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Mechanically induced spin resonance in a carbon nanotube
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The electron spin is a promising qubit candidate for quantum computation and quantum information. Here we
propose and analyze a mechanically induced single electron spin resonance, which amounts to a rotation of the
spin about the x axis in a suspended carbon nanotube. The effect is based on the coupling between the spin and the
mechanical degree of freedom due to the intrinsic curvature-induced spin-orbit coupling. A rotation about the z

axis is obtained by the off-resonant external electric driving field. Arbitrary-angle rotations of the single-electron
spin about any axis in the x-z plane can be obtained with a single operation by varying the frequency and the
strength of the external electric driving field. With multiple steps combining the rotations about the x and z axes,
arbitrary-angle rotations about arbitrary axes can be constructed, which implies that any single-qubit gate of
the electron-spin qubit can be performed. We simulate the system numerically by using a master equation with
realistic parameters.
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I. INTRODUCTION

The characteristics of suspended carbon nanotubes
(CNTs)—low mass, high and widely tunable resonance fre-
quencies, and high quality factors [1–4]—make them very
promising for nanomechanical devices, e.g., as ultrasensitive
magnetometers, as well as mass and force detectors [5–8].
The strong coupling between single-electron tunneling and
the mechanical vibration of the suspended CNT [9–14] can be
used to probe the CNT’s vibration frequency [15,16], and the
average charge in the quantum dot (QD) on the CNT [17]. A
suspended CNT can be driven with radio frequency fields into
its nonlinear vibrational regime [2,18]. In a recent theory work
where the ground state and the first nonlinear vibration modes
of suspended CNTs are used as long-lived quantum bits, a
two-qubit entangling gate has been proposed by coupling the
qubits to an optical cavity [19].

QDs in CNTs with a semiconducting band gap have
attracted much attention because of the additional valley
degree of freedom, among other reasons [20–22]. The spin-
orbit interaction was initially expected to be weak in CNTs, but
the curvature-induced spin-orbit coupling was later recognized
to be significant [23–28] and to lead to a lifting of the
four-fold spin and valley degeneracy, which was observed
in experiment [29,30]. Nevertheless, due to the low nuclear
spin density in the carbon-based host material, electron spins
in CNT QDs can be viewed as prospective quantum bits.
The spin relaxation in CNT QDs is caused by the spin-orbit
coupling and has been investigated in a number of studies
[31–33]. Recently, a spin-orbit coupling as large as 3 meV
has been measured in a CNT [34]. It was predicted that the
inherent spin-orbit coupling can induce a single spin-phonon
coupling in a suspended [35,36] CNT, which provides a
new way for realizing spin-based nanomechanical systems
[37–39]. The read-out of single-electron spins has been
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proposed by different methods such as making use of magnetic
resonance force microscopy [40,41], spin blockade [42], and
spin-phonon coupling [43]. In this paper, we propose a
mechanically driven arbitrary manipulation of the electron spin
based on this spin-phonon coupling.

In our proposed nanomechanical system, a suspended CNT
is doubly clamped [see Fig. 1(a)] [37]. Two electrodes at
both ends are used for forming a QD, i.e., trapping of a
single electron which can be spin polarized by an external
longitudinal magnetic field B‖ applied along the z axis of the
CNT. As we will show, any rotation of the spins about any axis
on the x-z plane on the Bloch sphere can be obtained with a
single-step operation by varying the strength and the frequency
of the external driving electric field. Mechanically induced
electron spin resonance (ESR) can be performed based on the
spin-phonon coupling in the suspended CNT [see Fig. 1(b)].
The rotation of the spin about the z axis on the Bloch sphere
can be implemented by the off-resonant ac electric driving
field. Any arbitrary-angle rotation about any arbitrary axis in
the whole Bloch sphere can be obtained by a multiple-step
operation combining ESR and the rotation of the single spin
about the z axis.

