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Pure vs. mixed states

Well known: quantum state as a vector [¢) = » ¢;|i) with ) [c;|* =1

1

()}
Pure state

Imagine qubit in state |¢) = \% (10) +11))

Measurement in {|0), |1) }-basis with outcome probabilities po = p1 = 1/2

. =) +1)
Measurement result is discarded o 2 -
= state after measurement is |0(1)) with probability po(1) - B i
Second measurement has same outcome probabilities
Qubit state is not [¢) = —= (10) + [1))
ubit state is no VG 1)

Need method to
* incoherently superimpose (mix) pure states
e respect observer’s knowledge

Kevin Garapo, Mhlambululi Mafu, Francesco Petruccione. (2016). Intercept-resend attack on
six-state quantum key distribution over collective-rotation noise channels. FE4)Eb: TXhR,

2 (7), 131-137, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=52147296




The density operator

(A) =(|Alp)

*

J

* Density operator p = Z c;icili) (7| = [¥) (x| describes same physics as|¢)

ij
* Properties of density operator: 1. p' = p
2.V|x) e H: (x|p|lx) >0
3.trp=1

* General form p = Zpi\%ﬂ%! with sz- =1
" Probability to find state i



The density operator of mixed states

Measured qubit from earlier (p.2)

~populations®

1

7 (10) +11))

Before measurement: pure state |¢) = y
,coherences

1 1 /171
p:W<yo>+u>><<or+<1D=§(1 1

After measurement: mixed state of |0(1)) with probabilities po)

Bloch vector p' = ((04), (0y), (02))
. 1 L
Bloch representation p = 5(]1 +p-0) ==

General property of mixed state: trp® < 1< p = Y pilthi)(1s] # |¢) (9

before

()

after



Multipartite systems

» Consider bipartite Hilbert space H 4 ® Hp with density operator

p = Zpij,kl‘i>A’j>B alk|B (]
ijkl

 Calculate expectation value (O4 ® 1) =tr|p(O4 ® 1)] = Z piikl Ak|Oalt)a B(l|7)B
i7.kl

[ )

— _

« Density operator of reduced system A given by partial trace p4 = trgp = Z B{1|p|i)B

o State purification: every mixed state in H can be written as pure state in H ® H¢

p = pilts) (il = tre) (0] where [¥) = > v/pilti)|¢i)
1=1 1=1



Generalized measurements

For each possible measurement outcome m there is one measurement operator M

Completeness relation » =M M,, =1

Probability for outcome m: p,,, = tr (MmpMi@)

M,y pMy},
Prm

State after measurement: py =

e Simplest example: orthogonal projective measurements M, M,, = 0,,, M.,

system state is projected to eigenstate of observable

Born’s rule pm = tr (M, My,p) = tr (M, My, p) = tr (M, p) = (M)
In general: weak measurements

Remember measurement with discarded outcomes? p; = % (10) +11)) (O] + (1|) = pf = % (0)€0] 4+ |1)(1])

Non-selective measurement: py = Z M, piM

m

{F,,,Ym} := {M] M,,,vm} often referred as POVM (positive operator valued measure)
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Examples for general measurements

1

Measurement operator weighted sum of projectors M, = — N ek A ) ()
Choose initial state p; = 1 /N T
pi =1/ 04 s 1
| ' k=1
Final state mixture of basis states with Gaussian distribution 03 '3
M, p;: M 1 . - P
pr = = 3 e 2 £ =.
tr (MmpiMm) n Q 0.2
3
k — 0: no information gain 0.1 ){%’X}‘“\"‘?\X k=0.1
k — 00: projective measurement X,i; “%i%& k=0.01
' _x)éX—X‘xX_X‘;,);’ o ‘\ - -;?\’;ix*x“x*%x.xx-x% -
k is measurement strength 0.0 esexreest3encioennsexneddoesnred || Toxoe xx Rt Xox e XA STHHIHAK |
0 10 20 30 40 50
1)



