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We study an accumulation mode Si=SiGe double quantum dot (DQD) containing a single electron that is
dipole coupled to microwave photons in a superconducting cavity. Measurements of the cavity trans-
mission reveal dispersive features due to the DQD valley states in Si. The occupation of the valley states can
be increased by raising the temperature or applying a finite source-drain bias across the DQD, resulting in
an increased signal. Using the cavity input-output theory and a four-level model of the DQD, it is possible
to efficiently extract valley splittings and the inter- and intravalley tunnel couplings.
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Spin states of electrons in gate-defined semiconductor
quantum dots (QDs) are among the leading qubit candi-
dates in efforts to build a solid state quantum processor [1].
Since spin qubits are often indirectly manipulated through
electrical means to achieve fast control [2,3], a precise
knowledge of the other quantum degrees of freedom (d.o.f.)
governingQD electrons is of critical importance for improv-
ing the quantum gate fidelities. In III–V semiconductors
such as GaAs, these relevant quantum d.o.f. include charge
and orbital states, which are reproducibly defined by QD
lithographic dimensions and may be spectroscopically
probed through a variety of techniques, such as photon-
assisted tunneling and pulsed-gate spectroscopy [4,5].
In silicon, which supports long spin lifetimes and is

therefore highly suited for spin qubit implementations
[6–8], electrons possess an additional quantum d.o.f. The
conduction band of bulk Si has six degenerate minima
(termed valleys) [9]. In Si=SiGe heterostructures, the four
in-plane valleys are raised in energy compared to the two
out-of-plane valleys through the strain in the Si quantum
well [10,11]. The relatively small energy splitting between
the two low-lying valley states has been observed to
contribute to spin relaxation [12,13] but may potentially
also be harnessed to make charge-noise-insensitive qubits
[14]. This valley splitting has been found to vary substan-
tially within the range of 35–270 μeV in Si=SiGe QD
devices [15,16], posing an urgent challenge to the repro-
ducibility and scalability of spin qubits based on Si=SiGe
heterostructures. A first step toward controlling valley
splitting is the development of an experimental method
to accurately and efficiently determine its value.
In this Letter, we demonstrate cavity-based spectroscopy

of valley states in Si=SiGe double quantum dots (DQDs)
using a hybrid circuit quantum electrodynamics (cQED)
device architecture [17,18]. Charge transitions involving
excited valley states generate observable “fingerprints” in
the stability diagram of a cavity-coupled Si=SiGe DQD, as
predicted by a recent theory [19]. The occupation of the

valley states can be increased by raising the device temper-
ature or by applying a finite source-drain bias VSD across
the DQD. Such a cavity-based valley detection scheme is
highly efficient, since it eliminates the need for a magnetic
field. Our approach yields information on the valley
splitting and intra- and intervalley tunnel couplings and
is therefore an attractive alternative to conventional mag-
netospectroscopy and photon-assisted tunneling [19,20].
The hybrid Si=SiGe cQED device is shown in Fig. 1(a).

The cavity is a half-wavelength (λ=2) Nb transmission
line resonator with a center frequency fc ¼ 7.796 GHz,
loaded quality factor Qc ¼ 2480, and photon loss rate
κ=2π ¼ 3.1 MHz. A DQD is defined in a Si quantum well
near a voltage antinode of the cavity [Fig. 1(c)]. Three
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FIG. 1. (a) Optical image of the device. (b) Schematic repre-
sentation of the experiment and the DQD energy levels. EL and
ER denote the valley splittings in the left and right dots,
respectively, and ϵ is the interdot level detuning. (c) Tilted angle
false-colored scanning electron microscope image of the DQD
[red outline in (a)]. (d) DQD charge stability diagram acquired by
measuring the cavity transmission amplitudeA=A0 as a function of
the plunger gate voltages VLP and VRP, with fixed interdot barrier
gate voltage VMB ¼ 150 mV.
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overlapping layers of Al gates are patterned on top of an
undoped Si=SiGe heterostructure to achieve tight electronic
confinement (see Ref. [17] for device details). The Si=SiGe
heterostructure consists of a 4-nm-thick Si cap, a 50-nm-
thick Si0.7Ge0.3 spacer layer, an 8-nm-thick Si quantum
well, and a 225-nm-thick Si0.7Ge0.3 layer grown on top of a
Si1−xGex relaxed buffer substrate.
Figure 1(b) shows a schematic representation of the

equilibrium configuration of the DQD energy levels. In
contrast with previous III/V semiconductor DQD-cQED
devices, where two charge states interact with the cavity
photons, a total of four charge states are involved in the
charge-cavity interaction in this work due to the presence of
valley states in Si [21,22]. Electric dipole coupling between
DQD electrons and cavity photons is maximized by
connecting the gate labeled RP in Fig. 1(c) to the cavity
center pin [17,21].
Readout of the DQD charge states is performed in a

