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Optimal dispersive readout of a spin qubit with a microwave resonator
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Strong coupling of semiconductor spin qubits to superconducting microwave resonators was recently demon-
strated [X. Mi et al., Nature 555, 599 (2018); A. J. Landig et al., Nature 560, 179 (2018); N. Samkharadze et
al., Science 359, 1123 (2018); T. Cubaynes et al., NPJ Quant. Inf. 5, 47 (2019)]. These breakthroughs pave the
way for quantum information processing that combines the long coherence times of solid-state spin qubits with
the long-distance connectivity, fast control, and fast high-fidelity quantum-non-demolition readout of existing
superconducting qubit implementations. Here we theoretically analyze and optimize the dispersive readout of
a single spin in a semiconductor double quantum dot (DQD) coupled to a microwave resonator via its electric
dipole moment. The strong spin-photon coupling arises from the motion of the electron spin in a local magnetic
field gradient. We calculate the signal-to-noise ratio (SNR) of the readout accounting for both Purcell spin
relaxation and spin relaxation arising from intrinsic electric noise within the semiconductor. We express the
maximum achievable SNR in terms of the cooperativity associated with these two dissipation processes. We
find that while the cooperativity increases with the strength of the dipole coupling between the DQD and the
resonator, it does not depend on the strength of the magnetic field gradient. We then optimize the SNR as a
function of experimentally tunable DQD parameters. We identify wide regions of parameter space where the
unwanted backaction of the resonator photons on the qubit is small. Moreover, we find that the coupling of the
resonator to other DQD transitions can enhance the SNR by at least a factor of two, a “straddling” effect [J. Koch
et al., Phys. Rev. A 76, 042319 (2007)] that occurs only at nonzero energy detuning of the DQD double-well
potential. We estimate that with current technology, single-shot readout fidelities in the range 82–95% can be
achieved within a few μs of readout time without requiring the use of Purcell filters.

DOI: 10.1103/PhysRevB.100.245427

I. INTRODUCTION

Spins in the solid state have long been hailed as a promising
platform for quantum information processing [1,2]. Indeed,
their isolation from their electric environment and, in the case
of isotopically purified silicon, from their magnetic environ-
ment, can lead to significantly enhanced coherence times com-
pared to other implementations [3–8]. Such long coherence
times enable high-fidelity control which, combined with the
ability to perform single-shot qubit readout [9–22], makes
spins in the solid state a natural choice for scalable quantum
technologies. The appeal of solid-state spins has recently been
further increased by the successful experimental demonstra-
tion of strong coupling between spins and superconducting
microwave resonators (also referred to as cavities) [23–29].
Strong coupling between spins and microwave photons could
allow spin qubits to benefit from, among other things, the
long-distance connectivity [30–33], fast and high-fidelity con-
trol [34–38], and high-fidelity quantum-non-demolition read-
out [39–44] which have so far been successfully achieved in
superconducting qubit implementations [45].

The resonator-assisted dispersive readout of a single-
electron solid-state spin qubit, in particular, has already been
demonstrated, although not in the single-shot regime [23]. For
important applications such as quantum error correction and
feedback control of quantum states, however, it is desirable
to be able to perform quantum-non-demolition readout of

the spin state in a single-shot and with high fidelity. Due to
the inherent difficulty in achieving strong spin-photon cou-
pling, however, performing a fast and high-fidelity single-shot
readout is likely to prove more challenging than for super-
conducting qubits. While Hamiltonian engineering methods
have been proposed to circumvent weak-coupling limitations,
they often require simultaneous qubit control [46] which adds
a layer of complexity to the readout. Similarly, the use of
auxiliary resonator modes has also been proposed to relax
the constraints of strong coupling, but such schemes rely
on the engineering of spectrally close pairs of modes in
multidimensional resonators [47] or of special symmetries
in multiresonator systems [48]. Recent work has proposed
to circumvent weak electric dipole moments in multielectron
quantum dots by instead coupling the resonator field to the
quantum capacitance of the qubit energy dispersion [49], but
this effect is often suppressed by large energy gaps and may
require parametric driving of the qubit to achieve strong-
enough dispersive coupling. As spin-qubit devices enter the
strong spin-photon coupling regime, therefore, it is of great
interest to optimize the performance of the standard resonator-
assisted dispersive readout which has been so widely and
successfully used in the context of superconducting qubits.

In this work, we theoretically optimize the performance
of the dispersive readout of a spin qubit assisted by a single
mode of a microwave resonator. We focus on the case of a
single electron spin in a double quantum dot (DQD), where
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the orbital and spin degrees of freedom are hybridized using
a transverse magnetic field gradient [50–55]. This so-called
flopping-mode spin qubit [54] has already entered the strong
spin-photon coupling regime through a combination of a large
magnetic field gradient and of a large DQD electric dipole
coupling with the resonator [23,25]. Moreover, the ability
to address the spin with electric fields instead of magnetic
fields [56] makes this setup attractive for integration with
semiconductor technologies. We derive an expression for the
maximum signal-to-noise ratio (SNR) achievable for disper-
sive spin readout in these devices. We account for the intrinsic
relaxation of the spin due to coupling of the semiconductor
environment to the electric dipole of the electron, such as re-
laxation via emission of a phonon. In particular, we show that
the maximum achievable SNR is directly proportional to the
cooperativity associated with the Purcell spin relaxation and
the intrinsic spin relaxation. Interestingly, we show that the
cooperativity does not depend on the strength of the magnetic
field gradient for these dissipation processes. This means that
while increasing the field gradient reduces the readout time,
it does not improve the maximum achievable SNR. We then
describe how to choose the tunable parameters of the DQD
in order to achieve an optimal SNR. Our systematic analysis
of transition-inducing terms in the Hamiltonian enables us
to identify regions of parameter space where the deleterious
backaction of the resonator photons on the qubit state is small.
Furthermore, we find that there can be flexibility in the choice
of parameters for a given SNR, freeing the parameter space for
the optimization of other qubit performance metrics. We also
find that at nonzero energy detuning of the DQD double-well
potential, the SNR can be enhanced by at least a factor of two
due to the existence of a so-called straddling regime [57–60]
arising from the coupling of the resonator to transitions that
simultaneously change the molecular wave function and the
spin. Our analysis shows that the single-shot readout regime
is well within reach of current technology. The achievable
single-shot readout fidelities range from 82 to 95% with
the help of quantum limited amplifiers but without requiring
the use of Purcell filters. Our work provides the theoreti-
cal framework to achieve fast, high-fidelity, quantum-non-
demolition readout of single solid-state spins in the near
future.

This paper is structured as follows. In Sec. II, a model
of the DQD and its coupling to the resonator is introduced.
Section III discusses the dispersive approximation as well
as the dispersive Hamiltonian for the DQD. In Sec. IV, the
SNR is defined and the performance of the dispersive read-
out is theoretically optimized. Moreover, single-shot readout
fidelity estimates are given for the experimental parameters of
Ref. [23]. The results are summarized in Sec. V.

II. SYSTEM AND MODEL

A. Hamiltonian

1. Double-quantum-dot Hamiltonian

We consider a DQD defined by a double-well potential
V (z) whose wells are separated by a distance 2d , as de-
picted in Fig. 1(a). The two lowest-energy orbitals of the
right and left wells are labeled |R̃〉 and |̃L〉, respectively,
with corresponding energies εR and εL. The energy detuning

FIG. 1. (a) Schematic representation of the double-well potential
V (z) forming the DQD. The detuning and tunnel coupling between
the right dot orbital |R̃〉 and left dot orbital |̃L〉 are ε and tc,
respectively. The DQD is subject to a longitudinal magnetic field
Bzẑ and an external transverse magnetic field gradient ∂zBx (z)x̂ such
that the field Bx varies by bx = ∂zBx (z) × d over the half interdot
distance d . (b) Setup for the dispersive readout of a DQD embedded
in a two-port microwave resonator with resonance frequency ωr . The
DQD and the resonator electric field (green arrows) interact via the
electric dipole coupling gc. The resonator can be driven in the ith
port by an input field bin

i (t ). The output fields bout
i (t ) then carry

information on the state of the DQD. The leakage rates of ports 1
and 2 to their respective feedlines are κ1 and κ2.

