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Entangled photons from the polariton vacuum in a switchable optical cavity
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We study theoretically the entanglement of two-photon states in the ground state of the intersubband cavity
system, i.e., the so-called polariton vacuum. The system consists of a sequence of doped quantum wells located
inside a microcavity and the photons can interact with intersubband excitations inside the quantum wells. Using
an explicit solution for the ground state of the system, operated in the ultrastrong-coupling regime, a postselection
is introduced, where only certain two-photon states are considered and analyzed for mode entanglement. We find
that a fast quench of the coupling creates entangled photons and that the degree of entanglement depends on the
absolute values of the in-plane wave vectors of the photons. Maximally entangled states can be generated by
choosing the appropriate modes in the postselection.
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I. INTRODUCTION

With the advent of quantum information theory,1 the
phenomenon of entanglement not only remained a mysterious
feature of quantum mechanics,2,3 but became a resource to
perform tasks that are not feasible with classical resources.
Examples are quantum communication protocols, which make
use of entangled states like quantum key distribution,4 quan-
tum teleportation,5 or superdense coding,6 or the realization
of a quantum repeater.7

Entangled photon states are often used to implement the
protocols mentioned above. Today, there exist several different
proposals for the production of bipartite entangled photon
states, most prominently type-II parametric down-conversion8

and biexciton decay in a quantum dot.9

The fundamental requirements for such a photon-pair
source to be used in quantum information processing are that
the states have to possess a sufficient amount of entanglement
and that the production of the two photons has to be
deterministic and efficient. Determinism means that the release
of the photons can be triggered by some external control
parameter. Efficiency means that the probability for this event
is near unity.

Here, we study the intersubband cavity system, for
which the emission of correlated photon pairs was predicted
theoretically10 and can be triggered by modulating the light-
matter interaction between microcavity photons and electronic
excitations in the quantum wells (QWs). Those intersub-
band transitions are mainly used in quantum-well infrared
photodetectors11 and quantum cascade lasers.12–15 Embedded
in a microcavity, it is possible to reach a regime of ultrastrong
light-matter coupling,16–19 in which the vacuum-field Rabi
frequency can be of the order of the intersubband transition
frequency, and the ground state of the system, i.e., a squeezed
vacuum, contains already a nonzero number of photons.
Another type of system, which can reach the ultrastrong-
coupling regime as well, is superconducting circuits,20–22

where the emission of quantum vacuum radiation was just
recently demonstrated.23

In this paper, we analyze the ground state of the inter-
subband cavity system, i.e., the so-called polariton vacuum,
related to two-photon entanglement. We use an explicit expres-
sion for the polariton vacuum and, after postselecting certain

photonic states, quantify the mode entanglement between the
photon pairs via the concurrence.

II. THE INTERSUBBAND CAVITY SYSTEM

The intersubband cavity system was intensely studied theo-
retically; see, e.g., Ref. 10. It consists of nQW identical quantum
wells embedded inside a semiconductor optical microcavity
(Fig. 1). The quantum wells are assumed to be negatively
charged with a two-dimensional electron gas (2DEG) with
density N2DEG that populates the first subband (Fig. 2). We
consider the interaction of intersubband excitations between
the two lowest subbands and photons of the fundamental cavity
mode.

The ultrastrong-coupling regime, in which the vacuum-field
Rabi splitting is of the order of the intersubband transition
energy, can be reached due to the large dipole moment16

of intersubband transitions and the collective coupling to all
electrons of the 2DEGs. In this regime, the rotating-wave
approximation24 is not valid anymore and the full light-matter
interaction Hamiltonian in the Coulomb gauge including the
antiresonant terms has the form10

H =
∑

k

h̄ωc(k)

(
a
†
kak + 1

2

)
+

∑
k

h̄ω̄12(k)b†kbk

+
∑

k

ih̄�R(k)(a†
k + a−k)(bk − b

†
−k)

+
∑

k

h̄D(k)(a†
k + a−k)(a†

−k + ak). (1)

The operator a
(†)
k annihilates (creates) a cavity photon with in-

plane wave vector k = (kx,ky) and transverse-magnetic (TM)
polarization, while the operator b

(†)
k annihilates (creates) an

electronic intersubband excitation. Photon polarizations other
than TM are excluded due to the selection rule for intersubband
transitions:11 since the dipole moment is oriented along the
growth (z) direction, the exciting radiation must have a finite
electric-field component in the z direction. As shown in Fig. 1,
the magnetic field for TM-polarized light is perpendicular to
the plane of incidence, whereas the electric field has a finite
z component if the wave vector encloses a finite angle θ with
the normal to the cavity mirror. Our analysis also applies to
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FIG. 1. (Color online) (a) The system under consideration: A sequence of doped QWs (gray) inside a microcavity of length Lc (cavity
mirrors in blue) form the intersubband cavity system. The light-matter interaction in such a system depends on the propagation angle θ of the
cavity photons. The transverse-magnetic polarization is indicated by the electric and magnetic field vectors. The electric field E lies in the
plane of incidence and the magnetic field B is perpendicular to it, and both are perpendicular to the photon wave vector ktot. (b) The plane of
incidence to better demonstrate the TM polarization of the photons.

the case where the polarization is not purely TM because only
the TM-polarized part of the radiation couples to intersubband
transitions.