This paper is organized as follows: We first introduce the
quantum-mechanical system and give the basic Hamiltonian in
Sec. II. To explain the mechanism of the mechanically induced
ESR, we derive the effective Hamiltonian within a low-energy
subspace by using a Schrieffer–Wolff transformation and
obtain the respective time-evolution operator in Sec. III. In
Sec. IV, we numerically simulate the time evolutions at
different temperatures with realistic parameters. In Sec. V,
we analyze and discuss the physical mechanism responsible
for mechanical ESR. We conclude in Sec. VI by summarizing
the main results.

II. MODEL

To describe the mechanically induced ESR, we model the
spin of an electron located in the QD on the CNT, the relevant
mechanical resonator mode, as well as the coupling between
these two degrees of freedom. The total Hamiltonian is given
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FIG. 1. (Color online) (a) Proposed system for mechanical spin
manipulation. A single electron is trapped in a quantum dot (QD) in
a suspended carbon nanotube (CNT) of length L. A magnetic field
B‖ parallel to the z axis is applied. A gate voltage applied on the
back gate can adjust the resonance frequency ωp of the CNT. An
external antenna or the back gate can apply an external ac electric
driving field to the charged nanotube. Here we assume a CNT with
length L = 400 nm, resonance frequency ωp/(2π ) = 1.5 GHz, and
quality factor Q ≈ 95 000. (b) The Bloch sphere representing the
quantum state of the electron spin. The green line denotes electron
spin resonance (ESR) and the purple line shows a rotation about the
z axis. (c) Energy spectrum of the QD in the CNT as a function
of the parallel magnetic field B‖. The two degrees of freedom of
the valley (K , K ′) and single-electron spin (↑,↓) yield a four-fold
degeneracy, which is lifted by B‖. A pure spin qubit is found around
the magnetic field B∗ = �so/(gsμB ) = 1.7 T. Parameters used here
are �so = 170 μeV, �KK ′ = 12.5 μeV, μorb = 330 μeV [37].

by [37]

H = H0 + H1,

H0 = �ωq

2
σz + �ωpa†a,

H1 = 2�λ(a + a†) cos(ωt) + �g(a + a†)(σ+ + σ−),

(1)

where σz is the Pauli matrix describing the electron spin,
σ± = σx ± iσy are the spin raising and the lowering operators,
and a (a†) is the phonon annihilation (creation) operator. We
assume � = 1 for simplicity in the following. We define the
two states of the qubit at the crossing point of the two spins in
the upper valley [see Fig. 1(c)] [33,36,37]. The frequency of the
spin splitting is defined as ωq = (B‖ − B∗)/(�μB), where B‖
is the applied magnetic parallel field and B∗ = �so/(gsμB),
where gs is the electron spin g factor and �so is spin-orbit
coupling strength.

A gate voltage applied to the back gate can adjust the
resonance frequency of the CNT [2]. By the capacitive
coupling, an antenna or the back gate can apply an external
ac electric field to drive the charged nanotube [1,10]. For
simplicity, we assume that only a single polarization of
the vibration of the CNT can be excited by the ac driving

field and the phonon mode has a frequency ωp. The first
term in H1 is the driving term caused by the external ac
electrical field with a frequency ω and a strength λ. The
second term g(a + a†)(σ+ + σ−) describes the spin-phonon
coupling which originates from the inherent curvature-induced
spin-orbit coupling [37]. The spin-phonon coupling strength
is proportional to the spin-orbit coupling, g ∝ �sol0, where
l0 is the zero-point motion amplitude of the phonon mode.
We find a value of the coupling strength g/(2π ) = 0.56 MHz
with realistic parameters �so = 370 μeV, l0 = 2.5 pm, and
L = 400 nm [37].

A high Q factor and simultaneously a high resonance
frequency are desired for reaching the quantum limit of a
mechanical system [44,45]. A 800 nm long carbon nanotube
with the resonance frequency 350 MHz and high Q factor
Q ≈ 150 000 has been found experimentally [2,10]. Recently,
it was reported that a straight CNT with a length of 250 nm
and a quality factor Q = 1200 is used to realize an ultrahigh
4.2 GHz resonance frequency of the flexural fundamental
eigenmode [3]. We take the resonance frequency ωp/(2π ) as
1.5 GHz and the quality factor as Q ≈ 95 000 corresponding
to � = ωp/Q ≈ 105 s−1 in between these two cases.