between the right and left orbitals is ε = εR − εL, and the
tunnel coupling between them is tc > 0. Moreover, a uniform
longitudinal magnetic field is applied along the axis of the
quantum dot (the z axis). This induces a Zeeman energy
splitting h̄γeBz of the electronic spin states |̃↑〉 and |̃↓〉, where
γe is the electron gyromagnetic ratio. In addition, a transverse
position-dependent magnetic field Bx(z) is applied along the
x axis using, e.g., a proximal micromagnet. As the electron
moves across the DQD, it therefore experiences a magnetic
field variation of order bx = ∂zBx(z) × d . This hybridizes
the spin and charge degrees of freedom, enabling electrical
control and readout of the spin. In the following, we set h̄ = 1
and γe = 1. The resulting DQD Hamiltonian is

Hd = Hm + HZ ,

Hm = ε

2
τ̃z + tcτ̃x,

HZ = Bz

2
σ̃z + bx

2
τ̃zσ̃x. (1)
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In Eq. (1), Hm is the molecular Hamiltonian of the DQD and
HZ is the Zeeman Hamiltonian. Moreover, the τ̃i are the Pauli
matrices in the {|R̃〉, |̃L〉} basis and the σ̃i are the Pauli matrices
in the {|̃↑〉, |̃↓〉} basis. It is also convenient to introduce the
eigenstates |±̃〉 of the molecular Hamiltonian Hm. They sat-
isfy Hm|±̃〉 = ±	

2 |±̃〉, where 	 =
√

(2tc)2 + ε2 = 2tc sec θ

is the molecular energy gap and where θ = arctan (ε/2tc)
is the molecular mixing angle. Note that the description of
electronic motion in terms of the two lowest-energy orbitals
is only valid in the limit where 	 is much smaller than
the single-dot orbital splitting, whether it originates from
confinement or from valley splitting.

2. Double-quantum-dot-resonator interaction

The electric field of the resonator couples directly to the
electric dipole moment of the electron, as shown schemati-
cally in Fig. 1(b). Due to the interaction of the spin and orbit
degrees of freedom in Eq. (1), the resonator photons can drive
spin transitions. The Hamiltonian of the combined resonator
and DQD system is

H = Hd + Hr + V,

Hr = ωra†a,

V = gcτ̃z(a + a†). (2)

In Eq. (2), Hr is the free Hamiltonian for a single mode of
the resonator, V is the dipole interaction Hamiltonian between
the electron and the resonator, and a annihilates a photon
in the resonator. The resonance frequency of the resonator is
ωr > 0 and the strength of the dipole coupling is gc.

3. Probe-resonator interaction

We assume that the resonator can be probed through two
input ports, which we label port 1 and port 2. This is depicted
in Fig. 1(b). Photons can leak in and out of the resonator [61]
through the ith port at rate κi, resulting in a total leakage rate
κ = ∑

i κi. Accordingly, the resonator can be populated with
photons by irradiating the input ports at frequency ωin ≈ ωr .
Under this near-resonance condition, we may describe the
interaction of the input radiation with the resonator in the
rotating-wave approximation:

Vin(t ) = i
∑

i

√
κi

[
bin

i (t )†a − bin
i (t )a†

]
. (3)

The quantum input fields bin
i (t ) in Eq. (3) are the ones derived

in the input-output theory of Gardiner and Collett [62]. They
consist of a classical drive β in

i (t ) with added noise. More
precisely, we have

bin
i (t ) = β in

i (t ) + δbin
i (t ). (4)

Here we assume that the noise is Gaussian and white [63].
In the absence of squeezing of the inputs, the moments of
δbin

i (t ) are 〈
δbin

i (t )†δbin
i (t ′)

〉 = N̄δ(t − t ′),〈
δbin

i (t )δbin
i (t ′)†

〉 = (N̄ + 1)δ(t − t ′),〈
δbin

i (t )δbin
i (t ′)

〉 = 0. (5)

In Eq. (5), N̄ is the average number of thermal noise photons
[64] at frequency ωin, which we assume to be the same for
both ports. For N̄ = 0, the noise in the input field arises purely
from vacuum fluctuations.

The output fields bout
i (t ) are given by the input-output

relations:

bout
i (t ) = bin

i (t ) + √
κia(t ). (6)

The noise in the output field is in general not white be-
cause it inherits the temporal correlations in the dynamics
of the resonator and DQD. In the dispersive limit discussed
in Sec. III A, the main effect of the DQD is to modify the
frequency of the resonator. As a result, the resonator Hamil-
tonian remains approximately quadratic and the covariance
of the output noise is only weakly modified. If follows that
the output noise is white with the same moments as in
Eq. (5) when the system is in a steady state [65]. We assume
that bout

i (t ) is sent through a phase-preserving amplifier and
then measured with the help of a homodyne detector [66]
whose local oscillator has phase ϕ. The detector records
a photocurrent Iϕ

i (t ) = β
out,ϕ
i (t ) + δIϕ

i (t ), where β
out,ϕ
i (t ) =

1
2 〈bout

i (t )e−iϕ + bout
i (t )†eiϕ〉 is the ϕ quadrature of the output

field. The autocorrelation function of the photocurrent noise
in the steady state is then〈

δIϕ
i (t )δIϕ

i (t ′)
〉 = 2Nhom + 1

4
δ(t − t ′). (7)

Here Nhom = N̄ + Namp is the total noise in the homodyne
signal accounting for the Namp effective noise photons added
in the amplification chain. It follows from Eq. (7) that a
given quadrature of bout

i (t ) integrated over a time interval t
is determined with precision

σhom(t ) = 1√
Rt

. (8)

Here R = 4/(2Nhom + 1) is the rate of change of the inverse
noise variance. In the following, we assume that the input
noise is limited by vacuum fluctuations, N̄ 	 1.

B. Double-quantum-dot eigenbasis and spin qubit

The DQD Hamiltonian, Eq. (1), can be diagonalized ex-
actly as detailed in Appendix A. Expressed in its eigenbasis,
the Hamiltonian Hd takes the form

Hd = Em

2
τz + Es

2
σz, (9)

where the τi and the σi are now Pauli matrices in the eigenba-
sis |τz; σz〉 of Hd dressed by the field gradient. Here τz = ± la-
bels the dressed “molecular-like” states and σz =↑ (↓) labels
the dressed “spin-like” states [67]. Exact expressions for the
molecular-like and spin-like Larmour frequencies Em and Es

are derived in Appendix A. The energy-level diagram of the
DQD is illustrated in Fig. 2, where we have also introduced
the transition frequencies E± = Em ± Es. In the following,
we consider the spin qubit formed from the two dressed
spin-like eigenstates spanning the molecular ground state.
Specifically, we choose the computational basis {|1〉, |0〉} =
{|−; ↑〉, |−; ↓〉}. Despite their spin-like character, the electric
dipole matrix element between these two states is finite and
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FIG. 2. Energy-level diagram of the DQD in the basis dressed
by the magnetic field gradient. The dressed eigenstates are labeled
{|+; ↑〉, |+; ↓〉, |−; ↑〉, |−; ↓〉}. All possible transition frequencies
Ej between the eigenstates are indicated. The spin-qubit states |1〉
and |0〉 are chosen to be |−; ↑〉 and |−; ↓〉, respectively (dashed
magenta box). More precisely, the spin qubit is formed by the states
|1〉 and |0〉 dressed by the resonator (see Sec. III B).

transitions between them can be induced electrically. In par-
ticular, the DQD-resonator interaction of Eq. (2) is written in
the new basis as

V = V (a + a†),

V = −gmτx + gsτzσx + g+(τ+σ+ + τ−σ−)

+ g−(τ+σ− + τ−σ+) + gmpτz + gspσz. (10)

Here {gm, gs, g+, g−} are the coupling strengths of the res-
onator to the DQD transitions of frequencies {Em, Es, E+, E−}
illustrated in Fig. 2. In addition, gmp and gsp are couplings
arising from the finite dc electric polarizabilities of the molec-
ular electric dipole and of the spin, respectively. Exact ex-
pressions for the gi are given in Appendix A. In Eq. (10), the
term gsτzσx(a + a†) exchanges energy between the resonator
and the spin qubit. It can thus be exploited for resonator-
assisted qubit control and readout. As will be discussed in
Sec. IV F, the couplings g± of the resonator to the transitions
of frequencies E± can also be harnessed to improve readout
performance.

