Universität Konstanz

Mixed quantum states, relaxation and decoherence

May 15, 2020 Florian Ginzel

Pure vs. mixed states

• Well known: quantum state as a vector $|\psi\rangle=\sum_i c_i|i\rangle$ with $\sum_i |c_i|^2=1$ Pure state

- Imagine qubit in state $|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle\right)$
- Measurement in $\{|0\rangle,|1\rangle\}$ -basis with outcome probabilities $p_0=p_1=1/2$
- Measurement result is discarded $\Rightarrow \text{state after measurement is } |0(1)\rangle \text{ with probability } p_{0(1)}$
- Second measurement has same outcome probabilities
- Qubit state is not $|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle\right)$
- Need method to
 - incoherently superimpose (mix) pure states
 - respect observer's knowledge

The density operator

$$\langle A \rangle = \langle \psi | A | \psi \rangle$$

- Density operator $ho=\sum_{ij}c_ic_j^*|i\rangle\langle j|=|\psi\rangle\langle\psi|$ describes same physics as $|\psi\rangle$
- Properties of density operator: 1. $\rho^{\dagger} = \rho$
 - $2. \ \forall |x\rangle \in \mathcal{H}: \ \langle x|\rho|x\rangle \geq 0$
 - 3. tr $\rho = 1$
- General form $\rho=\sum_i p_i |\psi_i\rangle\langle\psi_i|$ with $\sum_i p_i=1$ Probability to find state i

The density operator of mixed states

- Measured qubit from earlier (p.2)
- Before measurement: pure state $|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle\right)$ "coherences" $\rho=\frac{1}{\sqrt{2}^2}\left(|0\rangle+|1\rangle\right)\left(\langle 0|+\langle 1|\right)=\frac{1}{2}\left(\begin{array}{cc}1&1\\1&1\end{array}\right)$

$$\rho = \frac{1}{\sqrt{2}^2} \left(|0\rangle + |1\rangle \right) \left(\langle 0| + \langle 1| \right) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

• After measurement: mixed state of $|0(1)\rangle$ with probabilities $p_{0(1)}$

$$\rho = p_0|0\rangle\langle 0| + p_1|1\rangle\langle 1| = \frac{1}{2}\mathbb{1}$$

- Bloch vector $\vec{p} = (\langle \sigma_x \rangle, \langle \sigma_y \rangle, \langle \sigma_z \rangle)$
- Bloch representation $\rho = \frac{1}{2}(\mathbb{1} + \vec{p} \cdot \vec{\sigma}) = \frac{1}{2}\begin{pmatrix} 1 + p_z & p_x ip_y \\ p_x + ip_y & 1 p_z \end{pmatrix}$
- General property of mixed state: $tr\rho^2 < 1 \Leftrightarrow \rho = \sum_i p_i |\psi_i\rangle \langle \psi_i| \neq |\phi\rangle \langle \phi|$

Multipartite systems

• Consider bipartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ with density operator

$$\rho = \sum_{ijkl} \rho_{ij,kl} |i\rangle_A |j\rangle_B |_A \langle k|_B \langle l|$$

• Calculate expectation value $\langle O_A \otimes 1 \rangle = \mathrm{tr}[\rho(O_A \otimes 1)] = \sum_{ij,kl} \rho_{ij,kl} \ _A \langle k|O_A|i\rangle_A \ _B \langle l|j\rangle_B$

- Density operator of reduced system A given by partial trace $\rho_A = \mathrm{tr}_B \rho = \sum_i |B\langle i| \rho |i\rangle_B$
- State purification: every mixed state in $\mathcal H$ can be written as pure state in $\mathcal H\otimes\mathcal H_C$

$$\rho = \sum_{i=1}^r p_i |\psi_i\rangle \langle \psi_i| = \operatorname{tr}_c |\psi\rangle \langle \psi| \text{ where } |\psi\rangle = \sum_{i=1}^r \sqrt{p_i} |\psi_i\rangle |\phi_i\rangle$$

Generalized measurements

• For each possible measurement outcome m there is one **measurement operator** ${\cal M}_m$

