2]

2�
− iary

2l2
B

})
x

×
(
a3 exp

[
−mωQD(x2 + y2)

2�

]
+b3 exp

{
−mωQD[(al + x)2 + y2]

2�
− ialy

2l2
B

}
+ exp

{
−mωQD[(ar − x)2 + y2]

2�
+ iary

2l2
B

})
.

(E4)

This integral can be solved straightforwardly since all integrands are Gaussian. As a result, we obtain

x13 = [−al(a1b3Sl + a3Sl + 2b3 + S13) + ar (a1Sr + S13) + b1ar (a3Sr + 2b3 + 2)]/2N1N3. (E5)
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Setting S13 = b1 = b3 = 0 and inserting a1, a2, b2, and a3 from
Sec. III B 1 for the second step, we obtain

x13 = a1arSr − a3alSl

2
√

a2
1 + 2a1Sl + 1

√
a2

3 + 2a3Sr + 1

= ãrel(al − ar )Sl Sr , (E6)

where ãrel can be expanded for k = a1Sr/a3Sl ≈ 1 (defined
and discussed in Sec. B 1),

ãrel � 1 +
(

al

ar − al

− S2
l + S2

r + 1

2

)
(k − 1), (E7)

which yields the expression in Eq. (19) after inserting into
Eq. (17).

APPENDIX F: SECOND SW TRANSFORMATION
TO ELIMINATE THE CAVITY MODE

In this Appendix, we present an effective Hamiltonian
in which the cavity mode is split off by a second SW

transformation in order to express the cavity-mediated cou-
pling between two RX qubits [28]. We start with the universal
Hamiltonian in the rotating frame from Eq. (23) and introduce
a second-order SW transformation,

Htot ≡ eS2HRWE−S2 � H0 + [Hint,S2]/2, (F1)

where H0 ≡ ∑
i �ωi/2 σz + �ωpha

†a and Hint =∑
i gi i(σ+a − σ−a†) and the anti-Hermitian operator S2

is determined by the SW condition [H0,S2] = −Hint. Hence,
we express S2 in terms of operators,

S2 =
2∑

i=1

gi

�ωph − �ωi

(σ+a − σ−a†), (F2)

with the previously introduced ladder operators σ±.
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