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Echo spectroscopy of Anderson localization
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We propose a framework to study the onset of Anderson localization in disordered systems. The idea is to
expose waves propagating in a random scattering environment to a sequence of short dephasing pulses. The
system responds through coherence peaks forming at specific echo times, each echo representing a particular
process of quantum interference. We suggest a concrete realization for cold gases, where quantum interferences
are observed in the momentum distribution of matter waves in a laser speckle potential, and discuss in detail
corresponding echoes in momentum space for sequences of one and two dephasing pulses. Our proposal defines
a challenging but arguably realistic framework promising to yield unprecedented insight into the mechanisms of
Anderson localization.
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I. INTRODUCTION

Coherent chaotic scattering is a defining feature of dis-
ordered quantum systems. Its manifestations range from
coherence peaks in scattering cross sections over weak
localization and quantum fluctuation phenomena in metals,
to strong Anderson localization [1]. Phenomena of this
type have been observed with light [2,3] or microwaves
[4], in electronic conductors [5], with cold atomic gases
[6–11], photonic crystals [12,13], and classical waves [14].
Semiclassically, quantum coherence is understood in terms
of the interference of Feynman path amplitudes. Quantum
effects arise when classically distinct amplitudes interfere
to yield nonclassical contributions to physical observables;
see Fig. 1. For instance, coherent backscattering (CBS) and
weak localization [15] are due to the interference of mutually
time reversed paths. Similarly, coherent forward scattering
is caused by the concatenation of two such processes, or
again by the interference of two self-retracing loops traversed
in different order [16–19], etc. Quantum coherent contri-
butions are often discriminated from classical background
contributions by their strong sensitivity to dephasing and
decoherence. However, other than suppressing coherence,
generic sources of decoherence—external magnetic fields, ac
electromagnetic radiation, etc.—do not provide much insight
into the mechanisms of quantum interference in disordered
media. Furthermore, decoherence often acts as a source
of heating (it certainly does so on the temperature scales
relevant to cold atomic gases) and leads to an unwelcome
nonequilibrium shake-up of the system.

In this paper, we suggest an alternative protocol for
probing quantum coherence. Its advantage is that it offers
much more specific information and at the same time is
less intrusive than persistent external irradiation. The idea
is to expose the quantum system to a source of dephasing
only at specific “signal times,” t1,t2, . . . . The system then
responds to this perturbation at “echo times” τ1,τ2, . . . , which
are in well-defined correspondence to the signal times. Each
of these echoes corresponds to a specific mechanism of
quantum-coherent scattering. For example, an echo at time

2t1 after a dephasing pulse applied at time t1 is a tell-tale
signature of the CBS effect (see Fig. 1). Likewise, an echo
observed at time 2(t2 − t1) in response to two pulses at t1
and t2 > 2t1 identifies a contribution to forward scattering
coherence, etc. The observation of a temporal echo pattern
thus realizes a highly resolved probe of quantum coherence in
random scattering media.

The rest of the paper is organized as follows. In Sec. II we
introduce the Feynman path approach to coherence echoes
and discuss real-space echo signals up to two-loop order.
Section III discusses the first-order coherence echo in momen-
tum space, while details about the second-order momentum-
space signal are relegated to Appendix A. Section IV
contains the systematic derivation of all results within a
field-theoretical formalism. In the concluding Sec. V we
suggest an experimental realization of echo spectroscopy with
cold atoms. Further details on diffusion mode calculations are
contained in Appendix B.

II. FEYNMAN PATH APPROACH
TO COHERENCE ECHOES

We consider a d-dimensional system of noninteracting
quantum particles moving in a random potential and described
by the Hamiltonian

Ĥ = p̂2

2m
+ V (r̂). (1)

The random potential V is assumed to be an uncorrelated Gaus-
sian process with covariance 〈V (r)V (r′)〉 = 1

2πντ
δ(r − r′),

where ν is the density of states per volume and τ the elastic
scattering time. Central for our discussion is the retarded
quantum correlation function

X ≡ 〈Ôx(t)Ôx′(0)〉, (2)

where the brackets stand for an average over quantum and
disorder distributions, and Ôx = |x〉〈x| is a projector onto a
squeezed state defined by 〈r′|x〉 = 1

(2π)d/4
1

(�r)d/2 exp(− (r′−r)2

(2�r)2 +
i
�

p · r′). The scale �r sets the spatial resolution of the operator,
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FIG. 1. (Color online) Physical observables represented in terms
of pairs of retarded (solid lines) and advanced (dashed lines) Feynman
path amplitudes. (a) Copropagating Feynman paths, α = β, yield the
classical contribution to the two-point transition probability r → r′.
Inset: Weak-localization loop. (b) Coherent contribution, β = Tα,
to return probability r → r, where Tα is the time reverse of α. (c)
Coherent backscattering contribution in the presence of dephasing
pulses (wiggly lines). While a pulse at time t1 (dashed wiggly lines)
suppresses the phase coherence of generic loops, it affects particle
and hole amplitudes in synchronicity if the loop is traversed in time
τ1 = 2t2, where coherence is briefly restored. Right: Synchronicity
condition for a bitemporal pulse at times t1,2 is realized at traversal
time τ2 = t1 + t2, where a coherence signal is observed.

and x = (r,p) is a phase space vector comprising real-space (r)
and momentum-space (p) coordinates. In the limit of infinitely

sharp resolution Ôx
�r→0−→ |r〉〈r| projects onto real-space coor-

dinates, and the correlation function (2) may serve, e.g., as
a building block for a point-contact transport observable. In

the opposite limit Ôx
�r→∞−→ |p〉〈p| projects onto momentum

coordinates, and the correlation function relates to the cross
section for the scattering process p → p′. Intermediate values
of �r probe transitions between coherent-state-like wave
packets of minimal quantum uncertainty centered around x.

To introduce the concept of coherence echoes, we consider
in this section the case �r = 0 of a space-local two point
correlation function. Within a Feynman path approach the
expectation value (2) then assumes the form [20]

X =
∑
α,β

〈e i
�

(S[α]−S[β])Mαβ〉, (3)

where α,β are paths connecting r and r′ in time t , S[α] is the
corresponding classical action, Mαβ is a container symbol for
matrix elements and semiclassical stability amplitudes, and
brackets stand for an average over disorder configurations.
The double sum is dominated by path configurations of nearly
identical action |S[α] − S[β]| � �; all other contributions
are effectively averaged out by large phase fluctuations. The
set of contributing paths includes α = β [Fig. 1(a)], which
yields the classical, phase-insensitive approximation X0 of the
observable (3). Quantum corrections arise when paths branch
out and subsequently recombine to form a phase coherent
correction [Fig. 1(a) inset]. One may think of the internal
loop included in this process as a “self-energy” modifying

the classical propagation in terms of a loop returning to its
point of origin [Fig. 1(b)]. It is these loop structures with
external “classical legs” detached that are probed by our
present approach: coherence signals tested by echoes arise
when the two observation points r → r′ approach each other
[Fig. 1(b)]. The double sum is then given by an uninteresting
classical contribution α = β, and an equally strong quantum
contribution β = Tα, where Tα is the time reversed of the path
β, and which is equivalent to the above self-energy correction.