Completeness relation
$$\sum_m M_m^\dagger M_m = 1$$

Probability for outcome m: $p_m = \operatorname{tr} \left(M_m \rho M_m^{\dagger} \right)$

State after measurement:
$$ho_f = \frac{M_m
ho M_m^\dagger}{p_m}$$

- Simplest example: orthogonal **projective measurements** $M_m M_n = \delta_{mn} M_m$ system state is projected to eigenstate of observable
 - Born's rule $p_m = \operatorname{tr}\left(M_m^{\dagger} M_m \rho\right) = \operatorname{tr}\left(M_m M_m \rho\right) = \operatorname{tr}\left(M_m \rho\right) = \langle M_m \rangle$
- In general: weak measurements
- Remember measurement with discarded outcomes? $\rho_i = \frac{1}{2} \left(|0\rangle + |1\rangle \right) \left(\langle 0| + \langle 1| \right) \rightarrow \rho_f = \frac{1}{2} \left(|0\rangle \langle 0| + |1\rangle \langle 1| \right)$
- Non-selective measurement: $ho_f = \sum_m M_m
 ho_i M_m^\dagger$
- $\{F_m, \forall m\} := \{M_m^{\dagger} M_m, \forall m\}$ often referred as **POVM** (positive operator valued measure)

Examples for general measurements

- Measurement operator weighted sum of projectors $M_m = \frac{1}{N} \sum_n e^{-k(n-m)^2/4} |n\rangle\langle n|$
- Choose initial state $\rho_i = 1/N$
- Final state mixture of basis states with Gaussian distribution

$$\rho_f = \frac{M_m \rho_i M_m^{\dagger}}{\operatorname{tr}\left(M_m \rho_i M_m^{\dagger}\right)} = \frac{1}{N} \sum_n e^{-k(n-m)^2/2} |n\rangle\langle n|$$

- $k \to 0$: no information gain $k \to \infty$: projective measurement
- k is measurement strength

Time evolution beyond unitaries

- Time evolution in closed quantum systems is unitary $|\psi'\rangle=U|\psi\rangle$ $\rho'=|\psi'\rangle\langle\psi'|=U|\psi\rangle\langle\psi|U^{\dagger}$
- Time evolution in closed systems does not create or annihilate information

What if subsystems are added or removed?
$$\rho\mapsto\rho\otimes\rho_B$$

$$\rho\mapsto\rho_A=\mathrm{tr}_B\;\rho$$

- Consider state $\rho = \rho_A \otimes |0\rangle\langle 0|$ in bipartite Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$
- Time evolution in subsystem A: $\rho_A' = \operatorname{tr}_B \left[U_{AB}(\rho_{AB} \otimes |0\rangle\langle 0|) U_{AB}^\dagger \right]$

- Kraus representation of linear superoperator Λ with Kraus operators M_u

Time evolution beyond unitaries

$$\rho_A' = \sum_{\mu} M_{\mu} \rho_A M_{\mu}^{\dagger}$$

$$M_{\mu} = B \langle \mu | U_{AB} | 0 \rangle_B$$

- Maps density operators to density operators, $\sum_{\mu} M_{\mu}^{\dagger} M_{\mu} = \mathbbm{1}_A$
 - 1. $(\rho'_A)^{\dagger} = \rho'_A$
 - 2. $\forall |x\rangle \in \mathcal{H}_A : \langle x|\rho_A'|x\rangle \geq 0$
 - 3. tr $\rho'_{A} = 1$
- Not necessarily unitary: information can be transferred into or out of subsystem
- Non-selective measurement as superoperator $\rho_f = \sum_{\mu} M_{\mu} \rho M_{\mu}^{\dagger} = \Lambda \rho$

Interaction with inaccessible environment = re-preparation of system state, transfer of information to environment

Amplitude damping

• Qubit excitation is transferred to environment with probability $p,\ U_A: \left\{ \begin{array}{l} |0\rangle_Q|0\rangle_E \mapsto |0\rangle_Q|0\rangle_E \\ |1\rangle_Q|0\rangle_E \mapsto \sqrt{1-p}|1\rangle_Q|0\rangle_E + \sqrt{p}|0\rangle_Q|1\rangle_E \end{array} \right.$

$$M_{\mu}^{A} =_{E} \langle \mu | U_{A} | 0 \rangle_{E} \quad \Rightarrow \quad M_{0}^{A} = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}, \ M_{1}^{A} = \begin{pmatrix} 0 & \sqrt{p} \\ 0 & 0 \end{pmatrix}$$