To simulate the system in a realistic way, we use a master
equation in which the external phonon bath leading to the
damping of the phonon mode is taken into account,

ρ̇ = − i

�
[H,ρ] + (nB + 1)�

(
aρa† − 1

2
{a†a,ρ}

)

+ nB�

(
a†ρa − 1

2
{aa†,ρ}

)
, (2)

where nB = 1/(e�ωp/kBT − 1) is the Bose–Einstein occupation
factor of the phonon bath at temperature T . The second (third)
term in the master equation describes emission (absorption) of
a phonon into (from) the bath. Here, the spontaneous phonon
loss into the bath is described with the damping rate �. We
assume a negligible spontaneous qubit relaxation rate 1/T1 	
g due to the low densities of the other phonon modes in the
resonator near the qubit frequency [35,37,46].

III. ELECTRON SPIN RESONANCE

At low temperatures kBT 	 �ωp we can assume for
simplicity that there are only four relevant states |0↓〉, |0↑〉,
|1↓〉, and |1↑〉 in this system. Dividing the Hilbert space into
two subspaces with 0 and 1 phonons, we find that H0 is block
diagonal and H1 is block off diagonal on the space of these
four states:

H0 =
(

H
(0)
0 0

0 H
(1)
0

)
, H1 =

(
0 H

(01)
1

H
(10)
1 0

)
, (3)

where H
(i)
0 (i = 0,1) operate on the states with i phonons,

and H
(ij )
1 (i,j = 0,1, i �= j ) are the interaction terms between

states with i and j phonons. Their concrete forms are H
(0)
0 =

�ωq

2 σz, H
(1)
0 = �ωq

2 σz + �ωp, H
(01)
1 = 2�λ(a + a†) cos(ωt),

and H
(10)
1 = (H (01)

1 )†. To understand the time evolution of the
spin, it is useful to obtain the effective Hamiltonian of the
lowest-energy subspace which contains the states |0↓〉 and
|0↑〉. For this purpose, a Schrieffer–Wolff transformation can
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be applied and an effective total Hamiltonian which is block
diagonal is obtained. We assume that there is a large detuning
of the frequency � = ωp − ω � g,λ between the driving
field and the phonon mode, and also between the phonon
mode and the qubit mode, � � ωp − ωq � g,λ. Because the
external driving term 2�λ(a + a†) cos(ωt) in Eq. (1) is time
dependent, a time-dependent Schrieffer–Wolff transformation
is applied [47]. Assuming a unitary transformation U (t) is
a function of time and ψ is the original wave function,
the wave function is transformed as ψ̃ = Uψ . With the
Schrödinger equation i∂tψ = Hψ and i∂t ψ̃ = H̃ ψ̃ , one can
obtain the transformed Hamiltonian after the time-dependent
Schrieffer–Wolff transformation as

H̃ = UHU † − iU (∂tU
†). (4)

Writing U (t) = eS(t), where S(t) = −S(t)† ∝ O(H1), we ob-
tain

H̃ = eS(t)He−S(t) + ieS(t)∂te
−S(t). (5)

Expanding Eq. (5) in a Taylor series in S(t), one can gain the
following transformed Hamiltonian H̃ at second order:

H̃ = H0 + H1 + [S(t),H0] + iṠ(t)︸ ︷︷ ︸
O(H1)

+O
(
H 3

1

)
+ [S(t),H1] + 1

2 [S(t),[S(t),H0]] + 1
2 i[S(t),Ṡ(t)]︸ ︷︷ ︸

O(H 2
1 )

+O
(
H 3

1

)
. (6)

Due to the time dependence, we obtain one additional first-
order term iṠ(t) and one second-order term 1

2 i[S(t),Ṡ(t)].
To obtain a block-diagonal Hamiltonian, the first-order terms
O(H1) which are block off diagonal are eliminated by the
condition

H1 + [S(t),H0] + iṠ(t) = 0. (7)

From Eq. (7) we can obtain an expression for S(t) and the
effective Hamiltonian H̃ which only contains the zeroth-order
and the second-order terms in H1. Substituting Eq. (7) into
Eq. (8), we find a simple form of the effective Hamiltonian:

H̃ = H0 + 1
2 [S(t),H1]. (8)

We now solve Eq. (7), a first-order inhomogeneous differ-
ential equation for S(t). We obtain the simplest solution for
S(t) as

S(t) =
(

0 S1(t)

−S
†
1(t) 0

)
, (9)

where

S1(t) =
⎛
⎝ 2λ(iω sin(ωt)+ωp cos(ωt))

ω2−ω2
p

− g

ωp−ωq

− g

ωp+ωq

2λ(iω sin(ωt)+ωp cos(ωt))
ω2−ω2

p

⎞
⎠.

(10)

Substituting Eq. (9) into Eq. (8), we arrive at the total effective
Hamiltonian

H̃ =
(

H̃ (0) 0

0 H̃ (1)

)
, (11)

where H̃ (0) is the effective Hamiltonian in the lowest-energy
subspace whose phonon number is zero and H̃ (1) is the
effective Hamiltonian of the subspace with one phonon. The
exact form of the effective Hamiltonian in the lowest subspace
can be written as

H̃ (0) = H
(0)
0 + 1

2

(
S1(t)H (10)

1 + H
(01)
1 S

†
1(t)

)
= −2 cos(ωt)

λgωp

(
ω2 − 2ω2

p + ω2
q

)(
ω2 − ω2

p

)(
ω2

p − ω2
q

) σx

+ωq

(
1

2
− g2

ω2
p − ω2

q

)
σz, (12)

where a two-dimensional identity matrix acting on the spin is
omitted.

Now we consider the general system with n phonons.
Each two opposite spin states |n↓〉 and |n↑〉 with the same
number of phonons form a subspace. Under the same precon-
dition � � ωp − ωq � g,λ and by using the Schrieffer–Wolff
transformation on the whole space, we find the effective
Hamiltonian with n phonons:

H̃n = H̃n0 + H̃n1,

H̃n0 =
(

1

2
− g2(2n + 1)

ω2
p − ω2

q

)
ωqσz + ωpn, (13)

H̃n1 = −2λgωp cos(ωt)
(
ω2 − 2ω2

p + ω2
q

)(
ω2 − ω2

p

)(
ω2

p − ω2
q

) σx.

Here, the term including the identity matrix is eliminated
already because it just produces a global phase. The coefficient
of the σz term contains a contribution which depends on the
phonon number n which is negligible for small n at low
temperatures due to ωp − ωq � g.

We transform the effective Hamiltonian into the Dirac
picture with respect to H̃n0 in Eq. (13). Assuming λ 	 ωp and
ωp + ω � � and applying the rotating wave approximation,
the interaction part of the Hamiltonian becomes

H̃n = eiH̃n0H̃n1e
−iH̃n0 = −α(e2iβntσ+ + e−2iβntσ−), (14)

where

α = λgωp

(
ω2 − 2ω2

p + ω2
q

)(
ω2 − ω2

p

)(
ω2

p − ω2
q

) ,

βn = 1

2

(
ωq

(
1 − 2(2n + 1)g2

ω2
p − ω2

q

)
− ω

)
. (15)

We transform the total Hamiltonian into the Dirac picture with
respect to H̃ ′

n0 = ωpn + βnσz as

H̃ ′
n = H̃ ′

np + H̃ ′
nq, H̃ ′

np = ωpn, H̃ ′
nq = βnσz − ασx. (16)

Arbitrary rotations in the x-z plane can be generated by H̃ ′
nq .

The coefficients of σx and σz are adjustable by varying the
strength and the frequency of the driving. ESR can be started or
stopped by turning the driving field on or off. Arbitrary-angle
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rotations about arbitrary axes can be constructed by combining
these two rotations.