Consider now a single external radiation pulse applied to the
system at time t1 > 0 [Fig. 1(c)]. At t1 a particle propagating
along α is at coordinate r(t1), while a particle propagating
along Tα is at r(t − t1), where t is the loop traversal time
selected by the moment of observation. In general, these
coordinates differ from each other, which means that the
external pulse affects the quantum phases carried by the two
amplitudes in different ways—causing dephasing. However, if
the traversal time is such that t1 = t/2, then r(t1) = r(t − t1),
and coherence is briefly regained. Another way of stating the
same fact emphasizes the time-reversal symmetry essential
to the coherent backscattering signal: at time t = 2t1, time
reversal t → 2t1 − t relative to the signal time t1 is restored
and the conditions for phase coherence apply. An observation
of the system at time t = 2t1 ≡ τ1 probes path pairs of just this
“resonant” length, which can be witnessed by the formation of
a coherence peak in the observable X.

A. Perturbed quantum diffusion

To obtain a quantitative understanding of the echo signal,
we consider a weakly disordered medium in which the paths
entering individual segments of pair propagation (the double
lines in Fig. 1) describe diffusion. For fixed initial and final
coordinates r and r′ and propagation time t , the sum over all
copropagating paths is described by a classical diffusion prop-
agator 	D(r,r′; t), or “diffuson” for brevity [15]. The diffuson
solves the diffusion equation (∂t − D∂2

r )	D(r,r′; t) = δ(r −
r′)δ(t), where D = v2τ/d is the classical diffusion coefficient,
τ the elastic scattering time, and v = |p|/m the velocity of
particles of mass m. Likewise, the sum over all contributions
to a segment r → r′ of counterpropagating paths is described
by the propagator 	C(r,r′; t), the so-called Cooperon mode,
which in the absence of dephasing obeys the same diffusion
equation.

Let us now consider diffusive propagation in the presence of
an external source of radiation, represented by a four-potential
A = (φ,a), comprising a scalar and a vectorial component,
φ = φ(r,t) and a = a(r,t), respectively. To account for the
externally imposed time dependence in a quantum diffusive
process, we need to keep track of the traversal times of
the participating Feynman paths. The situation is illustrated
in Fig. 2, where “D” is a diffuson mode comprising two
amplitudes starting at times t± − T , respectively, and ending
at t±. We denote generally by T the time required to traverse
the segment, and the dashed lines are symbolic for the quantum
scattering events causing diffusion. The wiggly lines represent
the action of the external field at time t± − t . If the two paths
are traversed simultaneously, t+ = t−, the potential affects
the upper and lower line in the same way. In this case, the
field does not destroy the mode, which is another way of
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FIG. 2. (Color online) Coupling of diffuson (D) and Cooperon
(C) to an external field A = (φ,a). The field acts at position r at
the passage time of particle (solid upper line) and hole (dashed lower
line), respectively. If these positions differ, dephasing occurs. In panel
C, TA = T(φ,a) = (φ, − a) indicates time reversal.

saying that classical diffusion is not affected by quantum
decoherence. In the Cooperon process, “C,” scattering paths
are traversed in opposite order, as indicated by the “maximally
crossed” representation of scattering vertices. (Equivalently,
one may flip the lower line, which leads to the uncrossed
representation with co-oriented arrows employed in the rest
of the figures.) The sign change in the time-reversed potential
TA = T(φ,a) = (φ, − a) reflects the time-reversal symmetry
breaking nature of external vector potentials. Likewise, a
time-dependent scalar potential φ(t) will cause dephasing,
unless an echo condition is met.

The influence of the field on the diffusion modes can be
quantitatively described by diagrammatic perturbation theory
[21]. Under the assumption that the external field alters
quantum phases but is sufficiently weak not to change the
classical trajectories themselves, the perturbed diffuson and
Cooperon modes (M = D,C) are still governed by generalized
diffusion equations

DM	M(r,r′; t+,t−,T ) = δ(T )δ(r − r′),

DD/C = ∂t+ ± ∂t− − i[φ(r,t+) − φ(r,t−)]

−D(∂r + i[a(r,t+) ∓ a(r,t−)])2, (4)

in which the field A = (φ,a) enters through a covariant
derivative. For a given A, these “imaginary-time Schrödinger
equations” can be solved, e.g., by path-integral techniques
[21,22] (see Appendix B). We here consider a situation without
magnetic field, a = 0, and a scalar potential

�φ(r,t) = −r · �pf (t). (5)

In the remainder of this section, we take f (t) = ∑N
i=1 δ(t − ti)

to represent a sequence of short pulses, each of which applies
a homogeneous force that transfers a momentum �p; the
above weak-field assumption requires that each transferred
momentum be much smaller than the particle momentum,
|�p| 	 p. The dephasing pulses realize the ideal form of
effective δ kicks if they are shorter than the mean-free time

τ . Longer pulses are also admissible and provide full echo
contrast as long as they are symmetric around ti .

B. First-order echo signal

The first-order quantum coherence contribution to the
observable (2) involves two counterpropagating paths running
synchronously between time 0 and t , and thus has the
time arguments t+ = t,t− = 0,T = t . For times t < t1 before
the first pulse, the single-Cooperon contribution XC1(t) =
c/(Dt)d/2 is just the classical probability of return within time
t , where c is a numerical constant. Around the time t = 2t1,
the signal is found to behave like

δXC1(t) = XC1(t)e−|t−2t1|/τe . (6)

This describes a near instantaneous destruction of the coher-
ence contribution by the pulse at t1 followed by a revival at the
echo time τ1 = 2t1 over a width

τe = �
2/D�p2. (7)

The complete derivation of this signal, allowing also for a
generalization to more general pulse profiles, follows from the
momentum-space results as described in Sec. III below. But
the echo profile (6) can be readily understood by noting that
the phases of the two amplitudes are affected as

〈ei[φ(r(t1))−φ(r(t−t1))]〉 
 e− 1
2 〈[φ(r(t1))−φ(r(t−t1))]2〉, (8)

where the angular brackets represent averaging over path
configurations. Substituting the potential (5) and noting that
for a diffusive process 〈[r(t) − r(s)]2〉 ∼ D|t − s| one then
obtains (6). Also, one sees that the characteristic echo time (7)
is determined by the time scale over which the phase mismatch
between the two amplitudes reaches unity, 〈(�p�x)2〉 ∼
�p2Dτe = �

2.
The first-order coherence signal (6) is suppressed directly

after the C1 echo at time τ1. If, now, a second pulse is applied
at time t2 > τ1, the coherence condition is met once more at
τ2 ≡ t1 + t2, and another C1 echo will be observed [Fig. 1(c),
second diagram]. In addition to this signal, however, such a
bitemporal pulse gives rise to further echoes, which probe
more complex manifestations of quantum interference, to be
discussed next.

C. Probing higher-order quantum interference

We find that a double pulse selectively generates echo
signals from two-loop contributions, as depicted in Fig. 3.
Consider, for example, the D2 coherence process that describes
the interference of paths along two loops which are traversed in
the same direction (no time reversal required), but in different
order. During its traversal of the first loop, the particle is hit
by the first pulse at time t1. The particle then moves on into
the second loop, where it is hit by the second pulse at time t2.
A straightforward assignment of travel times to path segments
shows that the hole amplitude (going through the loops in
opposite order) will experience the pulses in synchronicity,
i.e., at the same spatial path coordinates, provided the time
of traversal for each loop be t2 − t1. In this case, the
process becomes coherent, and an echo will be observed
at τ3 ≡ 2(t2 − t1).
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FIG. 3. (Color online) Higher-order coherence contributions to
the return amplitude probed by bitemporal pulsing. The dephasing
vertices shown in the inset of the right panel are only present in
the C2b process. For the definition of the observation times τ3,4 and
further discussion, see text.