• Initial density operator ρ evolves to

$$\rho' = M_0^A \rho \left(M_0^A \right)^{\dagger} + M_1^A \rho \left(M_1^A \right)^{\dagger} = \begin{pmatrix} \rho_{00} + p\rho_{11} & \sqrt{1-p} \rho_{01} \\ \sqrt{1-p} \rho_{10} & (1-p)\rho_{11} \end{pmatrix}$$

Continuous interaction with environment

$$\rho'^{n} = \begin{pmatrix} \rho_{00} + [1 - (1 - p)^{n}]\rho_{11} & (1 - p)^{n/2}\rho_{01} \\ (1 - p)^{n/2}\rho_{10} & (1 - p)^{n}\rho_{11} \end{pmatrix} \xrightarrow{n \to \infty} \begin{pmatrix} \rho_{00} + [1 - e^{-\Gamma_{1}t}]\rho_{11} & e^{-\Gamma_{2}t}\rho_{01} \\ e^{-\Gamma_{1}t}\rho_{11} \end{pmatrix}$$

with infinitesimal probability
$$\frac{t}{np} = \frac{1}{\Gamma_1}$$
 Relaxation time: 1/(decay rate of populations)
$$= \frac{1}{2\Gamma_2} = T_2/2$$
 (Phase) coherence time: 1/(decay rate of coherences)

Phase damping

• Interaction with environment with probability p', $U_P: \left\{ \begin{array}{l} |0\rangle_Q|0\rangle_E \mapsto |0\rangle_Q|0\rangle_E \\ |1\rangle_Q|0\rangle_E \mapsto \sqrt{1-p'}|1\rangle_Q|0\rangle_E + \sqrt{p'}|1\rangle_Q|1\rangle_E \end{array} \right.$

$$M_{\mu}^{P} = E\langle \mu | U_{P} | 0 \rangle_{E} \quad \Rightarrow \quad M_{0}^{A} = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}, \ M_{1}^{A} = \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{p} \end{pmatrix}$$

• Consider qubit with amplitude & phase damping

$$\rho''^{n} = \begin{pmatrix} \rho_{00} + [1 - (1 - p)^{n}]\rho_{11} & (1 - p)^{n/2}(1 - p')^{n/2}\rho_{01} \\ (1 - p)^{n/2}(1 - p')^{n/2}\rho_{10} & (1 - p)^{n}\rho_{11} \end{pmatrix} \xrightarrow{n \to \infty} \begin{pmatrix} \rho_{00} + [1 - e^{-\Gamma_{1}t}]\rho_{11} & e^{-\frac{\Gamma_{1} + 2\Gamma_{\phi}}{2}t}\rho_{01} \\ e^{-\frac{\Gamma_{1} + 2\Gamma_{\phi}}{2}t}\rho_{10} & e^{-\Gamma_{1}t}\rho_{11} \end{pmatrix}$$

with infinitesimal probability $p'=2\Gamma_\phi t/n$

• Decay rate of off-diagonal elements $\Gamma_2 = \Gamma_1/2 + \Gamma_\phi$ Pure dephasing rate

Relaxation and decoherence

$$\frac{1}{T_2} = \frac{1}{2T_1} + \frac{1}{T_{\phi}}$$

 $\vec{p} \to \begin{pmatrix} \sqrt{1-p} \ p_x \\ \sqrt{1-p} \ p_y \\ p+(1-p)p_z \end{pmatrix}$

$$\vec{p} \rightarrow \left(\begin{array}{c} \sqrt{1-p} \ p_x \\ \sqrt{1-p} \ p_y \\ p_z \end{array}\right)$$