The dispersion of the fundamental cavity mode ωc(k) is
given by

ωc(k) = c√
ε

√
k2 + k2

z , (2)

where c is the speed of light, ε is the dielectric constant of the
material used as the cavity spacer, and the quantization of kz

can depend in a complicated way on the boundary conditions.
In the following, k = |k| is the length of the in-plane wave
vector.

The ultrastrong-coupling regime can only be reached if
the electron density N2DEG is sufficiently high, i.e., about
1012 cm−2 [see Eq. (6) below]. For such high densities, the
renormalization of the intersubband energy,

ω̄2
12(k) = ω2

12(1 + δ(k)), (3)

known as the depolarization shift,11 can in general not be
neglected. Equation (3) can be derived by adding a Coulomb-
interaction term to the single-particle Hamiltonian, i.e., Eq. (1)

with ω̄12(k) replaced by ω12.10 The depolarization shift δ(k) is
found to be25,26

δ(k) = N2DEGe2I (k)

ε0εω12k
, (4)

where e is the elementary charge, ε0 is the vacuum permittivity,
and ω12 is the intersubband frequency difference, which in
the absence of interactions determines the absorption maxi-
mum. The function I (k) originates from the two-dimensional
Coulomb integral,

I (k) =
∫

dzdz′ϕ1(z)ϕ2(z)ϕ2(z′)ϕ1(z′)e−k|z−z′ |, (5)

where ϕ1,2(z) are the z-dependent parts of the (real) QW wave
functions of subbands 1 and 2, respectively. A Bogoliubov
transformation27 of the operators describing single-particle
excitations in the QWs finally leads to the Hamiltonian (1)
with the renormalized intersubband transition energy ω̄12(k)
as given in Eq. (3). The depolarization shift describes a change
in the spatial charge distribution in the 2DEG (plasmonic
excitation) due to the excitation of a single electron from
subband 1 to 2.

FIG. 2. (Color online) Subband energy structure of a quantum well (QW) formed in a semiconductor heterostructure. (a) In real space,
along the growth direction z of the structure, the semiconductors forming the QW are denoted as A and B. The QW contains a two-dimensional
electron gas (2DEG). Here, we study intersubband transitions between the first two subbands, n = 1 and n = 2, with transition energy h̄ω12.
(b) The same situation in k space, where the 2DEG populates states up to the Fermi energy EF, with a corresponding wave vector kF.

235140-2



ENTANGLED PHOTONS FROM THE POLARITON VACUUM . . . PHYSICAL REVIEW B 85, 235140 (2012)

Hence, the b
(†)
k in Eq. (1) are plasmonic operators describ-

ing collective electronic excitations and are obtained by a
Bogoliubov transformation of the single-particle operators.27

They fulfill Bose commutation relations [bk,b
†
k′] � δk,k′ in the

weak excitation regime, i.e., when the number of intersubband
excitations is much less than the number of electrons forming
the 2DEG.10,28

The vacuum Rabi frequency �R(k) for the intersubband
cavity system is given by10,29

�R(k) =
[
e2N2DEGneff

QWf12ω̄12(k)

2ε0εm∗Leff
c ωc(k)

sin2 θ (k)

] 1
2

. (6)

Here, neff
QW is an effective number of embedded quantum wells

since not all quantum wells are equally coupled to the photon
field, Leff

c denotes an effective cavity thickness that depends
on the type of cavity mirrors, and f12 is the oscillator strength
of the subband transition. For a deep rectangular well, f12 �
1.10,11 Finally, θ (k) is the propagation angle of a cavity photon:
sin θ (k) = k/

√
k2 + k2

z . The dispersive coupling parameter
D(k) can be approximated by D(k) � �2

R(k)/ω̄12(k), which
is valid for deep rectangular wells and exact for parabolic well
potentials.10,19

The Hamiltonian (1) can be diagonalized with an ex-
tended Bogoliubov transformation,30 also known as Hopfield
transformation,31 where new bosonic operators

pj,k = wj (k)ak + xj (k)bk + yj (k)a†
−k + zj (k)b†−k (7)

are introduced that describe a quasiparticle called intersubband
cavity polariton,32 and j indicates whether it belongs to the
lower (j = LP) or upper (j = UP) polariton branch. The wave
vectors k are still meant to be in-plane. By an appropriate
choice of the Hopfield coefficients wj (k), xj (k), yj (k), and
zj (k), which are already taken to depend only on k, the
Hamiltonian becomes diagonal,

H = EG +
∑

j∈{LP,UP}

∑
k

h̄ωj (k)p†
j,kpj,k. (8)