dilution refrigerator (with base lattice temperature
T lat ¼ 10 mK) by driving the cavity with a coherent micro-
wave tone at frequency f ¼ fc and power Pin ≈ −128 dBm
(the average intracavity photon number nc ≈ 1). A small
probe power is chosen so as to not perturb the DQD energy
levels from thermal equilibrium. The cavity output field is
amplified and demodulated to yield the normalized trans-
mission amplitudeA=A0 and phaseΔϕ response [17,22,23].
Figure 1(d) shows A=A0 as a function of plunger gate
voltagesVLP andVRP, revealing a few-electron DQD charge
stability diagram [17,21]. Charge stability islands are
labeled with ðNL;NRÞ, with NL and NR being the total
number of electrons in the left dot and the right dot,
respectively.
We now focus on the ð1; 0Þ ↔ ð0; 1Þ interdot charge

transition. Figure 2(a) shows A=A0 as a function of VLP and
VRP, with VMB ¼ 323 mV. A clear reduction in A=A0, to a
minimum value of ∼0.8 (green arrows), is seen along the
interdot charge transition where ϵ ¼ 0. Parallel to this
central minimum, two additional minima in A=A0 are also
visible (red and blue arrows). The observed cavity response
is strikingly different from previously reported devices,
where A=A0 exhibited either a single minimum at ϵ ¼ 0 for
2tc=h > fc or two minima with similar depths at values of ϵ
where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2þ4t2c

p
=h¼fcwhen 2tc=h < fc [18,21,22,26,27].

Here tc is the interdot tunnel coupling. These additional
features suggest the presence of higher-lying avoided cross-
ings in the DQD energy level diagram that lead to a nonzero
electric susceptibility at finite values of ϵ.
A qualitative understanding of the data can be obtained

considering the full DQD energy diagram shown in Fig. 2(b)
[19]. Here the DQD is modeled as a four-level system
consisting of the left dot ground state jLi ¼ jð1; 0Þi, left dot
excited state jL0i ¼ jð10; 0Þi, right dot ground state
jRi ¼ jð0; 1Þi, and right dot excited state jR0i ¼ jð0; 10Þi.
For large detuning jϵj > 100 μeV, valley states within the
same dot are separated by the respective valley splitting, EL

and ER. For small detuning jϵj < 100 μeV, the four states
are hybridized by the intravalley tunnel coupling t (t is
equivalent to the interdot tunnel coupling tc in single-valley
systems, such as InAs) and the intervalley tunnel coupling t0,
giving rise to a total of four avoided crossings [19]. The
strong minimum in A=A0 at ϵ ¼ 0 is predominantly due to
the avoided crossing involving the DQD ground states jLi
and jRi (green arrows), similar to previous work
[17,18,21,22,26,27]. The two minima in A=A0 at ϵ ≠ 0
are due to the avoided crossings involving states jLi—jR0i
(red arrows) and jL0i—jRi (blue arrows), located at
ϵ ≈�50 μeV. The lower visibility of these two minima
arises from the smaller thermal population of the excited
states. The jL0i—jR0i avoided crossing is expected to have
no appreciable contribution to the cavity response due to the
negligible population of the two highest-lying states.
Moreover, for EL ≈ ER, the jL0i—jR0i avoided crossing
occurs near ϵ ¼ 0, and its response would be masked by the
jLi—jRi avoided crossing. The temperature dependence of
A=A0 will be examined in more detail in Fig. 3.
A more quantitative data set is obtained by measuring

A=A0 as a function of ϵ for several values of VMB, which
primarily tunes t and t0 [Fig. 2(c)].WithVMB ¼ 327 mV, the
“side minima” have depths comparable to the central
minimum at ϵ ¼ 0. When VMB is lowered to 323 mV, the
central minimum becomes deeper, whereas the side minima
remain relatively unchanged. As VMB is further lowered to
318mV, the central minimum is split into twominima due to
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FIG. 2. (a) Cavity transmission amplitude A=A0 plotted as a
function of VLP and VRP near the ð1; 0Þ ↔ ð0; 1Þ interdot charge
transition with T lat ¼ 10 mK. The black arrow denotes the
detuning parameter ϵ. (b) DQD energy level diagram with
EL ¼ ER ¼ 51 μeV, t ¼ 20.9 μeV, and t0 ¼ 15.0 μeV. The gray
dashed lines show the uncoupled energy levels (t ¼ t0 ¼ 0).
(c) A=A0 measured as a function of ϵ for three values of VMB and
fits to the theory (black lines).