A similar argument shows that at the same time τ3

the Cooperon process C2a shown in Fig. 3—consisting of
two counterpropagating loops traversed in the same order—
becomes phase coherent, too. For that path configuration the
coherence condition is satisfied at one more time τ4 ≡ 2t2 − t1
and this leads to one more echo C2b, also indicated in Fig. 3.
Quantitative calculations below result in the two-loop echo
contributions

δXM(t) = XM(t)e−|t−τM|/τe , M = D2,C2a,C2b, (9)

where τD2,C2a = τ3, τC2b = τ4, and XM(t) are smoothly varying
functions, whose detailed features follow from the results of
the Appendix A. Here we note that the overall signal strength
XM is by a factor (Eτ/�)1−d 	 1 smaller than the strength
function XC1 of the C1 process and in this smallness reflects
the relatively smaller phase volume available to the returning
of higher-order path topologies.

Summarizing the discussion so far, Fig. 4 shows a typical
chronology of echo signals in response to two applied pulses
as a sequence of dots of varying strength and angular orien-
tation. The latter refers to directional information encoded in
momentum space, to be discussed next.

III. MOMENTUM-SPACE ECHOES

Although the essential classification of the system response
in terms of echo times {τi} and corresponding path struc-

tures is universal, additional information can be obtained
if observables different from the coordinate projectors Ô =
|r〉〈r| are chosen. Specifically, in this section we turn to the
complementary limit of momentum projectors, Ô = |k〉〈k|,
and look for echo signals in the scattering probability from
k to k′. Since now initial and final momentum are fixed,
the formal loop order is decreased by 1 compared to the
real-space setting. Namely, an n-mode contribution to the
momentum-space signal will be made of (n − 1) momentum
integrals, and the corresponding n-loop signal in real space
is recovered by one supplementary momentum integration.
Also, quantum coherence in momentum space no longer
constrains the initial and final positions, but instead requires an
alignment of initial and final momenta, k′ = ±k. Therefore,
in a momentum resolved scattering experiment, the C1 echo
is observed as a contribution to the backscattering probability
at k′ = −k. In contrast, two-mode contributions will peak in
the forward direction k = k′. Forward-scattering coherence
has been recently identified as particularly interesting in
connection with the onset of strong localization [16–19].

In fact, coherence echoes in momentum space show a
somewhat richer structure beyond the general forward and
backward orientation. It is instructive to look first at the
single-Cooperon coherent backscattering echo. Postponing a
systematic derivation to Sec. IV, we state here merely the
expected result [23]:

δXC1(t,q̄) = X0	C(q̄,t,0,t), (10)

where X0 = 4π
ν

δ̃(εk − εk′) with δ̃(ε) = �

2πτ
1

ε2+(�/2τ )2 is a
broadened δ function keeping the arguments of the correlation
function on-shell, and 	C(q̄,t,0,t) is the Cooperon solution
of the generalized diffusion equation (4) at momentum
q̄ = k + k′ away from the backscattering direction.

In the absence of external potentials, the simple diffusion
equation is solved by the Gaussian δXC1(t,q̄) = X0e

−Dt q̄2/�
2
,

as recently predicted for a cold atom setup [23] and conse-
quently observed [24]. Now, in presence of the dephasing (5),
the Cooperon takes the form

δXC1(t,q̄) = X0e
− D

�2 [t q̄2−2χ̄1(t)q̄·�p+χ̄2(t)�p2]
. (11)

A derivation of this result, including expressions of the auxil-
iary functions χ̄1/2 for general pulse profiles f (t) [Eqs. (B25)
and (B26)] can be found in Appendix B below. For a single δ

pulse at time t = t1, these functions simply vanish before the
pulse and are χ̄1(t) = (2t1 − t) and χ̄2(t) = |2t1 − t | at times
t > t1 after the pulse. In that case, the echo contrast in the

FIG. 4. (Color online) Chronology of quantum coherence echoes in the kx-ky plane of momentum space. Echoes are indicated by red dots
whose width/position hint at the signal strength/angular orientation on the elastic scattering manifold. From left to right: An initial state with
well defined momentum yields the single-Cooperon (C1) backscattering peak after the transport time τ . A first dephasing pulse at t1 suppresses
the C1 signal, which reappears at the first echo time τ1 = 2t1. A second pulse at t2 generates the bipulse C1 echo at τ2 = t1 + t2. Two-mode
echoes appear in the forward scattering direction at τ3 = 2(t2 − t1) (D2, C2a) and τ4 = 2t2 − t1 (C2b).
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FIG. 5. (Color online) Single-mode Cooperon echo contrast
δXC1(t,q̄)/X0, given by (11), as function of time t and momentum
q̄ (in units of τe and �p and for q̄ ‖ �p), with a dephasing
pulse at t1 = 10τe. The momentum kick �p initially displaces the
entire momentum distribution, then dephasing sets in, and the signal
only revives at the echo time τ1 = 2t1. The echo contrast at exact
backscattering q̄ = 0 is shown as the black curve in the side panel.
The real-space signal (6) follows after integration over q̄.

exact backward direction q̄ = 0 reads

δXC1(t,0) = X0e
−θ(t−t1)|t−2t1|/τe , (12)

and thus describes a sharp drop at the pulse time t1 followed
by an exponential revival at the echo time τ1 = 2t1. The
corresponding real-space echo (6) follows upon integration
of Eq. (11) over q̄.

On the scale of �p, the momentum-space signal shows a
rather interesting dynamics, as plotted in Fig. 5. Initially, the
dephasing kick displaces the entire momentum distribution
by �p, and thus also displaces the backscattering peak,
which subsequently takes a finite time τe to dephase. As
time increases, the point of highest contrast is found at
q̄0(t) = χ̄1(t)�p/t . It thus moves from q̄0(t1) = �p towards
the original position q̄0(2t1) = 0, reached at the echo time,
and then continues onward to q̄0 → −�p at long times. The
peak is severely suppressed at generic times, but revives with
perfect contrast at t = 2t1 where χ̄1 = 0 = χ̄2.

For pulses of finite resolution in time, but still symmetric
around t1, the peak always reaches the original position q̄0 = 0
at 2t1 where the contrast penalty vanishes, implying a perfect
revival, as a consequence of the general expressions (B25)
and (B26). Only for an asymmetric pulse the contrast penalty
generically remains finite, and the echo will appear with
reduced contrast.

In contrast to the C1 echo discussed so far, the higher-order
processes D2 and C2 show echoes in response to bitemporal
pulsing in the forward scattering direction. A detailed dis-
cussion of the intricacies of momentum-resolved two-mode
echoes can be found in Appendix A. We first complete the
general development of the theory by a systematic derivation
of echo contributions via a field-theoretical approach.