Time evolution beyond unitaries

Time evolution in closed quantum systems is unitary |¢)") = Ulv))

p =)W = Ul (|UT

Time evolution in closed systems does not create or annihilate information

What if subsystems are added or removed? p— p® pp
pr— pa=1rp p

Consider state p = pa ® |0)(0| in bipartite Hilbert space H = Ha ® Hp

Time evolution in subsystem A: p'y = trg |Uag(pas @ [0)(ONUT,

Kraus representation of linear superoperator A with Kraus operators \/ P



Time evolution beyond unitaries

Pla = Z MyupaM,
L

M, =p{u|UaB|0)B

» Maps density operators to density operators, » MM, =14
m

L (pa)" = Pl
2. V|z) € Ha: (x|p4]z) >0
3. tr p’y =1

* Not necessarily unitary: information can be transferred into or out of subsystem

- Non-selective measurement as superoperator py = »  M,pM| = Ap
L

Interaction with inaccessible environment = re-preparation of system state, transfer of information to environment



Amplitude damping

it excitation | i - i 0)0l0)E = 10)0|0) £
» Qubit excitation is transferred to environment with probability p, U4 : 0)e
P Y P { 1ql0)e — V1 —p1)gl0)r +/Pl0)g|1)E

A a_ (1 0 Aa_ (0 p
M, =p(ulUal0)r = MO_(O m>>M1—<O \{)—>

* Initial density operator p evolves to

1 —
' — A, (VA T+MA A T:< poo +DPp11 P po1 )
P 0:0( 0) 1/0( 1) VI=ppio (1—p)pi

e Continuous interaction with environment

P = ( poo +[1 = (1 =p)"lpir (1 =p)"?por ) sy ( poo tH =€~ ]p11 e—2pgy )
(1 — p)n/Q,Olo (1 — p)"ﬂll (G_Fﬂp@ [G_Fltﬂn]

t1
with infinitesimal probability - = - Relaxation time: 1/(decay rate of populations)
1

1

= op- ' (Phase) coherence time: 1/(decay rate of coherences)
2
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Phase damping

» Interaction with environment with probability p’, Up : { }?;Q}S;E : ‘\%Q‘O;ﬁm 0)e + 7P| 1)ol|1)

P A (1 0 A (0 0
MM =p(plUpl0)rg = My = ( 0 m)» Mi" = < 0 \/}3)

« Consider qubit with amplitude & phase damping

S ( oo+ 1= (1=p)lpnn (1 —p)"2(1 = p)"2po, ) nosoo [ poo+ 1 —eT1tp1, e
(1 =p)""2(1 = p')*?p1o (1 —p)"p11

with infinitesimal probability p" = 2T",t/n

« Decay rate of off-diagonal elements 'y = 1" /2 Pure dephasing rate

11



Relaxation and decoherence
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Infinitesimal time evolution

* Unitary time evolution generated by Liouville equation (Liouville superoperator L)

i
Op = 7 lp, H] = Lp

« Consider system S and environment E, projection superoperators Pp = ps, Qp = (1 — P)p = pg

Can write Liouville equation as c?t( 5}‘2 > = < g )E( g >p+<g>£< % ),0

t
Formally integrate second line pr = e““*pg(t = 0) + / dt’ eQ*Y QLPp(t —t')
0

Plug into first line = Nakajima-Zwanzig equation

t
Ops = PLps + / dt’ K(t')ps(t — ')
0

K(t) = PLe®QLP
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Infinitesimal time evolution

t
Solve Nakajima-Zwanzig eq.: hard  O0;ps = PLps + / dt’ K(t")ps(t — 1)
0

Markov approximation: timescale of environment dynamics much faster than system dynamics

IC(t) = 6(t)K

Find Lindblad equation (Lindblad superoperator L)

(

7 lps, Hs] + Kps = Lps

Oips =
Most common form from Kraus representation, Lindbladian operators LM

( 1
Ops = Lps = %[,057 Hg| + Z (LMIOSLL ) (LLLMPS + ﬂSLLLu))
v
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Relaxation and decoherence Il

» Master equation d;p = » ( wpLl — = LJr "L.p+ pL!,L,) |describes amplitude and phase damping of qubit with

)
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Measurement of /| & 1,

~1
 T: Inversion recovery . 15 = (Tz_l + ATz_l) : Free induction decay
o Excite qubit (r-pulse) » Rotate around x-axis by 7z/2
e Wait fortime 7 e Wait fortime 7
* Measure & repeat » Another (7z/2),-pulse, measure, repeat
a
(%)
X Reaiout 2 )x
: . T J. Pla et al., Nature
101 Relaxatlon'J<— — — — >m= )t 496, 334 (2013) Ay
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J. Bylander et al., Nature Physics 7, 565 (2011) 16
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