PRL 119, 176803 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

27 OCTOBER 2017

176803-2



the fact that the jLi—jRi transition frequency is now equal
to fc at both ϵ¼7μeV and ϵ¼−7μeV [18,21,22,27].
The theory developed in Ref. [19] is used to analyze

these data. Starting from the four-level system shown in
Fig. 2(b), the electric susceptibility χ is calculated as a
function of ϵ and used to predict the cavity response A=A0

with the cavity input-output theory [22]. We simultane-
ously fit the three data sets shown in Fig. 2(c) to the theory,
assuming that changes in VMB modify t and t0 but leave EL
and ER unchanged [19]. The fits to the data are plotted as
black lines in Fig. 2(c) and are in excellent agreement
with the experimental data with best fit valley splittings
EL ¼ ER ¼ 51� 3 μeV, similar to values found in pre-
vious devices [16]. The uncertainties for the valley split-
tings, estimated based on the linewidths of the side minima,
are significantly smaller than those found through magneto-
spectroscopy, which are typically on the order of 10 μeV
[15,16]. The equal valley splitting of the DQD is inten-
tionally achieved through device tuning, and data showing
EL ≠ ER are included in the Supplemental Material [23].
Best fit values of t and t0 are listed in Fig. 2(c), which both
decrease at lower VMB and show an approximately constant
ratio of t=t0 ¼ 1.4 [19]. Other inputs to the theory are the
charge-cavity coupling rate g0=2π ¼ 19 MHz, total charge
decoherence rate γ=2π ¼ 30 MHz, and electron temper-
ature Te ¼ 135 mK (at the cryostat base temperature
T lat ¼ 10 mK). Low-frequency charge noise is accounted
for in the model by smoothing A=A0 using a Gaussian with
standard deviation σϵ ¼ 1.5 μeV [22]. Fits to the cavity
phase response (not shown) yield similar results. We also
note that the excited states observed here are unlikely to be
orbital excited states (orbital energies are around 3 meV in
these devices [16]) or spin states due to the single electron
occupancy of the DQD and zero external magnetic field.
Since only occupied electronic states will contribute

to the electric susceptibility χ, the visibility of the
valley-induced features is likely limited by the relatively
low electron temperature kBTe ≪ EL ≈ ER, where kB is

Boltzmann’s constant [19]. This visibility may therefore
be improved by raising the temperature of the DQD.
Figure 3(a) shows the DQD stability diagram taken at
T lat ¼ 250 mK. In comparison with Fig. 2(a), the side
minima (red and blue arrows) are notably more visible
relative to the central minimum. All three minima are also
broader. These observations are expected, since, by raising
the temperature, the thermal population of the DQD excited
states is increased and the ground state population is
decreased. This leads to a smaller χ for the jLi—jRi avoided
crossing but a larger χ for the jL0i—jRi and jLi—jR0i
avoided crossings [19,28]. As a result, the difference
between the depths of the side minima and the central
minimum in A=A0 is reduced. On the other hand, back-
ground charge noise is also expected to increase at higher
temperatures, leading to a broadening of the observed
features [29].
Close agreement between the theory and experiment is

demonstrated by the plots in Fig. 3(b), where we show
A=A0 as a function of ϵ for T lat ¼ 10, 250, and 400 mK.
The temperature dependence of the cavity response is
theoretically modeled by taking into account the Fermi-
Dirac distribution of the electrons in the leads and the
Bose-Einstein distribution of the phonon bath, which are
assumed to be in equilibrium with the base temperature of
the cryostat T lat, except for T lat ¼ 10 mK, where the best
fit is found with an electron temperature Te ¼ 135 mK.
The temperature-dependent charge noise used in the
model is σϵ ¼ 1.5 μeV for T lat ¼ 10 mK, σϵ ¼ 5 μeV
for T lat ¼ 250 mK, and σϵ ¼ 9 μeV for T lat ¼ 400 mK
[29]. The charge decoherence rate γ=2π has little impact on
the theoretical predictions in Fig. 3(b) and is fixed at
30 MHz. In comparison with the data at T lat ¼ 10 mK, we
conclude that raising the device temperature is an effective
method for improving the visibility of the side minima
associated with excited valley states.
To improve the visibility of the valley states without

increasing the temperature, we may repopulate the valley
states via a finite source-drain bias VSD. The lower inset in
Fig. 4(a) shows the current through the DQD, I, as a
function of VLP and VRP with VSD ¼ 0.3 mV. These data
exhibit characteristic finite bias triangles (FBTs), as
expected for charge transport in a DQD [30]. The main
panel in Fig. 4(a) shows A=A0 measured over the same
range of gate voltages, which varies appreciably along the
directions defined by the blue, green, and red arrows. In the
region between the FBTs, sequential single-electron trans-
port is forbidden due to Coulomb blockade. Here A=A0 as a
function of ϵ is little changed from the VSD ¼ 0 data [see
Fig. 2(a)]. Within each FBT, electronic transport leads to
nonequilibrium populations of the DQD electronic states,
and A=A0 is strongly altered [27]. To give a specific
example, we observe an enhancement of the absolute
visibility of the jL0i—jRi avoided crossing (blue arrow)
in the lower FBT [Fig. 4(a)].
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theory predictions. The data and fit for T lat ¼ 10 mK [Fig. 2(c)]
are reproduced here for a direct comparison.
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We can qualitatively understand the nonequilibrium
cavity response by considering the transport process within
the lower FBT. At ϵ ≈ −50 μeV [Fig. 4(b)], the relevant
states involved are labeled in the figure, with ðjL0i�jRiÞ=ffiffiffi
2