IV. FIELD THEORY

In this section we derive the results discussed so far
within the framework of the diffusive nonlinear σ model [25].
Compared to a direct perturbative “diagrammatic” calculation,
the σ model greatly simplifies the handling of the vertex
regions distinguishing individual echo contributions. It also
“automatizes” the identification of echo time structures, which
in a diagrammatic framework have to be anticipated from the
beginning. We use a simplified Keldysh version of the model
[26–28], which is tailored to treat time-dependent phenomena,
and proceed to show how the theory yields the discussed
echo structures. We invite readers not interested in technical
details to skip this section and to proceed to “Summary and
experimental realization.”

A. Effective theory

Central to our discussion is a functional-integral partition
function

Z =
∫

DQ exp(iS[Q]), (13)

with effective action

iS[Q] = πν�

8

∫
dr tr[2∂φQ(r) − D(∂aQ(r))2], (14)

describing quantum diffusion on time scales, t  τ , and
eventually Anderson localization on asymptotically large
scales. Here, ν is the density of states per volume, τ the elastic
scattering time, and Q = {Qαα′

ss ′,t t ′ } is a unitary matrix field,
Q−1 = Q†, bilocal in time t,t ′ and two-dimensional in two
auxiliary spaces of Keldysh (K) and time reversal (T) variables,
respectively. The K-space indices α = ± discriminate between
retarded (+) and advanced (−) propagators. The T-space
indices s = ± track time-reversal operations. For example, the
matrix block Q+−

+− describes an interfering pair of retarded and
advanced amplitudes which are counterpropagating in time,
Q+−

++ describes interference of copropagating amplitudes,
etc. The trace “tr” in (14) includes summation over all
indices, including continuous time, tr(A) = ∑

α,s

∫
dt Aαα

ss,tt .
Likewise, matrix multiplication is defined as (AB)αα′

ss ′,t t ′ =∫
dt ′′

∑
α′′,s ′′ A

αα′′
ss ′′,t t ′′B

α′′α′
s ′′s ′,t ′′t ′ . With these conventions, the ma-

trix field Q is defined to obey the nonlinear constraint

[Q2(r)]t t ′ = 1δ(t − t ′),

where 1 is the unit matrix in K ⊗ T. Invariance under time-
reversal reflects in a second constraint

(Qtt ′)
t = σ T

2 Q−t ′,−t σ
T
2 , (15)

where t is transposition in K ⊗ T and the Pauli matrices σ X
i

act in X = K,T space, respectively.
The particle matrix field Q couples in Eq. (14) to the

external fields via the covariant derivatives

∂φQ(r)ss ′,t t ′ = [∂t − ∂t ′ + iφ(r,st) + iφ(r,s ′t ′)]Qss ′,t t ′ (r),

∂aQ(r)ss ′,t t ′ = [∂r + isa(r,st) − is ′a(r,s ′t ′)]Qss ′,t t ′ (r). (16)
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The covariant form of these derivatives reflects the local
U(1) gauge invariance of the theory. The sign structure in
T space ensures that the covariant derivatives of the Q field
are consistent with the time-reversal condition (15).

The action (14) is manifestly invariant under “rotations”
Q0 = σ K

3 �→ T0σ
K
3 T −1

0 , where T0 = constant is a matrix in K
space and Q0 = σ K

3 a saddle point not containing interference
terms, (σ K

3 )+− = (σ K
3 )−+ = 0. This saddle point describes the

system before the appearance of diffusion modes, the sign
structure in K space being a consequence of Green’s function
causality [26–28]. Transformations with Ttt ′(r) slowly varying
in space and time generate soft “Goldstone modes” that repre-
sent physical diffusion modes, much like small (r,t)-dependent
rotations of the spins in a ferromagnet describe magnon modes.
We therefore parametrize the relevant nonlinear field manifold
by

Q(r) = T (r)σ K
3 T −1(r) (17)

and with smooth fluctuations T .

B. Cooperon and diffuson modes

To explore the effect of soft mode fluctuations, we
parametrize the rotation matrices as T = eW/2 where the
generators W are chosen to anticommute with the saddle point,

[σ K
3 ,W ]+ = 0. These generators are block off-diagonal in K

space,

W =
(

B

−B†

)
K

, B = {
Bss ′

t t ′
}
, (18)

their anti-Hermitian structure required by the unitarity of Q.
The time-reversal symmetry relation (15) implies (Wtt ′)t =
−σ T

2 W−t ′,−t σ
T
2 . For the B matrices this means

B−−
t t ′ = B̄++

−t ′,−t , B−+
t t ′ = −B̄+−

−t ′,−t , (19)

where the overbar is complex conjugation. We will identify
modes B±± of identical (B±∓ of opposite) time orientation of
amplitudes as diffuson (Cooperon) modes, and define B++

t t ′ ≡
Dtt ′ and B−+

t t ′ ≡ Ctt ′ or in T space

Btt ′ =
(

Dtt ′ −C̄−t ′−t

Ctt ′ D̄−t ′−t

)
. (20)

The strategy now is to substitute the expansion

Q = T σ K
3 T −1 
 σ K

3 (1 − W + W 2/2 + · · · ) (21)

into the action (14) and to expand in W . There is no zeroth-
order contribution, and the first-order vanishes around the
saddle point. To second order, the action decouples into two
quadratic actions for diffuson and Cooperon, respectively,

iS
(2)
D = −πν�

2

∫
dt

∫
dt ′

∫
dr Dt ′t (r)(∂t + ∂t ′ + i[φ(r,t) − φ(r,t ′)] − D{∂r + i[a(r,t) − a(r,t ′)]}2)D̄tt ′(r), (22)

iS
(2)
C = −πν�

2

∫
dt

∫
dt ′

∫
dr C−t ′t (r)(∂t − ∂t ′ + i[φ(r,t) − φ(r,t ′)] − D{∂r + i[a(r,t) + a(r,t ′)]}2)C̄t,−t ′ (r). (23)

The kernels are just the differential operators (4). The
correspondence with the diffusion modes 	D/C can be made
more explicit by calculating the expectation values 〈· · · 〉(2) ≡∫

D(D,C) exp[iS(2)
C + iS

(2)
C ](· · · ) with the quadratic action,

where D(D,C) stands for integration over the matrix fields
D,C. Since a complex Gaussian integral yields the inverse of
the action kernel, the expectation values

〈D̄t+,t− (r)Dt−−T ,t+−T ′(r′)〉(2)

= 2

πν�
	D(r,r′; t+,t−,T )δ(T − T ′),

〈C̄t+,−t− (r)C−t−−T ,t+−T ′ (r′)〉(2)

= 2

πν�
	C(r,r′; t+,t−,T )δ(T − T ′) (24)

obey Eqs. (4) and thus are identical to the modes consid-
ered there. For later reference, we note that the δ(T − T ′)
functions above are regularized to the shortest time scales
∼τ resolved by the field theory; they are to be understood
as broadened Lorentzians with finite peak height δ(0) = τ−1.
(For completeness, we note that the Gaussian integrals are
unit normalized, 〈1〉 = 1; i.e., they do not yield a nontrivial
“functional determinant.” The physical principle behind this is
Green’s function causality, which implies the unit-valuedness
of the determinants of the Cooperon and diffuson differential

operators. For further discussion of this point, we refer to
Refs. [27,28].)