In the remainder of this article, we focus on the limit
of weak field gradient. In particular, we assume that the
direction of the spin quantization axis is not substantially
modified by the presence of the field gradient, |bx sin θ | 	
|Bz|. Moreover, we assume that the admixture of spin and
orbit is weak, |bx cos θ | 	 min (|	 − Bz|, |	 + Bz|). Under
these conditions, the dressed molecular and spin Larmour
frequencies are

Em ≈ 	 + bx

2
cos θ sin φ̄,

Es ≈ Bz − Bz

2

bx

2tc

(
1 − ε2

B2
z

)
sin φ̄,

sin φ̄ ≈ 2tcbx

	2 − B2
z

,

(11)

where φ̄ 	 π/2 is the effective spin-orbit mixing angle aris-
ing from the field gradient. Approximate expressions may also
be obtained for the couplings gi. In particular, the molecular-
photon coupling gm and spin-photon coupling gs become

gm ≈ gc cos θ cos φ̄, gs ≈ gc cos θ sin φ̄. (12)

III. DISPERSIVE HAMILTONIAN

A. Dispersive limit

Dispersive readout of the spin is performed by probing
the resonator near its resonance frequency, ωin ≈ ωr , and
observing the spin-dependent phase of the output field. For
many quantum information processing tasks, it is highly de-
sirable that the readout perturbs the system as little as possi-
ble. To minimize such unwanted backaction on the system,
we work in the so-called dispersive limit. In that limit, all
DQD-resonator interaction terms in Eq. (10) are off-resonant.
A given interaction term is off-resonant if its magnitude is
smaller than the detuning of the resonator with the transition
it induces. Let 〈n〉 ≈ 4κi|β in

i |2/κ2 be the average number of
photons entering the resonator from port i. Noting that the
resonator field is of order a ∼ √〈n〉, it is easily verified that a
term ∝gj in Eq. (10) is off-resonant if 〈n〉 is smaller than the
so-called critical photon number,

nc, j ≈ 1
4 max(|η j |, |η′

j |)−2. (13)

Here |η j | 	 1 and |η′
j | 	 1 are the small dimensionless pa-

rameters that control the dispersive limit. They have the form
(see Appendix B for details)

η j = 2Ejg j

ω2
r − E2

j

, η′
j = ωr

E j
η j . (14)

The condition 〈n〉 < nc, j ensures that the probe photons excite
a given transition between eigenstates of H at a rate that is
smaller than the relaxation rate for that transition [68]. Thus,
the condition 〈n〉 < nc, j ensures that probe photons close
to resonance with a given transition j excite that transition
with negligible probability [69]. A detailed analysis of these
transition rates and their effect on readout is beyond the scope
of this work. In the following, we will reserve the symbol nc

for the critical photon number of the spin transition, nc ≡ nc,s.
In the dispersive limit, the Hamiltonian, Eq. (2), can be

diagonalized to first order in gc using a Schrieffer-Wolff
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transformation. The resulting dispersive Hamiltonian for the
DQD-resonator interaction is derived in Appendix B and has
the form

Hdis = H0 + Vdis + Vtr. (15)

Here H0 = Hd + Hr is the free Hamiltonian. The interaction
is separated into a dispersive part Vdis that commutes with H0

and a transition-inducing part Vtr that does not commute with
H0. The dispersive interaction has the form:

Vdis = − 1
2χ0τzσz − (χmτz + χsσz )

(
a†a + 1

2

)
. (16)

Here χmτz and χsσz are the dispersive energy shifts of the
resonator frequency due to coupling with the molecular elec-
tric dipole and the spin, respectively. In addition, −χ0τzσz/2
is an Ising-like dispersive interaction between the molecular
electric dipole and the spin. Expressions for χm, χs, and χ0

are given in Appendix B. As discussed in Sec. III B, the spin
dispersive shift, χsσz, may be exploited for dispersive readout
of the spin. Contrary to the dispersive interaction, the off-
diagonal term Vtr induces transitions between the eigenstates
of H0. Specifically, Vtr can generate all the DQD transitions
of Fig. 2 via the exchange of either 0 or 2 photons with
the resonator. Thus, a transition term inducing a transition
j can be neglected if its magnitude is smaller than ωr , |Ej |,
and |2ωr ± Ej | (a concrete example is given in Appendix C).
These off-resonance conditions can be seen as a higher-order
dispersive approximation. They ensure that the operators ap-
pearing in Eq. (16) are expressed in a basis that is close to the
true eigenbasis of the full system Hamiltonian H . If the tran-
sition term becomes resonant, the resulting change of basis
enables probe photons to generate new transitions between the
system eigenstates. The above off-resonance conditions are
typically satisfied in the dispersive limit (though not always,
see Fig. 5). We will therefore ignore the transition term in the
following analysis until stated otherwise.

B. Effective spin-qubit Hamiltonian

In the absence of photon-induced DQD transitions, the
dispersive Hamiltonian, Eq. (16), may safely be projected into
the logical subspace of the spin qubit to obtain an effective
dispersive Hamiltonian for the spin qubit, in the form (up to
an irrelevant constant):

H eff
dis = (ω′

r − χsσz )a†a + 1
2 (E ′

s − χs)σz. (17)

Here ω′
r = ωr + χm and E ′

s = Es + χ0 are renormalized res-
onator and spin-qubit frequencies, respectively. In addition,
χsσz is the spin-state-dependent dispersive shift of the res-
onator frequency which enables dispersive readout. The full
expression for the dispersive shift is

χs = 2Esg2
s

ω2
r − E2

s

+ E+g2
+

ω2
r − E2+

− E−g2
−

ω2
r − E2−

. (18)

When the resonator is close to resonance with the spin tran-
sition but far detuned from E+ and E−, the dispersive shift
takes the more familiar form χs ≈ g2

s/�, where � = ωr − Es

is the spin-resonator detuning. We will assume that this is
the case for most of the analysis of Sec. IV. In Sec. IV F,
however, we will see that the various contributions in Eq. (18)
can interfere constructively and thereby significantly improve

readout performance. This mirrors the so-called straddling
regime of superconducting qubits [57–60]. Finally, note that
the renormalization of the resonator and spin frequencies are
unimportant for the optimization of the dispersive readout. As
discussed in Sec. IV B, the readout response only depends on
the detuning between the probe frequency ωin and the renor-
malized resonator frequency ω′

r . Thus, the renormalization of
the ωr can always be compensated by adjusting ωin. Moreover,
inspection of the expression for χ0 given in Appendix B
shows that χ0 � χs 	 � near the DQD-resonator resonances.
Therefore, the renormalization of the spin frequency may
safely be neglected.

All operators appearing in Eq. (17), and in particular σz, are
dressed by the DQD-resonator interaction to first order in gc.
Thus, the spin qubit we consider is in fact formed by the states
{|−; ↑〉, |−; ↓〉} dressed by resonator photons. In the regime
where both the resonator and the qubit are near-resonant with
the probe, the effective driving Hamiltonian in the dressed
basis takes the form [see the discussion following Eq. (B15)
in Appendix B]

V eff
in (t ) = i

∑
i

√
κi

[
bin

i (t )†a − bin
i (t )a†

]
+ i

gs

�

∑
i

√
κi

[
bin

i (t )†σ− − bin
i (t )σ+

]
. (19)

The second term enables the direct exchange of energy be-
tween the spin qubit and the resonator environment. In par-
ticular, the spin qubit may relax via the Purcell emission of
a photon in the resonator ports (see Sec. IV C). Correspond-
ingly, the input-output relation of Eq. (6) becomes

bout
i (t ) = bin

i (t ) + √
κia + √

κi
gs

�
σ−, (20)

where the last term describes output radiation emitted by co-
herent spin oscillations. When performing dispersive readout,
the detector is typically locked in to the frequency ωin ≈ ωr .
Thus, the qubit emission is filtered out provided the detector
bandwidth is smaller than the spin-resonator detuning |�|.
Even if this were not the case, the qubit necessarily loses all
coherence as soon as the two qubit states can be distinguished
due to the fundamental quantum backaction introduced by
readout. We will therefore ignore the last term in what follows.
The expectation values of the output fields are then given by

βout
i (t ) = β in

i (t ) + √
κi〈a〉. (21)