p
being hybridized valley-orbit states extended over the

two dots. The charge transport cycle starts with the j0; 0i
state, fromwhich an electron tunnels from the right reservoir
at a rate ΓR into one of the three states available in the right
dot. Relaxation processes within the DQD (black curly
arrows labeled with rate γ) lead to one of the three states
available in the left dot, from which the electron may tunnel
with a rate ΓL onto the left lead. This transport cycle results
in an increased population difference between the hybrid-
ized valley-orbit states compared to equilibrium and thus a
high visibility of the jL0i—jRi avoided crossing. In contrast,
at the opposite detuning [ϵ ≈ 50 μeV; see Fig. 4(c)],
an electron may relax into state jRi where it will remain
stuck. Consequently, the population difference between
the hybridized valley-orbit states ðjLi � jR0iÞ= ffiffiffi

2
p

is not
increased, and no enhancement in the visibility of the
jLi—jR0i avoided crossing is observed.
To quantitatively model the nonequilibrium cavity

response, we solve for the steady state occupation prob-
ability ρk of each DQD eigenstate jki (see Supplemental
Material for details [23]). Using a Lindblad master equation
approach [31], we derive a set of rate equations for
ρk: 0¼ _ρk ¼

P
j≠kðΓkjρj−ΓjkρkÞþ

P
j≠kðτkjρj− τjkρkÞ.

Here Γjk ¼
P

v¼�;l¼fL;RgΓlðjhjjcl;vjkij2 þ jhkjcl;vjjij2ÞnðlÞjk
denotes the transition rate from state k to state j due to an
electron tunneling on or off the DQD, with Γl being the
tunneling rate to lead l, cl;v the annihilation operator for

electrons in dot l and valley v, and the nðlÞjk factors account
for the finite temperature in the source-drain leads. The sumP

j≠kðτkjρj − τjkρkÞ describes decay processes between
states with the same total number of electrons, where
the decay rate τjk ∼ γ for states with one electron in the
DQD. The resulting values of ρk are then used to calculate
A=A0 via the cavity input-output theory [19].
The experimental data in Figs. 4(d) and 4(e) are fit to the

theory, yielding best fit tunneling rates ΓL ¼ 62 MHz,
ΓR ¼ 132 MHz, and γ ¼ 188 MHz. In the upper inset in
Fig. 4(a), we have calculated A=A0 over the same gate
voltage range as the data using these parameters and a
capacitance matrix-based model of the DQD [4,23]. The
discrepancy between the data and theory at ϵ ¼ −50 μeV
may be due to the simplicity of the theoretical model, which
takes the same decay rate γ for all transitions and assumes
energy-independent tunneling rates ΓL and ΓR. We also
note that two factors in the DQD tunneling rates facilitate
the improved visibility of the jL0i—jRi avoided crossing:
First, γ is comparable to ΓL and ΓR, ensuring the pop-
ulations of the jL0i and jRi states neither relax to thermal
equilibrium due to slow loading or unloading from the
leads nor become nearly equal due to fast loading or
unloading. Second, the loading rate ΓR is larger than ΓL
such that the DQD spends negligible time in the empty state
j0i, which has zero charge susceptibility. Finally, we note
that an enhancement in the absolute visibility of the
jLi—jR0i avoided crossing (red arrows) is seen in the
upper FBT with VSD ¼ −0.3 mV (see data in Ref. [23]).
In conclusion, we observe dispersive features in the

cavity response of a hybrid Si=SiGe DQD-cQED device
that arise from the valley d.o.f. in Si. The cavity response is
sensitive to the valley splitting in each dot, the inter- and
intravalley tunnel couplings, and the time-averaged occu-
pation of the levels [19]. The relative occupation of the
DQD energy levels can be driven out of equilibrium
by increasing the temperature or applying a source-
drain bias, thereby increasing the visibility of the valley
states. These measurements constitute an efficient method
for accurate spectroscopy of valley states in Si=SiGe
heterostructures and are applicable to other Si devices,
such as Si metal-oxide-semiconductor quantum dots. Rapid
and accurate measurements of the valley splitting may
accelerate progress toward understanding, and ultimately
controlling, valley splittings in these highly relevant quan-
tum devices.
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