For a better understanding of approaching the arbitrary-
angle rotations, it is useful to derive the expression for the
time-evolution operator on the spins. We rewrite H̃ ′

nq = b · σ
in Eq. (16) with the vector b = (−α,0,βn)T . For e−i b·σ t =
cos(|b|t)1 − i sin(|b|t)(b̂ · σ ), the time-evolution operator is
given as

Rb(θ ) = e−iH̃ ′
nq t = e−i b·σ t

=
(

cos
(

θ
2

) − i
βn

�
sin

(
θ
2

)
i α

�
sin

(
θ
2

)
i α

�
sin

(
θ
2

)
cos

(
θ
2

) + i
βn

�
sin

(
θ
2

)
)

,

(17)

where � = (α2 + β2
n)1/2 and θ = 2�t . Rotations Rb(θ ) rotate

the spins about the vector b by the angle θ . First, arbitrary-angle
rotations of single spins about arbitrary axes in the x-z
plane, such as the rotations relating to X, Z, phase, and
Hadamard gates, can be obtained by a single operation as
R = eiγ Rb̂(θ ) where eiγ is a global phase shift. Arbitrary
angles θ can be achieved by adjusting the pulse time t . The
axes b = (−α,0,βn)T are in the x-z plane and are adjustable
by varying the frequency and the strength of the electric
driving field. Second, arbitrary-angle rotations about arbitrary
axes out of the x-z plane, such as rotation relating to Y

gate, can also be obtained by multiple steps of operations
R = eiγ Rz(θ1)Rx(θ2)Rz(θ3) with appropriate γ and angles of
rotations θi (i = 1,2,3). In this way, arbitrary-angle rotations
of the single spin about arbitrary axes and arbitrary unitary
single-qubit gates can be achieved [48].

IV. NUMERICAL SIMULATION

At zero temperature, we can restrict our analysis to the
states |0↑〉 and |0↓〉. Because the driving of the phonon states
is suppressed by a large detuning, our system is weakly driven,
and higher phonon states will not be involved in the time
evolution. Therefore, there are only two states |0↑〉 and |0↓〉
in the whole process at zero temperature. We simulate the
time evolution for ESR of single-electron spins and a rotation
relating to the Hadamard gate at zero temperature in Fig. 2.

Now, we compose the X, Z, and Hadamard gates at zero
temperature. The X gate is defined as

X = σx =
(

0 1

1 0

)
, (18)

and it can be achieved by setting α �= 0 and βn = 0 in Eq. (17).
To obtain βn = 0, we set

ω = ωq

(
1 − 2g2

ω2
p − ω2

q

)
.

We find ω = 1399.997 MHz for the parameters λ/(2π ) =
0.8 MHz, ωq/(2π ) = 1.4 GHz, ωp/(2π ) = 1.5 GHz, and
g/(2π ) = 0.56 MHz [see Fig. 2(a)]. At the time points
fulfilling sin(θ/2) = 1 we can obtain the X gate.
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FIG. 2. (Color online) The time evolution of density matrix ele-
ments ρij = 〈i|ρ|j〉 (i,j = ↑,↓) under the conditions of (a) ESR with
δ/(2π ) = (ωq − ω)/(2π ) = 0.003 MHz and (b) rotation about an axis
in the x-z plane with δ/(2π ) = 0.012 MHz at zero temperature, with
which one can achieve the Hadamard gate. The initial condition is
|0↑〉. The blue (red) thick lines show the population of state |0↑〉
(|0↓〉). The dashed lines show the coherence terms between |0↑〉
and |0↓〉 in the ESR. The other parameters are λ/(2π ) = 0.8 MHz,
ωq/(2π ) = 1.4 GHz, ωp/(2π ) = 1.5 GHz, and g/(2π ) = 0.56 MHz.

The Z gate is defined as

Z = σz =
(

1 0

0 −1

)
. (19)

We can obtain the Z gate by the off-resonance driving field
with α = 0 and βn �= 0 in Eq. (17). To achieve α = 0, the
driving strength is set as λ = 0. The parameters are chosen
to be the same as for the X gate. At the time points fulfilling
sin(θ/2) = 1 we can obtain the Z gate.