IV. DISPERSIVE READOUT OF THE SPIN QUBIT

A. Equation of motion

We start our analysis of the dispersive readout by dis-
cussing the dynamics of the resonator. Throughout the re-
mainder of the text, we work in the frame rotating with the
probe frequency ωin. In this frame, the dispersive Hamiltonian
of Eq. (17) takes the form

H eff
dis = (δc − χsσz )a†a + 1

2 (δs − χs)σz, (22)

where δc = ω′
r − ωin and δs = E ′

s − ωin are the detunings of
the probe from the resonator and the spin qubit, respectively.
The interaction of Eq. (19) remains unchanged. The resulting
(Itō) Langevin equation of motion [62] for the resonator
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FIG. 3. Typical dispersive readout response of the resonator for
a continuous resonant drive of amplitude β0 = −|β0|. Plot (a) shows
the trajectory of the output field in phase space while plot (b) shows
the time evolution of the quadrature relevant for qubit readout. In
both plots, the resonator is initally empty. The solid lines show the
response for the qubit states |1〉 (blue) and |0〉 (red) in the absence
of qubit transitions. They are obtained by solving Eqs. (21) and (25)
with χs = 0.2κ for both qubit states. The signals for the two qubit
states are separated by �βout

2 in the steady state.

field is

da = −i(δc − χsσz )a dt − κ

2
a dt −

∑
i

√
κib

in
i (t )dt

− κgs

2�
σ−dt . (23)

The first term describes the dispersive motion of the resonator
field, the second term describes resonator damping, the third
term describes driving of the resonator through its ports, and
the last term describes driving of the resonator by coherent
oscillations of the spin qubit. This latter term contributes small
oscillations of amplitude ∼(κgs/�

2)〈σ−〉 to the resonator
field in the dispersive limit (optimal readout occurs in the
regime |�| > κ , see Fig. 4). Moreover, these oscillations dis-
appear as soon as the readout dephases the qubit. We therefore
neglect them in what follows. The equation of motion for the
expectation value of the resonator field becomes

˙〈a〉 = −i〈(δc − χsσz )a〉 − κ

2
〈a〉 −

∑
i

√
κiβ

in
i (t ). (24)

B. Readout contrast

In order to analyze the readout performance, it is not
necessary to solve Eq. (24). Instead, we first consider the
purely “quantum-non-demolition” scenario in which σz is a
constant of motion, σz(t ) ≈ σz(0). Although this assumption
clearly cannot be exact due to, e.g., qubit relaxation, it leads
to a simple and useful definition of the readout contrast.

Under the above assumption, we may substitute σz = ±1
into Eq. (24) and obtain

˙〈a〉 = −i(δc ∓ χs)〈a〉 − κ

2
〈a〉 −

∑
i

√
κiβ

in
i (t ). (25)

Solving Eq. (25) and substituting the solution into Eq. (21)
then yields the output field for each qubit state. We as-
sume that the resonator is initially empty. It is then probed
continuously through port 1 only, β in

1 (t ) = β0 and β in
2 (t ) =

0. Finally, the output field is measured in port i. Typical
trajectories for the transmitted output field obtained using
Eqs. (21) and (25) are depicted in Fig. 3. The relevant
quantity for readout performance is the steady-state contrast
�βout

i = limt→∞ [βout
i (t )|σz=+1 − βout

i (t )|σz=−1] between the
output fields corresponding to the two qubit states. Solving
Eqs. (21) and (25) gives the squared magnitude of the contrast:∣∣�βout

i

∣∣2 = κi〈n〉D. (26)

Here 〈n〉 = 4κ1|β0|2/κ2 is the number of steady-state photons
in the resonator directly on resonance. The quantity D may be
thus interpreted as the fraction of input photons that contribute
to the readout contrast. We find

D = κ2χ2
s

[(κ/2)2 + (δc − χs)2][(κ/2)2 + (δc + χs)2]
. (27)

We choose the input frequency ωin to maximize the contrast
of Eq. (27). The optimal resonator-probe detuning is

δc =
{

0 if |χs| < κ/2

±√
χ2

s − (κ/2)2 if |χs| > κ/2
. (28)

At the optimum, Eq. (27) becomes a function D(x) of x =
χs/κ only:

D(x) =
{

16x2

(1+4x2 )2 if x2 < 1/4

1 if x2 > 1/4
. (29)

C. Qubit relaxation

The assumption that the qubit state remains the same at
all times is of course not physical. In practice, the qubit state
necessarily relaxes on a timescale given by the inverse qubit
relaxation rate γ −1. We account for two distinct relaxation
processes. The first is the Purcell relaxation via emission of
a photon in the resonator environment. Under our assumption
N̄ 	 1, this process occurs at the rate

γpu = κ
(gs

�

)2
. (30)

The second process we consider is the relaxation due to
electric fluctuations coupling to the electric dipole of the
electron [70], most notably relaxation with the emission of
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FIG. 4. Optimization landscape of (a) the SNR Si and (b) the dimensionless measurement rate ri/κ plotted using Eq. (35). The SNR
saturates when |χs|/κ < 1/2 and |�|/κ >

√
C, where it takes its maximum value Smax

i = R(κi/κ )(〈n〉/nc ) C. Note that the SNR remains finite
as |χs|/κ → 0 because the relaxation rate γ → 0 compensates the loss in readout contrast in that regime. In reality, other spin-relaxation
processes not considered here or other experimental limitations on the probe power cause the SNR to vanish at |χs|/κ = 0. The dot-dashed
black lines are contours of constant probe power ∝nc = �/4χs and the dotted black lines are the contours of constant gs = √

χs�. Due to
the constraints gs 	 gc and γ 	 κ , the value of gs is upper bounded either by gc or by κ

√
C. This is indicated by the white area in the upper

right corner of each plot. The dashed black line is the contour ri = κ ⇒ Si = κ/γ . The white region and the dashed black line are plotted for
C = 34.3, gc/κ = 22.2, and Smax

i = 3.43.

a phonon. Such relaxation processes have the general form

γel = γm(Es)

(
gs

gc

)2

. (31)

Here γm(Es) is a molecular-electric-dipole relaxation rate
which depends on the DQD parameters through the spin-qubit
frequency Es only. Moreover, the factor (gs/gc)2 accounts for
the hybridization of the molecular electric dipole and the spin
(see Appendix A). For dispersive readout, the spin frequency
remains in the neighborhood of the resonator frequency, Es ≈
ωr . Thus, we set γm ≈ γm(ωr ) in what follows. Since these
two relaxation processes are due to coupling with independent
reservoirs, they can be added to leading order in gs. The total
relaxation rate is then

γ = κ
(gs

�

)2
+ γm

(
gs

gc

)2

. (32)

There exist corrections to Eq. (32) due to spin transitions
induced by probe photons. As discussed in Sec. III A, how-
ever, these corrections are suppressed by an integer power of
〈n〉/nc < 1 [68] and can therefore be neglected in the disper-
sive limit considered here. Moreover, we remark that there
are additional spin relaxation channels when |Es| > |Em|, in
which case the spin may indirectly relax to its ground state
via an intermediate state [71]. Such processes are not included
in Eq. (32). The following analysis is therefore restricted to
the case |Es| < |Em|. Finally, note that in order to read out
the spin, it is necessary that the relaxation rate be smaller
than the resonator leakage rate, γ 	 κ .

D. Signal-to-noise ratio

Due to noise in the homodyne signal, Eq. (8), it is not
possible to perfectly discriminate the output signals for the
two qubit states in a finite time. Here, the readout time t
is limited by the inverse qubit relaxation time γ −1. Thus, a
useful measure of distinguishability of the two qubit states
is the (power) SNR Si, defined as the ratio of the squared
half-contrast observed in resonator port i to the variance of
the homodyne signal integrated over a time t = γ −1 [72–75]:

Si ≡
∣∣�βout

i

∣∣2

4σ 2
hom(t = γ −1)

= ri

γ
. (33)

Here we have defined the measurement rate

ri ≡ R

∣∣�βout
i

∣∣2

4
. (34)

The measurement rate ri can be interpreted as the rate at
which an observer at the ith port of the resonator acquires
information about the qubit state.