Here, EG denotes the ground-state energy. The resulting lower
and upper polariton dispersions are shown in Fig. 3. Here,
as well as for all further quantitative results, we assume
GaAs/AlGaAs quantum wells, which have been commonly
used experimentally.16,32–34 Hence, the material-dependent
parameters are m∗ = 0.067m0 and ε = 10. Furthermore, the
number of embedded quantum wells nQW, the length of the
microcavity Lc, and the subband level spacing ω12, which
is determined by the quantum-well depth and thickness, can
be adjusted during the manufacturing process. The density
of the two-dimensional electron gas can be varied experi-
mentally. To obtain the results of Fig. 3, we chose neff

QW =
50, Leff

c = 2 μm, h̄ω12 = 113 meV, and N2DEG = 1012 cm−2

as one particular set of experimentally reasonable values
of the parameters mentioned above, on the basis of the
experimental work done in Ref. 16. The ultrastrong-coupling
regime has also been reached using zero-dimensional (0D)
cavities operating in the THz regime.18 However, 0D cavi-
ties are not suited for our entanglement generation scheme
because only one of their modes couples to the QW transi-
tion, whereas our proposed scheme for mode entanglement
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FIG. 3. (Color online) The polariton energy dispersions h̄ωLP(k)
and h̄ωUP(k) as a function of the absolute value of the in-plane wave
vector k. Here, neff

QW = 50 GaAs/AlGaAs (ε = 10.0, m∗ = 0.067m0)
QWs are assumed to be located inside a cavity of length Leff

c =
2 μm and doped with a two-dimensional electron gas density of
N2DEG = 1012 cm−2. The plot shows the anticrossing region where
the dotted lines are the bare cavity photon dispersion h̄ωc(k) and
the intersubband transition energy h̄ω̄12(k). The vacuum-field Rabi
splitting is 2h̄�R(kres). This plot takes into account the depolarization
shift, ω̄12(k) = ω12

√
1 + δ(k), with h̄ω12 = 113 meV (Ref. 16).

(see below) requires the coupling to several distinct modes
simultaneously.

The ground state of the intersubband cavity system, oper-
ating in the ultrastrong-coupling regime, is not the ordinary
vacuum |0〉, in which there are no cavity photons and no
intersubband excitations present,

ak|0〉 = bk|0〉 = 0, (9)

but a state |G〉 that exhibits no intersubband cavity polaritons,

pj,k|G〉 = 0, j ∈ {LP,UP}. (10)

Without knowing the explicit form of |G〉, one can show that
the ground state has some peculiar properties in the ultrastrong-
coupling regime that were worked out in Ref. 10, whereof the
essential ones are that it contains a finite number of photons,

〈G|a†
kak|G〉 = |yLP(k)|2 + |yUP(k)|2, (11)

and photons with opposite in-plane wave vectors k and −k are
correlated,

〈G|aka−k|G〉 = −w∗
LP(k)yLP(k) − w∗

UP(k)yUP(k). (12)

One can see that only if the light-matter interaction is so strong
that the Hopfield coefficients yLP(k) and yUP(k) are reasonably
large, that is, |yj (k)|2 ∼ 0.1 [i.e., when the antiresonant terms
of the light-matter interaction Hamiltonian cannot be neglected
and therefore the extended Bogoliubov transformation (7) is
necessary], then the ground state |G〉 differs significantly from
the vacuum state |0〉.

The idea is now that the correlations (12) can lead to
entanglement of two photons propagating in opposite direc-
tions. These photons are, however, virtual excitations, but it is
conjectured10,35,36 that they can be released by a nonadiabatic
switch-off (quench) of the vacuum Rabi frequency �R(k).
An experimental approach to this scenario is an ultrafast
change of the density N2DEG of two-dimensional electron
gas.16,33,34 One mechanism to achieve a modulation of the
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parameter N2DEG is a gate voltage, which can lead to the
depletion of the QWs.33 The rapidity is restricted by the
capacitance of the gates, however. Another implementation
uses two asymmetrically coupled QWs, in which one QW can
be charged by electron tunneling and this process can happen
on the picosecond time scale or faster.34 A promising idea
to achieve an ultrafast coupling modulation is an all-optical
control scheme,16 in which electrons from the valence band are
resonantly excited to the first subband by a femtosecond laser
pulse. In this manner, it could be demonstrated experimentally
that the coupling between the cavity photon field and the
intersubband transitions in the quantum wells can be switched
on in a time shorter than a cycle of light in the microcavity.
Since then, further progress has been made in the field
of ultrafast switching the light-matter interaction strength,
experimentally37,38 and theoretically.39 In Refs. 35 and 36,
the spectrum of the radiation exiting the cavity was derived in
more detailed calculations, when a time-dependent coupling
�R(k,t) is predominant in the system and it is predicted that
the vacuum radiation rises above the blackbody radiation.

III. EXACT GROUND STATE

A pioneering calculation of the polariton ground state of a
bulk dielectric was given by Quattropani et al.31 The solution
is given by independent photon and polarization states. Since
the Hamiltonian of the intersubband cavity system is similar
to the one in Ref. 31, we use their treatment to determine the
explicit form of the polariton vacuum |G〉 being the ground
state of the Hamiltonian (1) of the intersubband cavity system.
The difference is just that the sums in (1) cover all in-plane
wave vectors.