The rotation of spin states for Hadamard gate,

H = 1√
2

(
1 1

1 −1

)
, (20)

can be obtained by a rotation about an axis between the x

and z axes. By adjusting the frequency and the strength of
the driving field, the axis of the rotation can be adjusted. The
Hadamard gate is achieved by setting α = −βn, which requires
ω/(2π ) = 1399.988 MHz, where we set eiγ = −i in R =
eiγ Rb̂(θ ). The parameters for the Hadamard gate are the same
as those for the X gate. A Hadamard gate is obtained at the
time points fulfilling sin(θ/2) = 1, for example at the contact
point between |0↑〉 and |0↓〉 in Fig. 2(b).

Now we consider the case of a finite temperature. The
distribution of phonons follows the Bose–Einstein statistics
at finite temperature. The time evolution of ESR of all the spin
states is simulated with a master equation at finite temperature
[see Fig. 3 (a)]. The initial state in thermal equilibrium has the
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FIG. 3. (Color online) The time evolution of the population of
spin states is shown at temperature T = 100 mK. The initial state is
ρ↑T . (a) The red thick (dashed) line shows the population of |0↑〉
(|0↓〉) and blue (dashed) line shows |1↑〉 (|1↓〉). Green, orange,
and gray lines show |2↑〉, |3↑〉, and |4↑〉, separately, and the
related states of spin down are damped out. (b) The total spin
evolution ρσ = ∑

n ρnσ , σ = ↑,↓ in thermal equilibrium. (Here we
plot a figure with the maximum phonon number n = 4.) The other
parameters are λ/(2π ) = 0.8 MHz, ωp/(2π ) = 1.5 GHz, ωq/(2π ) =
1.4 GHz, ω/(2π ) = 1399.997 MHz and g/(2π ) = 0.56 MHz.

form

ρσT = 1

Z

∞∑
n=0

e−n�ωp/kBT |n〉〈n| ⊗ |σ 〉〈σ |

=
∞∑

n=0

ρnσ |nσ 〉〈nσ |, (21)

where σ = ↑,↓ and Z = ∑∞
n=0 e−n�ωp/kBT is the partition

function. Because of the large detuning � and the vibrational
damping at low temperature, the states with large numbers of
phonons relax into the ground phonon state. We now study
the time evolution for ESR of the total spin states at finite
temperature [see Fig. 3(b)]. The reduced density matrix of the
spin is defined as ρσ = ∑

n ρnσ , σ = ↑,↓. From the evolution
of the total spin of states in Fig. 3(b), we can obtain ESR of the
total spin states. Combining ESR with the rotations about the
z axis, arbitrary rotations on the Bloch sphere about arbitrary
axes can be obtained at finite temperature.

V. ANALYSIS

Let us analyze the results in view of the envisioned aim
of achieving arbitrary mechanically induced spin rotations.
Different qubit states are connected by the driving and the

FIG. 4. (Color online) The energy-level diagram of the combined
spin-phonon states. The ac electric driving strength is denoted by λ

and its frequency by ω. The driving field couples the phonon mode
with a large detuning of frequency �. The dash-dotted lines are the
dressed states caused by the spin-phonon coupling g (blue lines). ESR
between two spin states with the same phonon numbers is obtained
when ω approaches ωq (green lines).

spin-phonon coupling. On the one hand, the driving field
couples to the phonon mode off-resonantly. A large frequency
detuning � � g,λ is induced between the phonon mode and
the driving field. The oscillator driving strength is quite small
due to the large detuning. Taking the state |0↓〉, for example,
it cannot be excited into the next higher phonon state |1↓〉.

On the other hand, there is a large frequency difference
between the phonon mode and the qubit mode, which is
necessary for applying the Schrieffer–Wolff transformation.
The combination of the spin-phonon coupling and related
states results in the formation of dressed states (see Fig. 4).
For example the coupling of |1↓〉 to |0↑〉 with the strength
g results in two dressed states which are eigenstates of the
nondriven (λ = 0) Hamiltonian. Because of ωp − ωq � g,
the two original states |1↓〉 and |0↑〉 are slightly mixed in
the related dressed states. This means that one dressed state
contains mainly either |1↓〉 or |0↑〉.