To estimate the SNR and measurement rate, we first re-
call that the critical photon number of the spin transition is
nc = �2/4g2

s . Moreover, we recall that g2
s ≈ χs� under the

assumption that only the spin transition is close to resonance
with the resonator. Using these expressions and Eqs. (26) and
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(32), Eqs. (33) and (34) are rewritten as

Si = R

4

κi

κ

〈n〉
nc

1

4x2
D(x)G(y),

ri

κ
= R

4

κi

κ

〈n〉
nc

y

4x
D(x). (35)

In Eq. (35), we defined the dimensionless parameters x =
χs/κ and y = �/κ and

G(y) =
(

1

C
+ 1

y2

)−1

. (36)

Here C is the cooperativity

C = χ2
s

γpuγel
= g2

s

κγel
= g2

c

κγm
. (37)

We note that the cooperativity does not depend on the strength
of the transverse magnetic field gradient bx hybridizing the
electric dipole with the spin [76]. This is because the disper-
sive shift χs, the Purcell relaxation rate γpu, and the intrinsic
relaxation rate γel are all proportional to b2

x. As a result, the
maximum value of the SNR derived in Sec. IV E, Eq. (40), is
also independent of bx. This occurs because while reducing
bx at fixed 〈n〉/nc reduces the readout contrast, Eq. (26), it
proportionally reduces the spin-relaxation rate, Eq. (32). As a
consequence, the loss in contrast can be exactly compensated
by integrating the homodyne photocurrent for a longer time.
Note that this does not mean that a large field gradient is un-
necessary for readout. While reducing bx does not change the
maximum achievable SNR, Eq. (40), it significantly reduces
the measurement rate, Eq. (41), and thus the measurement
speed. As soon as the SNR reaches its maximum value, it
therefore becomes undesirable to further reduce bx. Following
the discussion of Sec. IV E, it is easily verified that the
SNR reaches its maximum value as soon as gs � κC1/4. The
magnetic field gradient bx should therefore be small enough
so that gs � κC1/4, but not lower.

The relevance of the SNR and measurement rate, Eq. (35),
arises from the fact that they fully and monotonically deter-
mine the single-shot readout fidelity and the optimal readout
time in the regime where the two states cannot be accurately
discriminated in a time κ−1. This is the case when γ 	 ri <

κ , i.e., 1 	 Si < κ/γ . In that regime, the single-shot readout
fidelity Fi (defined as the average probability of successful
readout) and the optimal readout time topt

i are approximately
given by [72,74,75]

Fi ≈ 1 − 1

2Si
lnSi, topt

i ≈ 2

ri
lnSi. (38)

Thus, optimizing the SNR automatically optimizes the single-
shot readout fidelity. Even though the values of the SNR
discussed below are of order Si � 1, we have verified that
Eq. (38) gives estimates similar to those obtained with a
more detailed analysis [72,74,75]. Note that when ri > κ and
Si > κ/γ (see the region enclosed by the dashed black line
in Fig. 4), the transient behavior depicted in Fig. 3 becomes
important when estimating the fidelity. In that regime, Eq. (38)
must be modified. The effect of such transient behavior can
be taken into account within the theory of matched filtering
[20,77,78]. Also note that the infidelity 1 − Fi is proportional

to the probability ∼γ topt
i of the qubit relaxing within time topt

i .
It follows that for a readout time t = topt

i , it is necessary to
have a high SNR, Si � 1, in order to have a quantum-non-
demolition readout, σz(topt

i ) ≈ σz(0).

E. Optimization of the dispersive parameters

We now turn our attention to the optimization of the disper-
sive parameters, χs and �. In the present analysis, we assume
that only the spin transition is close to resonance with the
resonator so that the dispersive shift has the usual form χs ≈
g2

s/�. This greatly simplifies the optimization and gives the
correct order of magnitude for the SNR and measurement rate.
The effect of the corrections to the dispersive shift appearing
in Eq. (18) are discussed separately in Sec. IV F.

We assume that the leakage rates are fixed and that the
probe power is increased proportionally to the critical photon
number of the spin transition nc, i.e., the ratio 〈n〉/nc 	
1 is kept constant. This ensures that as many photons as
possible are put into the resonator for a given level of
(small) disturbance to the qubit state. Maximizing the SNR
given in Eq. (35) then amounts to maximizing the quantity
D(x)G(y)/4x2. The optimization landscape is depicted in
Fig. 4 for both the SNR and the measurement rate. We also
indicate contours of constant gs = √

χs� and nc = �/4χs.
As will become clear below, these parameters sometimes
provide a more convenient parametrization of the SNR and
measurement rate.

As seen in Eqs. (35) as well as in Fig. 4(a), the optimal
SNR occurs for

|χs| 	 κ

2
, |�| � κ

√
C, (39)

where it saturates to its maximum value

Smax
i = R

κi

κ

〈n〉
nc

C. (40)

It follows from Eq. (39) that the critical photon number (and
thus the probe power) must reach a high-enough value in
order to achieve the optimum, namely nc � √

C/2. This also
means that the optimum occurs deep in the dispersive regime,
nc � 1, when C � 1. Even though nc � √

C/2 is sufficient
to saturate the SNR, further increasing nc can increase the
measurement rate ri, as can be seen in Fig. 4(b). In particular,
for a fixed |χs|/κ 	 1/2, it is possible to achieve S ≈ Smax

i
with the measurement rate scaling linearly with nc (for fixed
〈n〉/nc):

ri

κ
= 4R

κi

κ

〈n〉
nc

×
(χs

κ

)2
nc. (41)

We remark that the scaling of ri with (χs/κ )2〈n〉 is expected
from the fundamental limit set by quantum backaction [45].
It is clear from Fig. 4 that there is a trade-off between SNR
and measurement rate. If a SNR of Si = 9Smax

i /16 is deemed
sufficient, for instance, then the dispersive shift need not be
smaller than |χs| = κ/2

√
3. The measurement rate is then

ri ≈ 3R κi〈n〉/16, much larger than Eq. (41).
Since the readout contrast |�βout

i | decreases as |χs|/κ →
0, it may seem counterintuitive that the SNR saturates to
a finite value in that limit. This occurs because the spin-
relaxation processes that we consider, Eqs. (30) and (31), are
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also suppressed as |χs|/κ → 0. As a result, the reduction in
contrast at fixed 〈n〉/nc is compensated by a longer integration
time ∝γ −1 [see also the discussion following Eq. (37)].
In reality, however, the SNR eventually starts to decrease
as |χs|/κ → 0 either because additional spin-relaxation
processes not considered here become dominant or because
other experimental constraints on the probe power become
relevant. As made clear by Figs. 4(a) and 4(b), however,
the regime where these modifications become important is in
general not desirable since it decreases the measurement rate
without appreciably increasing the SNR.

There are other constraints that put limits on the values
of χs and �. In particular, the spin-resonator coupling gs =√

χs� cannot be arbitrarily high for two distinct reasons.
First, gs is limited by the bare dipole coupling gc. Second, the
readout must necessarily operate in a regime where γ /κ 	 1.
Using Eq. (32), we find that this latter constraint limits the
coupling to gs 	 κ

√
C. These constraints are indicated by

the white area in Fig. 4. The optimal SNR of Eq. (40) can
nevertheless be achieved for any fixed value of gs provided
that the probe power is high enough, nc � (gs/κ )2. In the
same limit, the measurement rate saturates:

ri

κ
< R

κi

κ

〈n〉
nc

(gs

κ

)2
. (42)

In practice, limits on the probe power might make it impos-
sible to achieve the maximum SNR or measurement rate.
For instance, 〈n〉 may become limited by the critical photon
number of the other DQD transitions. In such cases, the
formalism of Sec. IV D may still be used to optimize readout
under the appropriate constraints. However, we note that the
present analysis must be modified when the spin-resonator
detuning becomes comparable to the resonator frequency,
in which case the spin and the resonator can no longer be
assumed to be near resonance and γm(Es) can no longer be
assumed to be frequency independent. This only occurs in the
ultrastrong coupling regime,

√
ncgs � ωr . The analysis must

also be modified to account for all terms in the dispersive
shift of Eq. (18) when the resonator is simultaneously close to
resonance with Es and E+ or E−. The effect of these additional
terms is discussed in Sec. IV F.

F. Optimization of the double-quantum-dot parameters

As discussed in Sec. IV E, the dispersive parameters χs and
� (and thus gs) can be chosen to optimize the SNR and mea-
surement rate under experimental constraints. There remains
to find the set of tunable DQD parameters that correspond to
the chosen values of χs and �.