Infinitesimal time evolution

• Unitary time evolution generated by Liouville equation (Liouville superoperator \mathcal{L})

$$\partial_t \rho = rac{i}{\hbar} [\rho, H] = \mathcal{L} \rho$$

• Consider system S and environment E, projection superoperators $P\rho=\rho_S,\ Q\rho=(1-P)\rho=\rho_E$

Can write Liouville equation as
$$\partial_t \left(\begin{array}{c} \rho_S \\ \rho_E \end{array} \right) = \left(\begin{array}{c} P \\ Q \end{array} \right) \mathcal{L} \left(\begin{array}{c} P \\ Q \end{array} \right) \rho + \left(\begin{array}{c} P \\ Q \end{array} \right) \mathcal{L} \left(\begin{array}{c} Q \\ P \end{array} \right) \rho$$

Formally integrate second line
$$\rho_E = e^{Q\mathcal{L}t}\rho_E(t=0) + \int_0^t \mathrm{d}t' \; e^{Q\mathcal{L}t'}Q\mathcal{L}P\rho(t-t')$$

Plug into first line ⇒ **Nakajima–Zwanzig equation**

$$\partial_t \rho_S = P \mathcal{L} \rho_S + \int_0^t dt' \, \mathcal{K}(t') \rho_S(t - t')$$

$$\mathcal{K}(t) = P\mathcal{L}e^{Q\mathcal{L}t}Q\mathcal{L}P$$

Infinitesimal time evolution

• Solve Nakajima–Zwanzig eq.: hard $\partial_t \rho_S = P \mathcal{L} \rho_S + \int_0^t \mathrm{d}t' \; \mathcal{K}(t') \rho_S(t-t')$

• Markov approximation: timescale of environment dynamics much faster than system dynamics

$$\mathcal{K}(t) \approx \delta(t)\mathcal{K}$$

• Find Lindblad equation (Lindblad superoperator L)

$$\partial_t \rho_S = \frac{i}{\hbar} [\rho_S, H_S] + \mathcal{K} \rho_s = L \rho_S$$

- Most common form from Kraus representation, Lindbladian operators L_{μ}

$$\partial_t \rho_S = L \rho_S = \frac{i}{\hbar} [\rho_S, H_S] + \sum_{\mu} \left(L_{\mu} \rho_S L_{\mu}^{\dagger} - \frac{1}{2} \left(L_{\mu}^{\dagger} L_{\mu} \rho_s + \rho_S L_{\mu}^{\dagger} L_{\mu} \right) \right)$$

Relaxation and decoherence II

• Master equation $\partial_t \rho = \sum_{\mu} \left(L_{\mu} \rho L_{\mu}^{\dagger} - \frac{1}{2} \left(L_{\mu}^{\dagger} L_{\mu} \rho + \rho L_{\mu}^{\dagger} L_{\mu} \right) \right)$ describes <u>amplitude</u> and <u>phase damping</u> of qubit with

$$L_1 = \sqrt{\Gamma_\phi} \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right)$$

$$L_2 = \sqrt{\frac{\Gamma_1}{2}} \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right)$$

$$L_3 = \sqrt{\frac{\Gamma_1}{2}} \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right)$$

Measurement of T_1 & T_2

- T_1 : Inversion recovery
 - Excite qubit (π -pulse)
 - Wait for time τ
 - Measure & repeat

- $T_2^* = \left(T_2^{-1} + \Delta T_2^{-1}\right)^{-1}$: Free induction decay
 - Rotate around *x*-axis by $\pi/2$
 - Wait for time au

• Another $(\pi/2)_{\chi}$ -pulse, measure, repeat

J. Pla *et al*., Nature **496**, 334 (2013)

• T_2 : Hahn echo measurement

Further reading

- A. Zagoskin: Quantum Engineering, Cambridge University Press, Cambridge (2011)
- K. Blum: Density Matrix Theory and Applications, Plenum Press, New York (1981)
- M. Nielsen, I. Chuang: Quantum Information and Quantum Computation, Cambridge University Press, Cambridge (2010)
- G. Burkard, Quantum Information Theory, lecture notes (2014)
- F. Marquardt, A. Püttmann, Introduction to dissipation and decoherence in quantum systems, lecture notes, arXiv:0809.4403 (2008)