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Abstract We study the problem of disordered interacting

bosons within grand-canonical thermodynamics and Bo-

goliubov theory. We compute the fractions of condensed

and non-condensed particles and corrections to the com-

pressibility and the speed of sound due to interaction and

disorder. There are two small parameters, the disorder

strength compared to the chemical potential and the dilute-

gas parameter.

1 Introduction: grand-canonical formalism

We approach the weakly interacting Bose gas with the

grand-canonical Hamiltonian [1–3]

Ĥgc ¼
Z

d3r Ŵ
y ��h2

2m
r2 þ UðrÞ � lþ g0

2
Ŵ
y
Ŵ

� �
Ŵ: ð1Þ

The annihilation (creation) operators Ŵ
ðyÞ ¼ Ŵ

ðyÞðrÞ obey

bosonic canonical commutator relations, and l is the

chemical potential. We consider repulsive s-wave interac-

tion only, g0 [ 0; for a mean-field study with anisotropic

dipolar interaction, see Ref. [4]. UðrÞ is an external one-

body potential that renders the gas inhomogeneous. As an

application, we have in mind either a weak lattice or a

random potential. In the latter case, meaningful quantities

will involve the ensemble average ð�Þ.
In order to describe the thermodynamic properties of the

gas, one would like to know the ensemble-averaged grand

potential (GP) Xðb; lÞ, where b ¼ 1=kBT is the inverse

temperature:

�bX ¼ ln N ¼ lnftr½expð�bĤgcÞ�g: ð2Þ

Nðb; lÞ is known as the grand partition function. Other

than on b and l, the partition function and the Gibbs state

q̂ ¼ N�1 expf�bĤgcg depend also on all the parameters

appearing in the Hamiltonian (1), such as the detailed

configuration of the external potential UðrÞ. The grand

potential, on the other hand, only contains those properties

that are relevant after the ensemble average. The advantage

of this approach is that one obtains relevant physical

quantities directly by differentiating the GP.

In particular, the average particle number is Nðb; lÞ ¼
trfq̂N̂g ¼ �oX=ol. Often, one prefers to treat intensive

quantities in the thermodynamic limit, such as the density

N=V ¼ n. The functional dependence nðb; lÞ is known as

the equation of state. By further differentiation, one has

access to thermodynamic response functions, such as the

inverse compressibility j�1 ¼ n2ol=on.

Due to the interplay of interactions and external poten-

tial in (1), though, it is in general impossible to compute

the partition function, let alone the GP, in closed form

without further approximations. Here, we are interested in

the thermodynamics of the Bose-condensed phase. There-

fore, we resort to Bogoliubov’s prescription ŴðrÞ ¼ UðrÞþ
dŴðrÞ, where a macroscopically occupied condensate

mode UðrÞ is separated from the quantum fluctuations

dŴðrÞ. The condensate plays a role analogous to the clas-

sical trajectory in Feynman’s path-integral formulation of
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quantum mechanics: on the mean-field level, UðrÞ is an

extremum, actually a minimum, of the functional (1) inside

the trace (2). The minimization condition is known as the

Gross–Pitaevskii or nonlinear Schrödinger equation.

Including contributions from the quantum fluctuations, one

is later led to minimize more generally the grand-canonical

energy and thus finds beyond-mean-field corrections to the

equation of state.

In this article, we explore the consequences brought

about by quantum fluctuations in the presence of an

external potential UðrÞ. These corrections to the ‘‘classi-

cal’’ mean-field solution can be computed by a quadratic

expansion of the Hamiltonian (1) and subsequent Gauss-

ian integration for the grand potential (2). We take

advantage of the effective impurity-scattering Hamilto-

nian derived in [5] to take into account the external

potential’s effect on the condensate (‘‘condensate defor-

mation’’) as well as on the fluctuations. Specifically, we

derive beyond-mean-field corrections to the particle den-

sity (‘‘condensate depletion’’) in a disordered Bose fluid at

finite temperature, thus complementing the zero-temper-

ature results of Ref. [6]. Furthermore, we compare some

of our findings on the mean-field level with recent mea-

surements [7].

Before tackling the general, inhomogeneous case in

Sect. 3, we find it instructive to first introduce our readers

to the subtleties of grand-canonical Bogoliubov theory in

the homogeneous case, treated in the following Sect. 2.