The optimal magnetic field is determined by requiring
that ωr − Es = �. In the limit of a weak field-gradient and
weak spin-orbit admixture considered here, the spin-resonator
detuning � is typically chosen to be much larger than the
correction to Es appearing in Eq. (11). In that case, the optimal
magnetic field is approximately

Bz ≈ ωr − �. (43)

Having thus fixed Bz, the optimal values of the DQD energy
detuning ε and of the tunnel coupling tc for the chosen values
of χs and � are determined by requiring that gs is a constant

gs(ε, tc) = √
χs�. Using Eqs. (11) and (12), this leads to the

following relationship between ε and tc:

2tc
Bz

= 1

2
μ cos3 θ ± cos θ

√
1 + 1

4
μ2 cos4 θ. (44)

Here tan θ = ε/2tc and

μ = gc

gs

bx

Bz
. (45)

Equation (44) defines contours in the (ε, 2tc) plane as a
function of the parameter μ. Two such contours are indicated
by the dashed lines in Fig. 5. Within the approximation
χs ≈ g2

s/�, every point on such a contour yields the same
SNR and measurement rate, with the SNR (measurement rate)
increasing (decreasing) with increasing μ. Thus, the qubit
readout can be operated with a similar performance over a
wide range of DQD energy detunings ε provided that the
tunnel coupling tc is adjusted to remain on the chosen contour.
In particular, such freedom can be used to operate the readout
at “sweet spots” of the qubit energy dispersion, where the
coherence time of the qubit is expected to be longer [79,80].

Until now, we have assumed that only the spin transition
contributes to the spin dispersive shift, χs ≈ g2

s/�. We now
relax this assumption to include all terms in Eq. (18). The
optimization landscape for the SNR and measurement rate
beyond the assumption χs ≈ g2

s/� is shown in Fig. 5 as a
function of ε and 2tc. It is plotted at fixed 〈n〉/nc using the
definitions of the SNR and measurement rate, Eqs. (33) and
(34), with the dispersive shift χs given by Eq. (18). Here the
values of the spin-qubit frequency Es and the spin-resonator
coupling gs are calculated from the exact expressions given
in Appendix A. The numerical values of the parameters are
the ones given in Sec. IV G. Figure 5 shows that when the
resonator frequency ωr becomes close to the transition at fre-
quency E− (e.g., point B), the contours get distorted compared
to what is predicted by Eq. (44). This is due to the corrections
to the dispersive shift appearing in Eq. (18). In the absence of
these corrections, any reduction in the spin-photon coupling
gs leads to a simultaneous reduction of the readout contrast
and of the relaxation rate. For fixed 〈n〉/nc, these two effects
compensate each other exactly and the SNR saturates to the
value Smax

i . However, the corrections to the dispersive shift
(and thus to the readout contrast) in Eq. (18) occur without a
corresponding change in the qubit relaxation rate. This means
that the SNR and measurement rate are enhanced on one side
of the E− transition and suppressed on the other, depending
on the relative arrangement of the resonator and DQD tran-
sition frequencies. The enhancement regime was termed the
“straddling regime” in the theory of superconducting qubits
[57,58,60]. Figure 5 shows that the straddling regime for the
present spin qubit only occurs at large DQD energy detunings
ε, when the DQD-resonator couplings g± become finite.

The regions where our model breaks down are also indi-
cated in Fig. 5. In particular, the regions where the dispersive
assumptions of Sec. III A are no longer valid are indicated
(regions 1 and 2). In region 1, the resonator photon number
exceeds the critical photon number for DQD transitions other
than the spin transition, while in region 2, the transition
term Vtr causes unwanted DQD transitions via the absorption
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FIG. 5. Optimization landscape for (a) the SNR S2 and (b) the measurement rate r2. Points A and B indicate the two numerical examples
discussed in the text. The dashed black lines are contours of constant gs passing by A and B and are given by Eq. (44). The system parameters
are similar to those measured in Ref. [23], namely, ωr = 2π × (5.8 GHz), κ = 2κ1 = 2κ2 = 2π × (1.8 MHz), bx = 2π × (420 MHz), and
gc = 2π × (40 MHz). We extract the molecular relaxation rate γm = (6.1 ns)−1 by comparing the measured relaxation time in Ref. [23] with
Eq. (32). This yields a cooperativity of C ≈ 34. The noise is assumed to be quantum limited, N̄ = 0 and Namp = 1/2, and the number of photons
in the resonator is fixed to 〈n〉 = 0.1nc. We fix Bz = ωr + 10κ

√
C ≈ 2π × (5.9 GHz) to ensure that the optimal region of Fig. 4, |�| � κ

√
C,

is accessible. The contours are then plotted using Eqs. (33) and (34) with � = ωr − Es and χs given by Eq. (18). Here, the frequencies Ej

and the couplings gj are calculated as a function of ε and tc from the expressions given in Appendix A. The grayscale areas with numbered
circles indicate regions of parameter space where the various assumptions made in the text break down. In region 1 (dark gray), the dispersive
approximation breaks down, nc, j < 10 or 〈n〉/nc, j > 0.1 for all couplings gj in Eq. (10) (except for the spin transition for which 〈n〉 = 0.1nc

everywhere). In region 2 (black), the transition terms Vtr discussed in Sec. III A become resonant (see Appendix C for details). In region 3
(white), the relaxation rate γ is larger than κ/5. In region 4 (tiled), the spin Larmour frequency is larger than the molecular Larmour frequency,
|Es| > |Em|.

of two photons (see Appendix C for details). It follows
that the backaction of resonator photons on the qubit state
is small far from regions 1 and 2. Therefore, the readout
is approximately quantum-non-demolition, σz(t ) ≈ σz(0), far
from regions 1 and 2 provided that the qubit does not relax
with high probability during the readout time t , γ t 	 1. The
region of parameter space where the qubit relaxation rate γ

becomes comparable to κ is also plotted (region 3). Far from
this region, the probability that the qubit state relaxes during
a time κ−1 becomes small, ensuring that readout is possible.
Finally, the region where the spin-like Larmour frequency
is larger than the molecular-like Larmour frequency, |Es| >

|Em|, is indicated (region 4). This region is excluded since that
regime enables additional spin-relaxation channels that are not
considered here (see Sec. IV C).

G. Single-shot readout fidelity estimates

To determine the best possible performance of current tech-
nologies, we estimate the achievable SNR and measurement
rate for parameters similar to those measured in Ref. [23].
These are ωr = 2π × (5.8 GHz), κ = 2π × (1.8 MHz), bx =
2π × (420 MHz), and gc = 2π × (40 MHz). The value of
the molecular relaxation rate γm is extracted by fitting the
relaxation time measured in Ref. [23] to Eq. (32). We find
γm = (6.1 ns)−1. This leads to a cooperativity C ≈ 34 for

this device. We assume that the transmitted field is measured
through a symmetric resonator, κ1 = κ2 = κ/2. Moreover, we
assume that the amplification and detection processes are
quantum limited, i.e., that they add the minimum number of
noise photons Namp = 1/2 allowed by quantum mechanics for
amplifier gains much larger than unity [81–83]. In addition,
we take the average number of photons in the resonator at
resonance to be a tenth of the critical photon number for
the spin transition, 〈n〉 = 0.1nc. The theoretical maximum
achievable SNR in transmission, Eq. (40), is then Smax

2 ≈
3.4. According to Eq. (38), this corresponds to a single-shot
readout fidelity F2 ≈ 82%.

The above fidelity can be achieved within a readout
time that is comparable to κ . To illustrate this, we work
at zero DQD energy detuning ε = 0 and tunnel splitting
2tc = 1.5ωr = 2π × (8.7 GHz). This corresponds to point A
in Fig. 5. For these parameters, the SNR is S2 = 0.97Smax

2 .
Moreover, the measurement rate is r2 = 0.37κ . According to
Eq. (38), this corresponds to a fidelity F2 ≈ 82% achievable
with optimal readout time topt

2 ≈ 6.4κ−1. The above parame-
ters correspond to a relaxation rate γ = 0.11κ , a spin-photon
coupling gs = 2π × (3.5 MHz), and a critical photon number
nc = 174. To achieve this performance, 〈n〉 ≈ 17 photons
must therefore be introduced into the resonator mode.