C. Generation of observables

Starting from this section, we focus on momentum-space
coherences. As already discussed in Sec. III, momentum-
resolved correlations provide additional information about the
parity of interference processes under time reversal, which
complements the information contained in spatial correlations.
A generalization of the formalism to the generic coherent
states introduced in Sec. II is straightforward. The relevant
correlation function (2) then is

X(t,k,k′) = 〈|〈k′| exp{−iH t}|k〉|2〉, (25)

namely the ensemble-averaged scattering probability from k
to k′ in time t. In order to compute this correlation function
from the field theory, we introduce two source parameters
α = {αi,αf} together with the projectors P i/f

ss ′,t t ′ (p) = δ(ki/f −
sp)δ(ti/f − st)δss ′σ K

± in time and momentum, where the exter-
nal time and momentum arguments are

ti = 0, tf = t, (26)

ki = k, kf = k′, (27)

064203-6



ECHO SPECTROSCOPY OF ANDERSON LOCALIZATION PHYSICAL REVIEW B 91, 064203 (2015)

and σ K
± = 1

2 (σ K
1 ± iσ K

2 ) are raising and lowering operators
in K space. The source-augmented action S[Q,α] = S[Q] +
Sα[Q] is given by S[Q] of (14) and the sum Sα[Q] = SI

α[Q] +
SII

α [Q] of two contributions, one linear and the other quadratic
in the sources,

SI
α[Q] = 1

2

∫
dr tr[Q(r)(αiP i + αfP f)], (28)

SII
α [Q] = αiαf

2i

∫
(dp)

∫
(dp′)tr[Qp−p′P i(p′)Qp′−pP f(p)].

(29)

Here, P i/f
ss ′,t t ′ = δ(ti/f − st)δss ′σ K

± without momentum argu-
ment projects only in time. Further, Qp is the Fourier transform
of Q(r). The correlation function (25) is then obtained by
twofold differentiation of the generating partition functional
Z[α] = ∫

DQ exp(iS[Q,α]),

X(t,k,k′) = −2π2
�δ̃(εk − εk′)∂αf ∂αi Z[α]|α=0 . (30)

Here, δ̃(ε) = �

2πτ
1

ε2+(�/2τ )2 is a broadened δ function keeping
the arguments of the correlation function on-shell.

D. Echo spectroscopy in momentum space

Based on a systematic expansion in diffusion modes, we can
now express the echo signals in a fully quantitative manner. We
here concentrate on momentum-resolved correlation functions
and recall that corresponding signals in real space are gener-
ated by integration over the remaining momentum argument.
The strategy is to substitute the expansion (21) into the source
terms, to differentiate with respect to external parameters αi,f ,
and to compute the ensuing Gaussian integrals with the help
of (24). To the individual contributions obtained in this way,
we may attribute a topology and in this way establish contact
to the semiclassical representations of Sec. II.

1. Classical relaxation

To lowest order, the field theory reproduces the classical,
ergodic spread of the population over the entire energy shell.
This is found by expanding the source (28) to linear order
in W . Substituting the expansion (21) and using Eqs. (18) to
(20) to represent the internal structure of the W generators, a
straightforward computation shows

SI,1
α = − [

αiDtiti (0) + αfD̄tf tf (0)
]
, (31)

where the arguments in parentheses refer to zero momentum
q = 0. Fixing time arguments, Eq. (26), and differentiating
with respect to sources, we obtain the contribution

X0(t,k,k′) = 2π2
�δ̃(εk − εk′)〈D̄tt (0)D00(0)〉

= 4π

ν
δ̃(εk − εk′)	D(0; t,t,t) (32)

to the correlation function (25), where the first argument of 	D

refers to q = 0 momentum. Equation (32) is structureless on
the momentum shell |k| ≈ |k′| and thus describes the terminal
state of classical momentum shell relaxation, reached at time
scales larger than the scattering time. (The dynamics on shorter
time scales t ∼ τ can be resolved by a master equation [29].)

Since the simple diffuson 	D(0,t,t,t) = θ (t)e−Dtq2/�
2 |q=0 =

θ (t) is insensitive to dephasing, the isotropic background (32)
is

X0 = 4π

ν
δ̃(εk − εk′) (33)

at all times t  τ , and this independently of external dephasing
potentials φ(r,t).

2. Single-mode backscattering echo

The leading-order coherence signal is the backscattering
peak of Refs. [23,24]. This term is generated by inserting
the quadratic contribution in generators into the quadratic
source Eq. (29). There are two qualitatively different types
of terms, arising from the expansion of (i) both Q matrices
to linear order in W and (ii) one Q-matrix to second and
the other to zeroth order in W . However, only type (i)
gives a finite contribution. Performing the twofold derivative
(30) and inserting the explicit parametrization one arrives at
contributions from diffuson and Cooperon modes. Only the
latter give a finite expectation value

δXC1(t,q̄) = 2π2
�δ̃(εk − εk′)〈C̄t0(q̄)C−t0(−q̄)〉, (34)

where q̄ = k′ + k denotes the deviation from exact backscat-
tering. Upon inserting the propagator (24) one finds the
contribution Eq. (10) of Sec. III.

3. Double-mode forward scattering echo

The lowest order contribution to the forward scattering peak
appears in quartic order in generators W in the quadratic
source term. Again there are various contributions and we
only give here the relevant term, resulting in nonvanishing
contribution to the observable of interest. Following the same
steps as in the single-mode contribution, i.e., performing the
twofold derivative and inserting the explicit parametrization of
generators, one arrives at the following two contributions from
diffuson and Cooperon modes (for simplicity we suppress the
momentum arguments for the moment and only state those
contributions with a finite expectation value),

δX2(t) = 2π2
�δ̃(εk − εk′)

∫
dt ′

∫
dt ′′ 〈D̄tt ′Dt ′0D0t ′′D̄t ′′t

+ C̄t−t ′C−t ′0C̄t ′′0C−t t ′′ 〉. (35)

Reintroducing momenta dependencies and inserting the
propagators (24) we arrive at the two-mode contributions

δX2(t,q) = δXD2(t,q) + δXC2(t,q), (36)

where q = k′ − k denotes the deviation from forward scatter-
ing. The two-diffuson contribution reads

δXD2(t,q) = 2X0

πν�

∫
dt ′

∫
(dq ′) 	D(q′ + q,t − t ′,t,t − t ′)

× 	D(q′,t,t ′,t ′), (37)

with (dq) = dq/�
d , and

δXC2(t,q) = 2X0

πν�

∫
dt ′

∫
(dq ′) 	C(q′ + q,t,t ′,t − t ′)

×	C(q′,t ′,0,t ′) (38)
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is the two-Cooperon contribution. The resulting coherent
forward scattering echo in momentum space is discussed in
detail in Appendix A. By a momentum-integration over q,
one arrives at the two-loop echoes in real space discussed in
Sec. II C.

4. Higher-order diffusion modes

In the absence of dephasing pulses and in d � 2 di-
mensions, the proliferation of quantum diffusion modes
eventually results in strong, Anderson localization. Using
nonperturbative methods, the resulting temporal buildup of
the forward scattering peak has been recently calculated in a
quasi-one-dimensional geometry and with a weak magnetic
field breaking time-reversal symmetry [17]. In principle,
it is possible to also push echo spectroscopy to higher
order, extending the theoretical analysis above to n > 2-pulse
dephasing trains. Indeed, for n > 2 pulses, convolutions of
diffuson and Cooperon modes begin to appear, and the
detection of those would provide a highly nontrivial test of our
present understanding of the dynamical processes that result
in Anderson localization. The systematic investigation of echo
times τi resulting from k-mode contributions is an interesting
though at the present stage theoretical problem that we leave
for future investigations.