The ansatz for the polariton vacuum |G〉 is

|G〉 = 1

N
e

1
2

∑
k[G(k)(a†

ka
†
−k+b

†
kb

†
−k)+F (k)(a†

kb
†
−k+b

†
ka

†
−k)]|0〉. (13)

N is a normalization constant and the expansion coefficients
G(k) and F (k) have to be determined in order to satisfy the
definition of the polariton vacuum (10):

pj,k|G〉 = 0, j ∈ {LP,UP}.

We anticipate that the functions G(k) and F (k) will only
depend on the absolute value of the in-plane wave vector
k. After some algebra using commutation relations, which
is explicitly given in Ref. 31, the action of ak and bk on |G〉
is, e.g.,

ak|G〉 = (G(k)a†
−k + F (k)b†−k)|G〉, (14)

bk|G〉 = (G(k)b†−k + F (k)a†
−k)|G〉. (15)

By inserting (14) and (15) into the definitions (7) and (10),
one obtains a system of equations for the coefficients G(k)
and F (k),

wj (k)G(k) + xj (k)F (k) + yj (k) = 0, (16)

wj (k)F (k) + xj (k)G(k) + zj (k) = 0, (17)

which has the solutions

G(k) = xj (k)zj (k) − wj (k)yj (k)

w2
j (k) − x2

j (k)
, (18)

F (k) = xj (k)yj (k) − wj (k)zj (k)

w2
j (k) − x2

j (k)
. (19)

This can be fulfilled simultaneously by the Hopfield coeffi-
cients of the lower and upper polariton, which can be seen
from the following relations:30,31

wLP(k) = xUP(k), xLP(k) = wUP(k),
(20)

yLP(k) = zUP(k), zLP(k) = yUP(k).

By inserting the explicit expressions of the Hopfield coeffi-
cients, the expansion coefficients can be rewritten as31

G(k) = ω̄12(k) + ωc(k) − ωLP(k) − ωUP(k)

ω̄12(k) − ωc(k) − ωLP(k) − ωUP(k)
, (21)

F (k) = −i
ω̄12(k)

�R(k)
G(k). (22)

Finally, the polariton vacuum |G〉 is calculated to be

|G〉 = 1

N
e

1
2

∑
k G(k)(a†

ka
†
−k+b

†
kb

†
−k−2i

ω̄12(k)
�R(k) a

†
kb

†
−k)|0〉 (23)

because the last two terms in the exponential can be combined,
and with the normalization N given by

N =
∏

k

(|wLP(k)|2 + |xLP(k)|2)
1
2 . (24)

The dependence of G(k) and |F (k)| on k is plotted in Fig. 4.
One can see that |F (k)| is about one order of magnitude larger
than G(k) and

G(k) ≈ |F (k)|2 � 1, (25)

in which this was checked for a wide range of experimentally
acceptable values of the parameters nQW, Lc, ω12, and N2DEG.
Therefore, the polariton vacuum state |G〉 will be expanded in
a Taylor series to the second order in these coefficients as an
approximation.

If the light-matter interaction is turned off [�R(k) = 0],
then G(k) and F (k) are zero, so the ground state would be the
ordinary vacuum |0〉, as expected.
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FIG. 4. (Color online) The absolute values of the expansion
coefficients G(k) and |F (k)| as a function of the length k of the in-
plane wave vector. Parameter values: ε = 10, m∗ = 0.067m0, neff

QW =
50, Leff

c = 2 μm, h̄ω12 = 113 meV, N2DEG = 1012 cm−2. Here, the
depolarization shift is taken into account.
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IV. PHOTON ENTANGLEMENT

An entangled pure state |ψ〉, describing two subsystems
A and B, is defined by the impossibility of preparing it as
a product state, |ψ〉 = |φ〉A ⊗ |ν〉B, in which |φ〉A and |ν〉B

are states solely of the subsystems A and B, respectively.40

Furthermore, a mixed state � is entangled if it cannot be written
as a convex combination, � = ∑n

i=1 pi�
A
i ⊗ �B

i , where 0 �
pi � 1, and again �A

i and �B
i describe the subsystems and n is

bounded by the dimensions of the subsystems.40

Now, a lot of protocols in quantum information
processing4–7 require the distribution of one of the so-called
Bell states,41

|�±〉 = 1√
2

(|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B), (26)

|±〉 = 1√
2

(|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B), (27)

which are maximally entangled states of a system consisting of
two qubits with basis {|0〉, |1〉}. The term maximally entangled
stems from the fact that by using only local operations and
classical communication (LOCC), every other pure or mixed
state can be created from the Bell states.42 But, it is not possible
to increase the degree of entanglement by LOCC, since they
only lead to classical correlations. Hence, the Bell states must
be maximally entangled.