At point B in Fig. 5, the tunnel splitting has the same value
2tc = 1.5ωr = 2π × (8.7 GHz) but the DQD energy detun-
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ing is now increased to ε = 1.175ωr = 2π × (6.815 GHz)
to enter the straddling regime. Without the presence of an
additional transition at frequency E−, this would simply re-
duce the measurement rate to r2 = 0.05κ without appreciably
increasing the SNR. Because of the straddling effect, however,
the SNR increases to twice its theoretical maximum value,
S2 = 1.97Smax

2 , while the measurement rate is twice what
it would have been without the straddling effect, r2 = 0.1κ .
According to Eq. (38), this increases the readout fidelity to
F2 ≈ 86% achievable within a readout time topt

2 ≈ 38κ−1. The
above parameters correspond to a relaxation rate γ = 0.015κ ,
a spin-photon coupling gs = 2π × (1.3 MHz), and a critical
photon number nc = 1690. Thus, a larger number of photons
〈n〉 = 169 must be put into the resonator to achieve optimal
performance in the straddling regime. Note that at point B
in Fig. 5, the molecular energy gap is 	 ≈ 46 μeV, which
can be comparable to the valley splitting observed in silicon
qubits. If this is the case, then the present analysis must be
modified to account for valley physics. We note, however,
that the presence of additional valley states is not necessar-
ily detrimental for dispersive readout. Indeed, the coupling
to spin-valley transitions to the resonator could potentially
contribute constructively to the dispersive shift χs and thereby
enhance the straddling effect discussed here.

These estimates suggest that a high single-shot readout
fidelity could be achieved in the near future with the help
of quantum limited amplifiers and improvements in resonator
impedance to boost the DQD-resonator coupling gc. While the
readout is not quantum nondemolition for the values of γ topt

i
in the examples above, it will become less destructive as the
SNR increases (see the discussion at the end of Sec. IV D).
It must also be noted that the above estimates are based on
a rather conservative value of the ratio 〈n〉/nc. Indeed, it has
been empirically observed that the backaction of the resonator
photons on a superconducting qubit can remain small for up
to 〈n〉 ≈ 4nc [43]. If this is also the case here, then the above
values of the SNR and measurement rates could be increased
by up to a factor of 40, while the measurement rate could be
increased well above κ . According to Eq. (38), this would lead
to a single-shot readout fidelity of 99% for the parameters
of point B. Note, however, that Eq. (38) must be modified
to yield quantitative predictions in the regime ri > κ due to
detrimental effect of the finite rise time of the readout signal
depicted in Fig. 3(b). Solving Eq. (25) give transients of the
form ±(|�β|/2)[1 − (1 + κt/2)e−κt/2] for |χ | 	 κ/2. Using
these expressions and the method outlined in Ref. [20], we
have verified that setting 〈n〉 = 4nc leads to Fi > 95% for
point B. For such high values of 〈n〉, however, a quantitative
study of the probe backaction is required to fully validate
the fidelity estimate. Such an analysis goes beyond the scope
of this work. Finally, we note that the use of Purcell filters
[43,44,84,85] could significantly reduce qubit relaxation rates
and thereby lead to even higher readout fidelities.

V. CONCLUSIONS

In conclusion, we have optimized the dispersive readout of
a semiconductor spin qubit in a DQD coupled to a microwave
resonator via a transverse magnetic field gradient. Impor-
tantly, our analysis accounts for intrinsic relaxation of the spin

due to electric noise in the semiconductor environment. We
have given an expression for the maximum achievable SNR in
terms of the cooperativity associated with the Purcell emission
and the intrinsic relaxation. This expression also encapsulates
the dependence on the amplifier noise and the probe power.
We find that for the relaxation processes considered, the
cooperativity increases with the coupling gc between the elec-
tric dipole and the resonator but is independent of the strength
of the transverse magnetic field gradient bx. Moreover, we
have described how to choose the experimentally tunable
parameters of the DQD to optimize the SNR. Our analysis
enables us to identify the regions of parameter space where the
backaction of the resonator photons on the qubit state is small.
To do this, we systematically study all terms in the Hamilto-
nian that induce transitions between the DQD eigenstates and
require that they be off-resonant (see Fig. 5). In addition, we
find that it is possible to operate the readout with a similar
performance for a wide range of tunable DQD parameters.
Such flexibility is important because it frees up the parameter
space for the optimization of other qubit performance metrics.
Moreover, we find that transitions that simultaneously change
the molecular wave function and the spin can be exploited to
enhance the SNR by at least a factor of two. This “straddling”
effect occurs only at nonzero energy detuning of the DQD
double-well potential. Finally, we estimate that single-shot
readout fidelities in the range 82–95% should be achievable
within a few μs of readout time with current technology.

Our work provides the baseline for benchmarking fu-
ture improvements, including the use of Purcell filters
[43,44,84,85], the development of techniques to circumvent
Purcell emission [49,86–91] or phonon emission [92,93], the
use of phase-sensitive amplifiers to selectively amplify the rel-
evant readout quadrature [81,94,95], pulse shaping [96], and
the development of new (meta-)materials for high-impedance
resonators [97–100]. Another important avenue for future
research is to incorporate valley physics [101] relevant for,
e.g., silicon-based qubits into the present analysis. In partic-
ular, it is yet unclear whether the straddling effect discussed
here could also benefit from coupling the resonator to valley
transitions. A more detailed study of readout backaction in the
presence of noise sources relevant to semiconductor qubits
is also highly desirable to quantify exactly how strongly the
resonator can be driven without disturbing the qubit state.
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APPENDIX A: EXACT DIAGONALIZATION OF THE
DOUBLE-QUANTUM-DOT HAMILTONIAN

The DQD Hamiltonian, Eq. (1), may be diagonalized
exactly in three steps. First, we write Eq. (1) in the eigen-
basis of the molecular Hamiltonian. This is done with the
transformation

U0 = exp

[
−i

(π/2 − θ )

2
τ̃y

]
. (A1)
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The transformed Hamiltonian takes the form

U †
0 HdU0 = 	

2
τ̃z + Bz

2
σ̃z + bx sin θ

2
τ̃zσ̃x

− bx cos θ

2
τ̃xσ̃x. (A2)

Second, the spin basis is rotated to match the direction of
the total magnetic field B = (bx sin θ, 0, Bz ). This is achieved
through the unitary transformation

U1 = exp

(
−i

�

2
τ̃zσ̃y

)
. (A3)

Here � is the angle between the magnetic field and the z axis,
satisfying tan � = bx sin θ/Bz. In the doubly transformed ba-
sis, the DQD Hamiltonian takes the form

U †
1 U †

0 HdU0U1

= 	

2
τ̃z + Bz sec �

2
σ̃z − bx cos θ

2
τ̃xσ̃x. (A4)

The Hamiltonian of Eq. (A4) preserves the parity quantum
number τ̃zσ̃z. Thus, it may be diagonalized separately for each
parity. The corresponding unitary transformation is

U2 = U2+ + U2−,

U2+ = cos
φ+
2

P+ − sin
φ+
2

(̃τ−σ̃− − τ̃+σ̃+),

U2− = cos
φ−
2

P− − sin
φ−
2

(̃τ−σ̃+ − τ̃+σ̃−),

(A5)

where P± = (1 ± τ̃zσ̃z )/2 are the projectors on the subspaces
of parity ±, respectively. The effective spin-orbit mixing
angles are determined by

tan φ± = bx cos θ

	 ± Bz sec �
. (A6)

Defining the total unitary transformation U = U0U1U2, the
DQD Hamiltonian becomes

U †HdU = Em

2
τ̃z + Es

2
σ̃z, (A7)

where the molecular and spin Larmour frequencies in the
dressed basis are

Em = bx cos θ

2
(csc φ+ + csc φ−),

Es = bx cos θ

2
(csc φ+ − csc φ−). (A8)

To indicate the final DQD eigenbasis, the explicit unitary
transformation as well as the “˜” are dropped. Equation (A7)
then becomes Equation (9).