V. SUMMARY AND EXPERIMENTAL REALIZATION

In summary, the proposed echo spectroscopy provides a
highly resolved probe into the interference processes fun-
damental to quantum localization. Such type of diagnostics
is essential in situations where it is difficult to separate
coherent from classical backscattering [30,31], or to distin-
guish between strong Anderson localization and classical
potential trapping. Unlike indiscriminate dephasing, echo
spectroscopy permits us distinguish whether or not certain
coherent processes rely on antiunitary symmetries such as
time-reversal invariance. While the detection of echoes be-
comes increasingly demanding with the number of diffusive
modes involved, measuring the peak heights and widths of the
discussed lowest order signals would quantitatively determine
the phase-space volume available to fundamental coherent
scattering processes.

For a concrete realization, we suggest using the “disorder
quench” protocol with ultracold gases [24]. In this variant, a
Bose-Einstein condensate is released from a trap and let to
evolve in a far-detuned optical speckle field for some time,
after which real-space [7] or momentum [24] distributions are
measured. The advantage of this setup is that it (i) allows us
to prepare well-defined initial wave packets with small spread
around finite p and (ii) that the atoms are suspended against
gravity by a magnetic field gradient which can be changed
below the ms time scale of τ to impart the dephasing kicks.
A concrete realization, therefore, seems immediately possible
within at least one existing setup. And indeed, at the single-
pulse level, first experimental results are already available [32].
The observation of quantum interference processes higher than
first order within echo spectroscopy may be experimentally
challenging but is arguably realistic using similar setups,
possibly constrained to lower-dimensional geometries where
return probabilities are enhanced and echo amplitudes thus

larger. It is straightforward to push the theoretical analysis
to n-pulse trains and for n > 2, processes relying on con-
volutions of diffuson and Cooperon modes begin to appear.
We are not aware of experiments systematically probing
the onset of Anderson localization beyond single-Cooperon
backscattering. The detection of higher mode echoes would,
therefore, provide a highly nontrivial test of the validity
of our conceptual understanding of Anderson localization.
Experimental resolvability being the key limiting factor, it
seems reasonable to stay at the n = 2 level for the moment.

Another interesting avenue would be the “in silico” echo
spectroscopy of many-body localization processes [33–35]. At
this point, even very basic aspects of the phenomenon—such
as the effective dimensionality of the underlying stochastic
dynamics, the principal applicability of diffusion mode ap-
proaches in Fock space, etc.—are not very well understood,
and the detection of echoes in response to external pulses might
provide valuable insights.
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APPENDIX A: COHERENT FORWARD
SCATTERING ECHO

In a perturbative mode expansion the leading contribution
to the forward scattering peak in the momentum correlation
function results from the two-mode contributions Eq. (36).

Without dephasing, diffuson and Cooperon are equal,
	C/D(q,t+,t−,T ) = e−Dq2T/�

2
θ (T ), and the forward scatter-

ing peak is readily found upon Gaussian integration over the
intermediate momenta q′ in (37) and (38),

δX2(t,q) = 4X0π
d/2

πν�(Dt)d/2

∫ t

0
dt ′e− Dt ′

�2 (1−t ′/t)q2

. (A1)

In the forward direction q = 0, this yields

δX2(t) = 4πd/2X0t

πν�(Dt)d/2
∼ t (2−d)/2, (A2)

which in the d = 2 weak localization regime is a constant
contribution of order 1/kl [16]. With a single pulse, the two-
mode terms provide a smooth background without particular
structure in time or momentum. We therefore turn directly to
the effect of two dephasing pulses, applied at times t = t1 and
t = t2 > 2t1, which select the resonant signal characteristic of
the two-mode contributions.

1. Two-mode diffuson D2

First we study the two-mode diffuson δXD2(t), Eq. (37).
Inserting the general solution (B15) and integrating over q′
yields

δXD2(t,q) = 2πd/2X0

πν�(Dt)d/2

∫ t

0
dt ′ e−φD2(t ′,t,q), (A3)
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with the contrast penalty

φD2(t ′,t,q) = D

�2

[
t ′

(
1 − t ′

t

)
q2 + 2

{(
1 − t ′

t

)
χ1(t,t ′,t ′) − t ′

t
χ1(t − t ′,t,t − t ′)

}
q · �p

+
{
χ2(t − t ′,t,t − t ′) + χ2(t,t ′,t ′) − 1

t
[χ1(t − t ′,t,t − t ′) + χ1(t,t ′,t ′)]2

}
�p2

]
. (A4)

The echo signal properly speaking stems from the temporal configuration shown in the left panel of Fig. 3, where each diffuson
mode contains exactly one pulse, and which is selected by choosing in (A3) the integration limits

max(t1,t − t2) < t ′ < min(t2,t − t1). (A5)

Then, the pulse functions become (see Appendix B 1 for details)

χ1(t − t ′,t,t − t ′) = t1 − t2 + t ′, (A6)

χ1(t,t ′,t ′) = t2 − t1 + t ′ − t, (A7)

as well as χ2(t − t ′,t,t − t ′) = |χ1(t − t ′,t,t − t ′)| and χ2(t,t ′,t ′) = |χ1(t,t ′,t ′)|. Exactly in the forward direction q = 0, Eq. (A4)
reduces to

φD2(t ′,t,0) = {χ2(t − t ′,t,t − t ′) + χ2(t,t ′,t ′)}/τe, (A8)

where we have also dropped the last term inside the parentheses in the second line of (A4) multiplying �p2, which is small for
τe = �

2/(D�p2) 	 t .
As a function of t around τ3 = 2(t2 − t1), the signal then is very well approximated by

δXD2(t,0) = 2πd/2X0

πν�(Dt)d/2
(τe + |t − τ3|) e−|t−τ3|/τe . (A9)

This echo signal is exponentially suppressed outside the echo time τ3 = 2(t2 − t1), showing a quadratic departure for |t − τ3| 	 τe.
At the echo time t = τ3, the signal remains smaller by a factor τe/t 	 1 compared to the nondephased signal (A2). This factor
results from phase space reduction: without a field pulse the two diffusons can connect at any time 0 < t ′ < t , while in presence
of the two pulses the time t ′ is effectively restricted to an interval of size τe around t ′ = 2t1.

Figure 6 shows the D2 contrast after two pulses at t1 = 10τe and t2 = 40τ2 with its echo at τ3 = 60τe, relative to the
nonpulsed diffuson signal, i.e., half of (A2). Actually, the echo contrast (A9) appears on top of a smooth background, created
by a combination of a double-pulsed diffuson with a nonpulsed diffuson. These contributions stem from the t ′ integration
outside the interval (A5) and result in a flat background of the same order as the echo itself. The black line shows the result
of the full integration (A3), whereas the dashed red line shows the analytical approximation (A9) plus the background of
unity.