The reliability of a quantum communication protocol
depends on the entanglement of the distributed two-qubit state.
Thus, for practical reasons, it is important to quantify the
amount of entanglement a state has. For pure bipartite states,
the entanglement measure is the von Neumann entropy of
one of the subsystems.43 (It does not matter which subsystem
is chosen, since the von Neumann entropies are equal.) The
problem arises when dealing with mixed states. It is still
an ongoing challenge to characterize the entanglement of
mixed bipartite states, not to mention multipartite systems.
However, in the case of a two-qubit system, the entanglement
is fully specified and can be quantified by the so-called
concurrence44,45 (see Sec. IV C).

As seen in the previous section, the intersubband cavity
system contains a finite number of photons if it is in the
ultrastrong-coupling regime. One possibility of a photon pair
in the ground state |G〉 to be entangled will be studied below.
After specifying the type of entanglement, it is quantified by
the above-mentioned concurrence.

A. Mode entanglement

We first define the type of photon entanglement. Since the
transverse-magnetic polarization of the interacting photons
is fixed by the selection rule for intersubband transitions,11

polarization entanglement as achieved with parametric down-
conversion or the biexciton decay is out of the question.
But there exist anomalous correlations between photons with
opposite in-plane momentum (12),

〈G|aka−k|G〉 = −w∗
LP(k)yLP(k) − w∗

UP(k)yUP(k).

Our idea is to test the photonic states in |G〉 for mode or
frequency entanglement.41

In the following, we limit the treatment to only one
direction, since the correlations (12) occur only for photons

FIG. 5. (Color online) Two photons with different frequencies
(colors) leaving the cavity in opposite directions. The two subsystems,
left (L) and right (R), are defined via the sign of kx . Since there is
a difference in frequency, the photons have different in-plane wave
vectors.

with exactly opposite in-plane wave vectors. This direction is
chosen to be the x direction. This is shown schematically in
Fig. 5. Photons with a negative (positive) x component of the
wave vector belong to subsystem L (R), for left (right).

|G〉 itself is a vector from a Hilbert space H, which has a
tensor product structure H = Fa ⊗ Fb, where Fa and Fb

denote the Fock spaces of the photons and intersubband
excitations, respectively. The situation depicted in Fig. 5
is described by vectors in a subspace HLR ⊂ H, which is
itself a tensor product of HL and HR, the Hilbert spaces
of the subsystems L and R, HLR = HL ⊗ HR. Since |G〉
contains states from outside HLR, we project onto HLR with
an appropriate projection operator, which will be described
in the following and could be realized experimentally by a
postselective measurement.

B. Postselection

The postselection needs to fulfill the following require-
ments: first, we only allow for states in which two photons
with opposite in-plane wave vectors appear. In addition, the
postselection is even more restrictive in terms of allowed
modes. We only consider two different modes in each
subsystem L and R, respectively, that have, however, the same
absolute value of the in-plane wave vector. That is, we choose
k and q, with k �= q, and consider the modes k = (k,0) and
−k = (−k,0) and accordingly q = (q,0) and −q = (−q,0),
where all wave vectors point along the x direction. So the
basis states of HL are

|k〉L = a
†
−k|0〉a, (28)

|q〉L = a
†
−q |0〉a, (29)

where |0〉a is the photon vacuum. The basis of HR is

|k〉R = a
†
k|0〉a, (30)

|q〉R = a†
q |0〉a. (31)

Hence, one possible product basis of HLR is

|k〉L ⊗ |k〉R, |k〉L ⊗ |q〉R,
(32)

|q〉L ⊗ |k〉R, |q〉L ⊗ |q〉R.
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For all further calculations, the polariton vacuum |G〉 is
expanded to the second order in the small expansion coefficient
G(k),

|G〉 = 1

N
e

1
2

∑
k G(k)(a†

ka
†
−k+b

†
kb

†
−k−2i

ω̄12(k)
�R(k) a

†
kb

†
−k)|0〉

≈ 1

Ñ

[
1 + 1

2

∑
k

G(k)T †
k + 1

8

(∑
k

G(k)T †
k

)2]
|0〉

≡ |G(2)〉, (33)

where Ñ is a new normalization constant to preserve
〈G(2)|G(2)〉 = 1, and the operator T †

k is

T †
k = a

†
ka

†
−k + b

†
kb

†
−k − 2i

ω̄12(k)

�R(k)
a
†
kb

†
−k. (34)

Thus, the two-photon states with opposite in-plane wave
vector, i.e., the states that fulfill the postselection requirements,
in linear order are

a
†
ka

†
−k|0〉a = |k〉L|k〉R, (35)

a†
qa

†
−q |0〉a = |q〉L|q〉R, (36)

and in second order are

a
†
ka

†
−kb

†
k′b

†
−k′ |0〉 = |k〉L|k〉R ⊗ b

†
k′b

†
−k′ |0〉b, (37)

a†
qa

†
−qb

†
k′b

†
−k′ |0〉 = |q〉L|q〉R ⊗ b

†
k′b

†
−k′ |0〉b, (38)

a
†
ka

†
−qb

†
−kb

†
q |0〉 = |q〉L|k〉R ⊗ b

†
−kb

†
q |0〉b, (39)

a†
qa

†
−kb

†
−qb

†
k|0〉 = |k〉L|q〉R ⊗ b

†
−qb

†
k|0〉b. (40)

Here, the explicit expression of the tensor product |0〉 =
|0〉a ⊗ |0〉b of the individual vacuum states for photons and
intersubband excitations is used and k′ can be an arbitrary
in-plane wave vector.