When the frequency of the driving approaches the fre-
quency difference between the two dressed states which
contain |n↑〉 and |n↓〉, then ESR between |n↓〉 and |n↑〉
occurs. Due to �, ωp − ωq � g, the driving effect for the
phonons is limited and the spin rotations occur within the spin
states with the same phonon numbers, which we can see from
Eq. (16).

Our analytical theory is confirmed by numerical simulation.
From the two plots in Fig. 2, we see that ESR is sensitive
to the frequency difference of δ = ωq − ω and the efficiency
of the transition of |0↓〉 ↔ |0↑〉 changes obviously with a
slight change of δ. Perfect ESR with a full spin conversion
is achieved only when the driving frequency ω approaches
the frequency of the dressed states, which is shown to be at
δ/(2π ) = (ωq − ω)/(2π ) = 0.003 MHz in Fig. 2(a).

A rotation about the z axis can be obtained by applying an
off-resonant driving field. ESR is also adjustable by controlling
the strength and the frequency of the external driving electric
field. Hence, by using ESR and the rotation about z axis
together, we are able to obtain arbitrary-angle rotations of
the spin about arbitrary axes through the one- or multiple-step
operation.
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VI. CONCLUSIONS

In conclusion, the manipulation of a single-electron spin
in a suspended CNT using mechanical actuation at low
temperature has been theoretically studied. We have proposed
and analyzed the mechanical performance of rotations about
the x axis via ESR based on the curvature-induced spin-phonon
coupling. The combination of ESR and rotations about the z

axis allows for arbitrary-angle rotations about arbitrary axes
which are electrically controllable by varying the strength
and the frequency of the external electric driving field. By
choosing special pulse times, any single-qubit gates can be
performed. We show that our proposal can be realized in
experiment by numerical simulation with realistic parameters.
Due to the long lifetime, spins can be detected during ESR.

Importantly, the manipulation is all electrical, thus it can
be controlled and scaled up. Our proposal introduces a new
way for manipulating spins with mechanical modes. Looking
ahead, the fabrication and manipulation of entanglement
between single spins in different QDs found on the same CNT
or on adjacent CNTs as well as between the spin and the
mechanical motion could be implemented by the spin-phonon
couplings, and two-qubit gates are expected to be achievable
as well.
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[10] G. A. Steele, A. K. Hüttel, B. Witkamp, M. Poot, H. B.
Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der Zant,
Science 325, 1103 (2009).

[11] A. K. Hüttel, H. B. Meerwaldt, G. A. Steele, M. Poot,
B. Witkamp, L. P. Kouwenhoven, and H. S. J. van der Zant,
Phys. Status Solidi B 247, 2974 (2010).

[12] N. Traverso Ziani, G. Piovano, F. Cavaliere, and M. Sassetti,
Phys. Rev. B 84, 155423 (2011).

[13] M. Ganzhorn and W. Wernsdorfer, Phys. Rev. Lett. 108, 175502
(2012).

[14] A. Benyamini, A. Hamo, S. V. Kusminskiy, F. von Oppen, and
S. Ilani, Nat. Phys. 10, 151 (2014).

[15] D. Garcia-Sanchez, A. San Paulo, M. J. Esplandiu, F. Perez-
Murano, L. Forró, A. Aguasca, and A. Bachtold, Phys. Rev.
Lett. 99, 085501 (2007).

[16] S. D. Bennett, S. Kolkowitz, Q. P. Unterreithmeier, P. Rabl,
A. C. B. Jayich, J. G. E. Harris, and M. D. Lukin, New J. Phys.
14, 125004 (2012).

[17] H. B. Meerwaldt, G. Labadze, B. H. Schneider, A. Taspinar,
Y. M. Blanter, H. S. J. van der Zant, and G. A. Steele, Phys. Rev.
B 86, 115454 (2012).

[18] A. Castellanos-Gomez, H. B. Meerwaldt, W. J. Venstra, H. S. J.
van der Zant, and G. A. Steele, Phys. Rev. B 86, 041402 (2012).

[19] S. Rips and M. J. Hartmann, Phys. Rev. Lett. 110, 120503
(2013).

[20] E. D. Minot, Y. Yaish, V. Sazonova, and P. L. McEuen, Nature
(London) 428, 536 (2004).
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