2. Two-mode Cooperon C2

Next we turn to the two-mode Cooperon δXC2(t), Eq. (38). Using the general Cooperon solution (B21) and integrating over
q′ yields

δXC2(t,q) = 2πd/2X0

πν�(Dt)d/2

∫ t

0
dt ′ e−φC2(t ′,t,q), (A10)

where the contrast penalty now reads

φC2(t ′,t,q) = D

�2

[
t ′

(
1 − t ′

t

)
q2 + 2

{(
1 − t ′

t

)
χ̄1(t ′,0,t ′) − t ′

t
χ̄1(t,t ′,t − t ′)

}
q · �p

+
{
χ̄2(t ′,0,t ′) + χ̄2(t,t ′,t − t ′) − 1

t
[χ̄1(t ′,0,t ′) + χ̄1(t,t ′,t − t ′)]2

}
�p2

]
. (A11)

The principal echo signal stems from the upper configuration in
the right panel of Fig. 3, where each Cooperon mode contains
exactly one pulse and which is selected by choosing in (A10)
the integration limits

t1 < t ′ < t2. (A12)

Then, the pulse functions (B22) and (B23) become

χ̄1(t ′,0,t ′) = 2t1 − t ′, (A13)

χ̄1(t,t ′,t − t ′) = 2t2 − t − t ′, (A14)
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FIG. 6. (Color online) Two-mode diffuson signal δXD2(t,0) in
the forward direction relative to the nonpulsed contribution, i.e., half
of (A2), as a function of t/τe, after two dephasing pulses at t1 = 10τe

and t2 = 40τe. The black line shows the result of (A3), a pronounced
echo around τ3 = 60τe. The red dashed curve shows the analytical
approximation, Eq. (A9), above the background.

as well as χ̄2(t ′,0,t ′) = |χ̄1(t ′,0,t ′)| and χ̄2(t,t ′,t − t ′) =
|χ̄1(t,t ′,t − t ′)|.

Exactly in the forward direction q = 0, Eq. (A11) reduces
to

φC2(t ′,t,0) = {χ̄2(t ′,0,t ′) + χ̄2(t,t ′,t − t ′)}/τe, (A15)

where we have also dropped the last term inside the parentheses
multiplying �p2, which is small for τe = �

2/(D�p2) 	 t . As
a function of t around τ3 = 2(t2 − t1), the C2 echo signal is
then identical to the D2 signal, Eq. (A9).

This configuration is, however, not the only possible
situation where an echo can arise. Another possibility is shown
in the bottom part of the right panel in Fig. 3. This produces
an echo at finite momentum q = −�p shifted slightly from
the exact forward direction. The reason is that each Cooperon
is peaked at backscattering relative to its incident and final
momenta. But when the dephasing pulse hits the first Cooperon
near the end, this produces an enhancement at intermediate
momentum k + k′′ = �p (this is already seen in Fig. 5 from
the displaced C1 peak just after the first kick). The second
Cooperon is hit by the pulse in the center and thus produces the
usual backscattering enhancement at k′ + k′′ = 0. Altogether
we expect a peak at k′ = k − �p or indeed q = −�p. Its
height is slightly smaller than the principal peak. To a very
good approximation, the temporal peak profile is given by

δXC2(t, − �p) = 2πd/2X0τe

πν�(Dt)d/2
h

(
t − τ4

τe

)
(A16)

with h(s) = 2
3 [2e−|s| − e−2|s|]. We remark that no such con-

figuration is possible for the D2 topology because there the
loops are traversed in opposite order, and consequently it is
impossible for the pulses to hit only one diffuson mode, but
not the other.

Summarizing the double-mode momentum-space discus-
sion, Fig. 7 shows the combined signal, Eq. (36), normalized
with respect to the unperturbed signal (A2).

FIG. 7. (Color online) Two-mode echo contrast, Eq. (36), relative
to the nonpulsed signal (A2) as function of q ‖ �p and t (in units
of �p and τe) after two dephasing pulses at t1 = 10τe and t2 = 40τe.
The principal echo of processes D2 and C2a appears in the exact
forward direction at time τ3 = 2(t2 − t1), whereas the side echo C2b,
Eq. (A16), appears shifted by �p and at later time τ4 = 2t2 − t1.

APPENDIX B: DIFFUSION MODES WITH DEPHASING

In this Appendix, we solve the generalized diffusion
equations (4) for the quantum diffusion modes in the presence
of an external scalar dephasing field (5).

1. Diffuson

We start out with the diffuson, for which it is convenient
to use central and relative times, t = (t+ + t−)/2, t ′ = t − T ,
and η = t+ − t−, such that

t± = t ± η/2, t± − T = t ′ ± η/2. (B1)

In these variables, the differential equation for the diffuson
	D(r,r′,t+,t−,T ) = D

η

tt ′(r,r
′) takes the form[

∂t − D∂2
r − iφ

η
−(r,t)

]
D

η

tt ′(r,r
′) = δ(t − t ′)δ(r − r′). (B2)

From here on we use the short notation

F
η
−(t) = F

(
t + η

2

)
− F

(
t − η

2

)
(B3)

for arbitrary functions F (t). For the classical diffuson one
has η = 0 and thus the dephasing potential φ0

− = 0 disappears
from the problem, as it should. In the generalized diffuson,
however, particle and hole visit the same position time-shifted
by η, and dephasing occurs.

Equation (B2) is equivalent to the imaginary-time
Schrödinger equation for a particle of mass m = 1/2D in a
scalar potential iφ

η
−(r,t). Its solution can be written as the path

integral [21,22]

D
η

tt ′(r,r
′) =

∫ r(t)=r

r(t ′)=r′
D[r(s)]

×exp

(
−

∫ t

t ′
ds

{
ṙ2(s)

4D
+ iφ

η
−(r(s),s)

})
. (B4)

We are interested in a potential that describes momentum kicks
via a homogeneous force applied at well-defined instances
t1,t2, . . . ,tN in time, �φ(r,t) = −r · �pf (t), where �p is the
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momentum transferred by a single pulses, and f (t) is a sum
of functions peaked at the kick times ti . We assume that the
individual pulses are short compared to their separation, such
that f (t) is zero outside the vicinities Ii of the ti and normalized
to

∫
Ii

dtf (t) = 1. Aside from this constraint, the following
solution holds for arbitrary pulse shapes.

To calculate the path integral we decompose the path r(s)
connecting r′ to r in the time T = t − t ′ into a straight,
ballistic trajectory plus fluctuations, r(s) = r(s) + r̃(s). The
ballistic path for t ′ � s � t is r(s) = r′ + s−t ′

T
�r, where

�r = r − r′ and the closed loops from r̃(t ′) = 0 to r̃(t) = 0
can be written as the Fourier series r̃(s) = 1√

T

∑
n�=0 rne

−iωns

with ωn = 2πn/T . Inserting into (B4), one notices that the
two contributions decouple,

D
η

tt ′(r,r
′) = D

η

tt ′(r,r
′)D̃η

tt ′ . (B5)

Only the ballistic contribution depends on the positions,

D
η

tt ′ (r,r
′) = exp

(
− �r2

4DT
+ i

�p
�

·
∫ t

t ′
ds r(s)f η

−(s)

)
, (B6)

where the s-independent components of r(s) are weighted by
the number

χ
η

0 (t ′,t) =
∫ t

t ′
dsf

η
−(s). (B7)

This is essentially the difference in the number of kicks
experienced by particle and hole during their evolution over the
interval [t ′ ± η

2 ,t ± η

2 ], respectively. For the classical diffuson
with η = 0, these numbers are of course equal, and thus
χ0