We carry out the postselection by projecting onto these
states with a projection operator PLR,

|ψLR〉 = Ñ

NLR
PLR|G(2)〉, (41)

with NLR being a necessary normalization constant, since the
operation is a projection. As an intermediate result, we obtain
the pure state |ψLR〉 in which all of the two-photon states
fulfilling the conditions of the postselection are extracted. We
give an explicit expression for |ψLR〉 in Appendix A.

As we will see below, the reduced density matrix �a of
the photonic system is needed for the calculation of the
entanglement. We compute �a by tracing out the intersubband
excitations,

�a = Trb|ψLR〉〈ψLR|

= 1

N2
LR

⎛⎜⎜⎜⎝
Z(k) 0 0 Y (k,q)

0 X(k,q) 0 0

0 0 X(k,q) 0

Y (k,q) 0 0 Z(q)

⎞⎟⎟⎟⎠ . (42)

Here, the matrix representation is in the basis (32) and the
abbreviations

X(k,q) = |F (k)|2|F (q)|2, (43)

Y (k,q) = G(k)G(q)

[(
1 + 1

2
S

)
− |F (k)|2 − |F (q)|2

]
, (44)

Z(k) = X(k,k) + Y (k,k) (45)

were introduced, and S is the sum over all expansion
coefficients squared,

S =
∑

k′
G2(k′). (46)

The value of S depends on the number of states that are
available, i.e., the wave vectors over which the sum runs.
The density of states increases with the sample area A and
hence the value of S depends on A. In the limit of A �
2π
I ( c

ω12
)2 (see Appendix B), one can take the limit S → ∞

and obtain

�a S→∞= 1

G2(k) + G2(q)

×

⎛⎜⎜⎜⎝
G2(k) 0 0 G(k)G(q)

0 0 0 0

0 0 0 0

G(k)G(q) 0 0 G2(q)

⎞⎟⎟⎟⎠ . (47)

This corresponds to the pure photon state,

|ψa〉 = 1√
G2(k) + G2(q)

(G(k)|k〉L|k〉R + G(q)|q〉L|q〉R).

(48)

C. Measure of entanglement

The state �a , which we derived from |G(2)〉, describes two
photons that propagate with opposite in-plane wave vectors
in the microcavity and that can potentially be released by an
appropriate time modulation (quench) of the Rabi frequency
�R(k). Since one chooses the modes k and −k and accordingly
q and −q via the postselection, the photons effectively form
a two-qubit system. For such a system, the entanglement for
mixed states can be calculated analytically without evaluating
a convex roof explicitly from the density matrix by way
of the concurrence C(�).45 With this function, the so-called
entanglement of formation EF(�) (Ref. 43) of two qubits can
be easily calculated via45

EF(�) = h

(
1 +

√
1 − C2(�)

2

)
, (49)

with the binary entropy

h(x) = −x log2(x) − (1 − x) log2(1 − x). (50)

The concurrence itself is given by45

C(�) = max{0,λ1 − λ2 − λ3 − λ4}. (51)

Here, λ1 to λ4 are, in decreasing order, the square roots of the
eigenvalues of the matrix ��̃, and �̃ is a transformation of the
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density matrix given by45

�̃ = (σy ⊗ σy)�∗(σy ⊗ σy), (52)

where σy is the Pauli y matrix and the ∗ denotes complex
conjugation.

1. Analytical results

For the photonic state �a (42), the parameters λ1 to λ4 are
found to be

λ1 = 1

N2
LR

(
√

Z(k)Z(q) + Y (k,q)), (53)

λ2 = 1

N2
LR

(
√

Z(k)Z(q) − Y (k,q)), (54)

λ3,4 = 1

N2
LR

X(k,q). (55)

Hence, from Eq. (51), we obtain in connection with (43)–(45)
for the concurrence,

C(�a) = C(k,q)

= 2

N2
LR

{
G(k)G(q)

[
1 + 1

2
S − |F (k)|2 − |F (q)|2

]
− |F (k)|2|F (q)|2

}
. (56)

The concurrence thus only depends on the absolute values
k and q via the expansion coefficients, which were given in
Eqs. (21) and (22),

G(k) = ω̄12(k) + ωc(k) − ωLP(k) − ωUP(k)

ω̄12(k) − ωc(k) − ωLP(k) − ωUP(k)
,

|F (k)| = ω̄12(k)

�R(k)
G(k).