The resonator couples to the DQD via the dimensionless
position operator ζ = |R̃〉〈R̃| − |̃L〉〈L̃|. The unitary transfor-
mation of Eq. (A7) may be used to express ζ in the DQD
eigenbasis as

ζ =
∑
i, j

ζ (i j)τiσ j . (A9)

Here the Pauli matrices are labeled with indices {0, x, y, z},
where 0 signifies the identity matrix. The nonzero coefficients

ζ (i j) are found to be

ζ (x0) = − cos θ cos � cos φ̄,

ζ (zx) = cos θ cos � sin φ̄,

ζ (xx) = sin θ sin φ̄ cos
�φ

2

+ cos θ sin � sin φ̄ sin
�φ

2
,

ζ (yy) = − sin θ cos φ̄ sin
�φ

2

+ cos θ sin � cos φ̄ cos
�φ

2
,

ζ (z0) = sin θ cos φ̄ cos
�φ

2

+ cos θ sin � cos φ̄ sin
�φ

2
,

ζ (0z) = − sin θ sin φ̄ sin
�φ

2

+ cos θ sin � sin φ̄ cos
�φ

2
. (A10)

In Eq. (A10), we have introduced the average spin-orbit mix-
ing angle φ̄ = (φ+ + φ−)/2 and the difference angle �φ =
φ+ − φ−. Expressions for the DQD-resonator couplings ap-
pearing in Eq. (10) are directly obtained from the ζ (i j):

gm = −gcζ
(x0), gs = gcζ

(zx),

g+ = gc[ζ (xx) − ζ (yy)], g− = gc[ζ (xx) + ζ (yy)],

gmp = gcζ
(z0), gsp = gcζ

(0z). (A11)

In the limit of small field gradient discussed in Sec. II B,
Eqs. (A8) and (A11) yield Eqs. (11) and (12), respectively.
Moreover, note that the matrix element of the dimensionless
position operator ζ between the two spin-qubit states is pro-
portional to gs/gc. This means that spin transitions arising
from the coupling of electric fields to the electric dipole occur
at a rate proportional to (gs/gc)2, as was assumed in Eq. (31).
Finally, we remark that exact expressions for the transformed
spin operators may also be obtained.

APPENDIX B: DISPERSIVE
DOUBLE-QUANTUM-DOT-RESONATOR HAMILTONIAN

As derived in Appendix A, the DQD-resonator Hamilto-
nian expressed in the DQD eigenbasis is

H = H0 + V,

H0 = Em

2
τz + Es

2
σz + ωra†a,

V = V (a + a†),

V = −gmτx + gsτzσx + g+(τ+σ+ + τ−σ−)

+ g−(τ+σ− + τ−σ+) + gmpτz + gspσz. (B1)
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The dispersive Hamiltonian Hdis is obtained by diagonalizing
the system Hamiltonian to first order in gc. This is achieved
with the help of a Schrieffer-Wolff transformation:

Hdis = eSHe−S. (B2)

Here the generator S of the transformation is the solution of

[H0, S] = V. (B3)

Expanding the transformation of Eq. (B2) to second order in
S gives

Hdis = H0 + 1
2 [S,V ]. (B4)

The operators on the right-hand side are expressed in a basis
dressed by the resonator.

An expression for S is most conveniently obtained with the
ansatz

S = �I I + �QQ, (B5)

where I = (a + a†)/2 and Q = −i(a − a†)/2 are the quadra-
tures of the resonator field. Substituting Eq. (B5) into Eq. (B3)
and solving for �I and �Q gives

�I = −2Ld

ω2
r − L2

d

V,

�Q = −2iωr

ω2
r − L2

d

V . (B6)

Here Ld is the Liouville operator corresponding to Hd , Ld O =
[Hd , O] for any operator O. Substituting the explicit form for
V in Eq. (B1) into Eq. (B6) yields explicit expressions for �I

and �Q:

�I = iηmτy − iηsτzσy − η+(τ+σ+ − τ−σ−)

− η−(τ+σ− − τ−σ+),

�Q = iη′
mτx − iη′

sτzσx − iη′
+(τ+σ+ + τ−σ−)

− iη′
−(τ+σ− + τ−σ+) − iη′

mpτz − iη′
spσz. (B7)

In Eq. (B7), the dispersive parameters ηi and η′
i are given by

Eq. (14). In the case of the couplings gmp and gsp, it is under-
stood that Emp = 0 and Esp = 0. Using these expressions, the
dispersive Hamiltonian takes the form

Hdis = H0 + V0 + VI

2

(
a†a + 1

2

)
+ VI

4
(a†2 + a2) + iVQ

4
(a†2 − a2), (B8)

where

V0 = − i

4
{�Q,V} =

∑
i j

v
(i j)
0 τiσ j,

VI = [�I ,V] =
∑

i j

v
(i j)
I τiσ j,

VQ = [�Q,V] =
∑

i j

v
(i j)
Q τiσ j . (B9)

It is straightforward to calculate the coefficients v
(i j)
0 , v(i j)

I , and
v

(i j)
Q explicitly. Each of these coefficients is a linear combi-

nation of the elements of the dispersive tensors χ j,k = g jηk

and χ ′
j,k = g jη

′
k . Although we do not write all the coefficients

explicitly here, we note that the interaction Hamiltonian in
Eq. (B8) has a part Vdis that commutes with H0 and a part Vtr

that induces transitions between the eigenstates of H0:

Hdis = H0 + Vdis + Vtr. (B10)

The dispersive part of the interaction has the form (up to an
irrelevant additive constant)

Vdis = − 1
2χ0τzσz − (χmτz + χsσz )

(
a†a + 1

2

)
. (B11)

Here, we have introduced the dispersive shifts

χm = χm,m + 1
2 (χ+,+ + χ−,−),

χs = χs,s + 1
2 (χ+,+ − χ−,−),

χ0 = χ ′
mp,sp + χ ′

sp,mp + 1
2 (χ ′

+,+ − χ ′
−,−). (B12)

The expression for χs corresponds to the one given in Eq. (18).
In the case where the transition term is off-resonant with all
possible transitions between eigenstates of H0, the dispersive
Hamiltonian may be projected into the molecular ground state
|−〉 to obtain an effective dispersive spin Hamiltonian (to an
irrelevant additive constant):

H eff
dis = (ω′

r − χsσz )a†a + 1
2 (E ′

s − χs)σz, (B13)

where

ω′
r = ωr + χm, E ′

s = Es + χ0. (B14)

The transformation of Eq. (B2) may be used to transform
other system operators in the new basis. Most importantly for
dispersive readout, the resonator field transforms to second
order in S as

eSae−S = a − 1

2
(�I + i�Q) − i

4
[�I , �Q]a. (B15)

Equations (19) and (20) are respectively obtained by trans-
forming Eqs. (3) and (6) to leading order in gs using Eq. (B15),
and then projecting the result onto the spin-qubit subspace in
the limit where the resonator is near-resonant with the spin
transition.

APPENDIX C: NEGLECTING THE TRANSITION TERMS

To ensure that the transition term Vtr appearing in Eq. (15)
causes a negligible change in the system eigenstates, its
magnitude ||Vtr|| should be much smaller than its detuning
�tr from the transition it induces between two eigenstates of
H0 + Vdis.

For example, one of the terms in Vtr has the form

V m,2PH
tr

= 1

4
v

(x0)
I τx(a†2 + a2) + i

4
v

(y0)
Q τy(a†2 − a2). (C1)

This term generates molecular transitions with the absorption
or emission of two resonator photons. Its magnitude is of order∥∥V m,2PH

tr

∥∥ ≈ max
[
v

(x0)
I , v

(y0)
Q

] 〈n〉
4

. (C2)

For a given spin state, the detuning from resonance of an
absorbing transition between a state with n photons and n − 2
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photons is approximately (accounting for the frequency shifts
induced by Vdis)

|�m,2PH
tr (σz, n)|
≈ |2ωr − 2χsσz ∓ [Em − χ0σz − χm(2n − 1)]|. (C3)

Here the sign ∓ correspond to the case where the state
|±〉 has higher energy than the state |∓〉. For 〈n〉 � 1, we
may set n ≈ 〈n〉. We then neglect the transitions provided that
the amplitude of the induced Rabi oscillations is smaller than

∼10−1:

maxσz

[ ∥∥V m,2PH
tr

∥∥∣∣�m,2PH
tr (σz, 〈n〉)

∣∣
]2

< 10−1. (C4)

We perform a similar procedure for all contributions to Vtr.
The regions of parameter space where the amplitude of the
oscillations become larger than ∼10−1 are indicated by the
black area in Fig. 5 (region 2). For the particular parameters of
Fig. 5, the only process in Vtr that can cause transitions within
the dispersive limit is the two-photon molecular transition
discussed above.
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