0 (t ′,t) = 0. A priori, this need not be the case in the general
setting. If, then, particle and hole do not experience the same
number of kicks, this will result in uncompensated phases at all
times. Therefore, we will consider in the following only those
cases where particle and hole experience the same number of
kicks (but possibly at different times), and correspondingly
make use of χ

η

0 (t ′,t) = 0.
As a consequence, Eq. (B6) depends only on the position

difference,

D
η

tt ′(�r) = exp

(
− �r2

4DT
+ i

χ
η

1 (t ′,t)
T �

�p · �r
)

, (B8)

where the function

χ
η

1 (t ′,t) =
∫ t

t ′
ds s f

η
−(s) (B9)

essentially evaluates the differences in particle and hole kick
times. Fourier transformation in �r then results in

D
η

tt ′ (q) = N−1 exp

(
− D

T �2

[
T q − χ

η

1 (t ′,t)�p
]2

)
, (B10)

with normalization N = (4πDT )−d/2.
Concerning the fluctuations, Gaussian integration over the

rn contributes the position-independent but time-dependent
contrast factor

D̃
η

tt ′ = N exp

[
−D�p2

�2

(
χ

η

2 (t ′,t) − χ
η

1 (t ′,t)2

T

)]
, (B11)

where χ
η

1 (t ′,t) of (B9) appears squared, and

χ
η

2 (t ′,t) = −1

2

∫ t

t ′
ds1

∫ t

t ′
ds2 |s1 − s2|f η

−(s1)f η
−(s2). (B12)

When deriving the above expressions we have used that
Gaussian integration over the rn contributes the position-
independent but time-dependent contrast factor

D̃
η

tt ′ = N exp

⎡
⎣−D�p2

T �2

∑
n�=0

Fη
n (t ′,t)Fη

−n(t ′,t)
ω2

n

⎤
⎦ , (B13)

where we introduced the pulse-difference Fourier transform
Fη

n (t ′,t) = ∫ t

t ′ ds e−iωnsf
η
−(s). The sum over frequencies in

(B13) is readily performed using that∑
n�=0

eiωn�s

ω2
n

= T 2

12
− T |�s|

2
+ �s2

2
, (B14)

with �s = s1 − s2, and upon employing χ
η

0 (t ′,t) = 0 [see
discussion below Eq. (B7)] one arrives at the stated result.

Summarizing we find the general diffuson

	D(q,t+,t−,T ) = e
− D

�2 [T q2−2χ1(t+,t−,T )q·�p+χ2(t+,t−,T )�p2]
,

(B15)

where we returned to the time variables t±,T introduced in the
main text, and defined

χ1(t+,t−,T )

=
∫ 0

−T

ds s[f (s + t+) − f (s + t−)]

=
∫

ds f (s)[(s − t+)χ+
T (s) − (s − t−)χ−

T (s)], (B16)

with χ±
T (s) := χ[−T ,0](s − t±) the characteristic function of

the time interval [−T ,0], evaluated for the particle at s − t+
and the hole at s − t−. Similarly,

χ2(t+,t−,T ) = −1

2

∫
ds1

∫
ds2f (s1)f (s2)[|s1 − s2|

× {χ+
T (s1)χ+

T (s2) + χ−
T (s1)χ−

T (s2)}
− 2|s1 − t+ − s2 + t−|χ+

T (s1)χ−
T (s2)]. (B17)

Specialized to δ pulses t1 and t2 the above expressions turn
into Eqs. (A6) and following used in Sec. A 1.

2. Cooperon

Turning to the Cooperon, it is again convenient to use
central and relative times, t = (t+ + t−)/2 and η = t+ − t−,
as well as η − η′ = �η = 2T , such that

t± = t ± η/2, t± ∓ T = t ± η′/2. (B18)

In these variables, the Cooperon differential equation for
	C(r,r′,t+,t−,T ) = Ct

ηη′ (r,r′) takes the form(
∂η − D

2
∂2

r − i

2
φ

η
−(r,t)

)
Ct

ηη′ (r,r′) = δ(η − η′)δ(r − r′),

(B19)

where φ
η
−(t) = φ(t + η

2 ) − φ(t − η

2 ) as before. For the single-
mode Cooperon, equality of starting and end times imposes
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η′ = −η. In difference to the diffuson case, the dephasing
potential stays in the problem, and we now have to solve the
equation of motion in η at fixed t . This is achieved with the
path integral [21,22]

Ct
ηη′ (r,r′) =

∫ r(η)=r

r(η′)=r′
D[r(u)]

× exp

(
−

∫ η

η′
du

{
ṙ2(u)

2D
+ i

2
φu

−(r(u),t)

})
.

(B20)

Following then the same steps as before for the diffuson one
arrives at the dephased general Cooperon (expressed in time
variables t±,T used in the main text)

	C(q,t+,t−,T ) = e
− D

�2 [T q2−2χ̄1(t+,t−,T )q·�p+χ̄2(t+,t−,T )�p2]
,

(B21)

where

χ̄1(t+,t−,T )

=
∫

du f (u)[(u− t+)χ̄+
T (u) + (u− t−)χ̄−

T (u)], (B22)

with χ̄±
T (u) := χ[−T ,0]( ± (u − t±)) the characteristic function

of the time interval [−T ,0], evaluated for the particle at u − t+
and the hole at t− − u. Similarly,

χ̄2(t+,t−,T ) = −1

2

∫
du1

∫
du2f (u1)f (u2)[|u1 − u2|

× {χ̄+
T (u1)χ̄+

T (u2) + χ̄−
T (u1)χ̄−

T (u2)}
− 2|u1 + u2 − t+ − t−|χ̄+

T (u1)χ̄−
T (u2)].

(B23)

The single-mode Cooperon evaluated at t+ = t = T and
t− = 0 then reads

	C(q,t) = e
− D

�2 [tq2−2χ̄1(t)q·�p+χ̄2(t)�p2]
, (B24)

where the auxiliary functions in the exponential are

χ̄1(t) =
∫ t

0
du(2u − t)f (u), (B25)

χ̄2(t) =
∫ t

0
du

∫ t

0
dvf (u)f (v)(|u+ v − t | − |u− v|). (B26)

For a single δ pulse f (t) = δ(t − t1), these functions become
χ̄1(t) = (2t1 − t)θ (t − t1) and χ̄2(t) = |2t1 − t |θ (t − t1) as
used in Sec. III. From the general expressions (B25) and (B26)
we further find the features also discussed there; i.e., for a
pulse of finite resolution in time but still symmetric around
t1,

∫
dt t f (t) = 〈t〉f = t1 defines the dephasing pulse center,

and thus χ̄1(2t1) = 0 by construction. At this instant, the entire
contrast penalty vanishes, since χ̄2(t) vanishes by symmetry
as well, implying a perfect revival. Only for an asymmetric
pulse the contrast penalty will generically remain finite, since
then χ̄2(t) is not required to vanish exactly at 2t1, and the echo
will appear with reduced contrast. Finally, for a sequence of
two δ-kicks

χ̄1(t) = 2(t1 + t2 − t), (B27)

χ̄2(t) = |2t1 − t | + |2t2 − t | + 2|t1 + t2 − t | − 2|t2 − t1|,
(B28)

which results in a C1 echo at time τ2 = t1 + t2.
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