We have investigated the role of Coulomb interactions
[entering via ω̄12(k)] for the concurrence, and found that
the Coulomb corrections are on the order of 5% or less for
our choice of parameters.46 The further numerical analysis of
C(k,q) was performed without Coulomb corrections.

To show the dependence of the concurrence on k and q, we
have to evaluate the sum S explicitly. Using a sample area A =
(200 μm)2, we find S = 0.857. The result is presented in Fig. 6
for the same parameters as used before, where C(k,q) is shown
in a density plot as a function of the modes k and q. Below it,
we show cuts for different values of q to better illustrate the
dependency of the concurrence. One can observe two branches
of high entanglement that appear for large values of k and/or
q. Their appearance can be explained by the characteristics of
the expansion coefficient G(k) for large k. G(k) tends to zero
as 1/k2, hence |F (k)|2 scales as 1/k3. Hence for the diagonal
branch, i.e., k ≈ q, the |F | terms in Eqs. (56) and (A2) can be
neglected and we obtain

C(k,q)
k,q→∞≈ 2G(k)G(q)

G2(k) + G2(q)

k≈q≈ 1. (57)

Accordingly, photons with frequencies in the visible range are
almost maximally entangled if their wave numbers are of the
same size.
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FIG. 6. (Color online) (a) The concurrence C(k,q) as a function
of k and q for GaAs/AlGaAs quantum wells. (Parameter values:
ε = 10, m∗ = 0.067m0, neff

QW = 50, Leff
c = 2 μm, h̄ω12 = 113 meV,

N2DEG = 1012 cm−2.) (b) Plot of C(k,q) for fixed values of q (given in
the respective legend) and for a large range of k from 0 to 3 × 107 m−1,
which corresponds to a photon energy of 1.9 eV (450 THz, red).
(c) Zoom in the range only up to k = 0.5 × 107 m−1 (320 meV, 80
THz, midinfrared).

The other branch appears if G(k) ≈ G(q) and the modes
are far from each other. We give a more precise analysis of
expression (57) in the next section, where the limit of large
sample areas is worked out.

In Fig. 7, we present the concurrence for two other
values of ω12, namely, h̄ω12 = 50 meV and h̄ω12 = 150 meV.
Qualitatively, the concurrence shows the two characteristic
branches of high entanglement mentioned before for a large
range of intersubband energies h̄ω12. The position of the
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FIG. 7. (Color online) The concurrence C(k,q) for renormal-
ized intersubband transition energies of (a) h̄ω12 = 50 meV and
(b) h̄ω12 = 150 meV. [Other parameters have same values as before,
besides Leff

c = 5 μm in (a).] The color scale is identical to that of
Fig. 6.

side branch, however, shifts due to changes in the expansion
coefficient G(k).

2. Large-cavity limit

The case of a large cavity, i.e., a large sample area A,
is described by the limit S → ∞; see Appendix B. The
concurrence in this case is calculated to be

C(k,q) = 2G(k)G(q)

G2(k) + G2(q)
. (58)

In this limit, the sample area A drops out so that C(k,q)
becomes independent of A. We show the result in Fig. 8. As one
can see, the concurrence always has two maxima if q is held
constant. One maximum appears for G(k) = G(q) and k �= q.
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FIG. 8. (Color online) The concurrence C(k,q) in the case of large
sample areas for GaAs/AlGaAs quantum wells. (Parameter values:
ε = 10, m∗ = 0.067m0, neff

QW = 50, Leff
c = 2 μm, h̄ω12 = 113 meV,

N2DEG = 1012 cm−2.)

There, photons are maximally entangled since we have C = 1.
However, this maximum is relatively sharply peaked and if one
realizes the postselection experimentally by choosing a certain
finite k range, then the entanglement will be reduced. The other
maximum appears when k = q, which seems to be an artifact
of the calculation, since this specific point was excluded in
the calculations above. The reason for the exclusion is that the
two-photon states would be separable and hence not entangled.
However, all of the states with k ≈ q in the vicinity of this point
are allowed by the postselection. Therefore, one can see from
the broad shape of this second maximum that for a given q,
there exists a wide range of corresponding modes k, for which
the two photons are almost maximally entangled. The only
request for k and q is that the difference between them can be
resolved experimentally. In the second plot of Fig. 8, we show
a magnification for wave vectors up to 0.5 × 107 m−1 to more
clearly show the dependence of C(k,q) on k around the first
maximum, which is not visible in the previous plot. Particularly
at the intersubband resonance, which is around 0.1 × 107 m−1,
the two maxima approach each other so that by selecting
different modes around the resonance, the entanglement of
the photons can be made almost maximal. The correspond-
ing photon energies are in the midinfrared regime, about
100–150 meV.

V. CONCLUSION

An efficient and deterministic source of entangled photons
is needed in quantum information processing. In this work,
we examined a scheme of entangled photon production,
based on the emission of quantum vacuum radiation from
the intersubband cavity system. Because the triggered photon
emission is based on a nonadiabatic modulation of the system’s
ground state, an exact expression for this state could be
used. Since the ground state consists of an infinite number
of photonic and electronic states, we propose a postselective
measurement to reduce the photonic system to an effective
two-qubit system, in which the qubit state was defined as
two different in-plane wave vectors. The so-called mode
entanglement of the photons is quantified by the concurrence.
We found an analytical expression for the concurrence, which
depends on the absolute values of the chosen wave vectors. We
found that the concurrence, and therefore the entanglement
of the postselected photons, is nonzero. In the limiting case
of large sample areas, there exists a continuous set of mode
pairs for which the concurrence is 1, i.e., the photons are
maximally entangled. Also, in this case, it turns out that for
photon energies around the intersubband resonance, which is
in the midinfrared regime of the electromagnetic spectrum, the
photons are almost maximally entangled, with the concurrence
being close to 1. This is fundamentally important for the
possible use in quantum information processing. Furthermore,
a high degree of entanglement can be achieved if the modes
chosen in the postselection are close to each other. Therefore,
one could extract entangled photon pairs in technologically
relevant frequency domains, such as one of the telecommuni-
cation wavelengths.

We also note the possibility of triggering the photon-pair
emission by a systematic quench of the light-matter inter-
action in the microcavity. The repetition rate for the photon
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production is limited by the switching times, which have to be
fast enough to perturb the system nonadiabatically. The experi-
ments to date have achieved switch-on times of the ultrastrong-
coupling regime of about 10 fs (Refs. 16, 37, and 38) by
ultrashort laser pulses. The switch-off, which is the important
operation related to photon emission, has to be as fast as this
time scale, which gives a rough estimate for the repetition rate
of 1013–1014 full cycles (switch-on and switch-off) per second.
The probability then to really measure a desired two-photon
state is given by the probability of a successful postselection.

Further work is required to model noninstantaneous
switch-off processes, presumably using a time-dependent
perturbation-theory approach. Another open issue is the simul-
taneous emission of blackbody radiation at finite temperature,

an effect which is expected to be small compared to the vacuum
radiation,36 but which will to some extent reduce the average
entanglement of the emitted photons.
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APPENDIX A: POSTSELECTED STATE

The pure state |ψLR〉, which contains all two-photon states
fulfilling the conditions of the postselection, is given as

|ψLR〉 = Ñ

NLR
PLR|G(2)〉

= 1

NLR

[
(G(k)|k〉L|k〉R + G(q)|q〉L|q〉R) ⊗

(
|0〉b + 1

2

∑
k′

G(k′)b†k′b
†
−k′ |0〉b

)
+ F 2(k)|k〉L|k〉R ⊗ b

†
−kb

†
k|0〉b

+F 2(q)|q〉L|q〉R ⊗ b
†
−qb

†
q |0〉b + F (k)F (q)|q〉L|k〉R ⊗ b

†
−kb

†
q |0〉b + F (k)F (q)|k〉L|q〉R ⊗ b

†
−qb

†
k|0〉b

]
, (A1)

with NLR being a normalization constant,

N2
LR = [G2(k) + G2(q)]

(
1 + 1

2
S

)
+ [|F (k)|2 + |F (q)|2]2

− 2G2(k)|F (k)|2 − 2G2(q)|F (q)|2. (A2)

We already introduced the sum S as being

S =
∑

k′
G2(k′). (A3)

APPENDIX B: CONTINUUM LIMIT

When taking the sum over all two-dimensional in-plane
wave vectors k in Eq. (46), the appearing vectors depend
on the boundary conditions. We choose periodic boundary
conditions, and hence

kx = 2π

Lx

nx, nx = 0,±1, . . . , (B1)

ky = 2π

Ly

ny, ny = 0,±1, . . . , (B2)

where Lx(y) is the cavity length in the x(y) direction and nx(y)

is an integer. Every discrete wave vector k has a volume � in
k space:

� = �kx�ky = (2π )2

LxLy

= (2π )2

A
, (B3)

and �kx(y) is the difference between two adjacent wave vectors
in the x(y) direction, where A is the sample area. In the
continuum limit, the k vectors lie close in the reciprocal space

and the sum can be replaced by an integral,

S =
∑

k

G2(k) = 1

�

∑
k

�G2(k) → 1

�

∫
d2kG2(k)

= A

2π

∫ ∞

k=0
dkkG2(k) = A

2π

(
ω12

c

)2

I,

(B4)

where we use polar coordinates to evaluate the integral and
carry out the polar-angle integration. In the last step, we make
a substitution and introduce the dimensionless variable k̃ :=
c

ω12
k to get the dimensionless integral I,

I =
∫ ∞

k̃=0
dk̃k̃ G2

(
c

ω12
k̃

)
. (B5)

One can show that the expansion coefficient G(k) decreases
like 1/k2 for large k. Consequently, the integrand has the
asymptotics

kG2(k)
k→∞≈ 1

k3
, (B6)

and hence the integral converges. We evaluate I numerically
using the same parameters as above and find I = 4.1 × 10−4.
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