Notably, it is shown how to recover the celebrated beyond-

mean-field corrections to the equation of state first derived

by Lee, Huang, and Yang [8].

2 Homogeneous case

In the homogeneous case UðrÞ ¼ 0, condensation occurs in

the k ¼ 0 mode [9]. Therefore, we only need to determine

the population Nc of that mode, but not its shape. The

Bogoliubov approximation consists in replacing the con-

densate field operator with a c-number, â0 ¼ N
1=2
c , and

treating all other k-space modes as quantum fluctuations. In

the following, we will first establish the effective Hamil-

tonian, then determine the GP, and analyze in detail the

ground-state density. We close this section with a discus-

sion of the condensate fraction at zero and finite

temperature.

2.1 Hamiltonian

Expanding the Hamiltonian Ĥgc ¼ H0 þ Ĥ2 þ . . . to sec-

ond order in the fluctuations (Ĥ1 vanishes by momentum

conservation), one finds

H0 ¼ Nc

g0nc

2
� l

h i
ð3Þ

for the mean-field energy, where nc ¼ jUcj2 ¼ Nc=V is

the condensate density. If one minimizes the mean-field

energy alone, oH0=onc ¼ 0, one finds g0nc ¼ l, and

recovers canonical Bogoliubov theory [2, 3]. Here,

we postpone the minimization until the complete

GP is known, in order to obtain beyond-mean-field

corrections.

The fluctuations are described by the Hamiltonian

Ĥ2 ¼
X

k

0 ðe0
k þ 2g0nc � lÞâykâk þ

g0nc

2
ðâykâ

y
�k þ h:c:Þ

h i
:

ð4Þ

The primed sum indicates that k ¼ 0 is omitted, and e0
k is

the single-particle dispersion.1 In order to avoid a UV

divergence of the ground-state energy later on, one renor-

malizes the interaction constant in (3) as g0 ¼
gþ

P0
k g2=2e0

kV [3], which adds a c-number term under

the sum in (4). The quadratic Hamiltonian Ĥ2 becomes

diagonal after a transformation to the Bogoliubov quasi-

particles ĉk ¼ ukâk þ vkâ
y
�k and ĉyk ¼ ukâ

y
k þ vkâ�k, with

uk ¼
ek þ ~ek

2ðek~ekÞ1=2
; vk ¼

ek � ~ek

2ðek~ekÞ1=2
; ð5Þ

defined in terms of

~ek ¼ e0
k þ gnc � l; ð6Þ

ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe0

k þ 2gnc � lÞ2 � ðgncÞ2
q

: ð7Þ

All these quantities still depend separately on the chemical

potential l and the condensate population nc. Only with the

choice gnc ¼ l, the energy (7) becomes purely real and

gapless, as it should according to a theorem by Hugenholtz

and Pines [11], and turns into the celebrated Bogoliubov

dispersion relation,

eB
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0

kðe0
k þ 2lÞ

q
: ð8Þ

Yet, in order to be able to differentiate with respect to l at

fixed nc (or vice versa), we keep both quantities and

remember to choose gnc ¼ l in all final expressions

relating to the excitations.

Thus, the grand-canonical Hamiltonian takes the form

Ĥgc ¼ E0 þ
X

k

0
ekĉ
y
kĉk: ð9Þ

1 We note e0
k with a vector index to cover cases where the dispersion

is anisotropic, e.g., in a tight-binding lattice [10]. For concrete

examples within this paper, we consider only the free-space case,

where e0
k ¼ �h2k2=2m is isotropic. In all cases, we assume parity

invariance, e0
k ¼ e0

�k.
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The first term is the grand-canonical candidate for the

ground-state energy, to which fluctuations contribute with

their commutators:

E0 ¼ Nc

gnc

2
� l

h i
� 1

2

X
k

0 ðe0
kþ 2gnc � lÞ � ek�

ðgncÞ2

2e0
k

" #
:

ð10Þ

At this point, we still have the freedom to choose the

condensate density nc by minimizing the energy (10) at

fixed l. Requiring oE0=oncjl ¼ 0 results in

ncðlÞ ¼
l
g
� 5

ffiffiffi
2
p

12p2

1

n3
; ð11Þ

where we have introduced the characteristic length n via

l ¼ �h2=ð2mn2Þ. Inserting this result in (10)—at mean-field

precision inside the fluctuation sum—yields the ground-

state energy density

E0ðlÞ
V
¼ � l2

2g
þ 2

ffiffiffi
2
p

15p2

l

n3
: ð12Þ

2.2 Grand potential

The ground-state energy E0ðlÞ thus determined is a con-

stant in the Hilbert space of Bogoliubov excitations and

pulls out of the trace (2) for the GP, which evaluates in the

thermodynamic limit to

X ¼ E0 þ
V

b

Z
d3k

ð2pÞ3
lnð1� e�bekÞ: ð13Þ

The density derives as

n ¼ � 1

V

oE0

ol
�
Z

d3k

ð2pÞ3
mk

oek

ol
; ð14Þ

where mk ¼ ½ebek � 1��1
is the Bose–Einstein distribution

function for the occupation of excitation modes. Remember

that the second contribution, namely the thermal contri-

bution of fluctuations, should be differentiated with respect

to l at fixed gnc and then evaluated with gnc ¼ l at the

end.

Alternatively, it is also possible to derive the condensate

density nc not from the ground-state energy (10) (i.e., at

zero temperature), but by minimizing the full GP, Eq. (13),

as function of l and arbitrary T . Thus, one is able to

account for the thermal depletion of the condensate at fixed

l. The final results (as presented in the following) come out

the same, as described in the ‘‘Appendix.’’ But for tech-

nical reasons that will become apparent in Sect. 3 below,

we prefer to use the ‘‘semicanonical’’ prescription, in

which nc is kept independent from l when differentiating,

and only substituted later at the required precision.

2.3 Zero-temperature equation of state

The density n ¼ �V�1oE0=ol derived from (12) thus

determines the zero-temperature equation of state

nðT ¼ 0; lÞ ¼ l
g
�

ffiffiffi
2
p

3p2n3
: ð15Þ

The difference between this total density and the conden-

sate density (11) is the so-called quantum depletion,

dn0 ¼ n� nc ¼
ffiffiffi
2
p

12p2n3
: ð16Þ

The depletion must be small compared to n (and thus nc) in

order for the Bogoliubov ansatz to hold. In this case, we

can express n ¼ ð8pnaÞ�1=2
through the s-wave scattering

length a and total density nc � n itself, and recover the

equivalent canonical expression [3, eq. (4.34)]

l ¼ gn 1þ 32

3

ffiffiffiffiffiffiffiffiffiffiffiffi
na3=p

p� �
: ð17Þ

Here, the dilute-gas parameter
ffiffiffiffiffiffiffi
na3
p

has come into play,

which must be small for this correction to be meaningful.

One can further derive the compressibility

j�1 ¼ n2 ol
on
¼ gn2 1þ 16

ffiffiffiffiffiffiffiffiffiffiffiffi
na3=p

p� �
: ð18Þ

The corresponding speed of sound, determined by j�1 ¼
nmc2 [12, 13],

c ¼
ffiffiffiffiffi
gn

m

r
1þ 8

ffiffiffiffiffiffiffiffiffiffiffiffi
na3=p

p� �
; ð19Þ

includes the Lee-Huang-Yang correction.2

2.4 Condensate fraction at zero and finite temperature

Often, one is interested in the condensate fraction nc=n as

function of temperature and fixed total density. Equation

(14) with the help of Eq. (10) gives the well-known for-

mula [3, eq. (4.42)]

nc

n
¼ 1� 23=2ðna3Þ1=2

p3=2

Z
d3ðknÞ v2

k þ ðu2
k þ v2

kÞmk

	 

; ð20Þ

Figure 1 visualizes this result by showing (a) the integrand,

or single-particle momentum distribution hâykâki ¼ v2
k þ

ðu2
kþ v2

kÞmk, as function of reduced momentum kn for dif-

ferent temperatures and (b) the resulting condensate

2 There is a misprint in the original paper [8]: In eq. (33), the square

root of the expression in bracket is missing, i.e., the relative correction

to the speed of sound should be 8
ffiffiffiffiffiffiffiffiffiffiffiffi
na3=p

p
, not 16

ffiffiffiffiffiffiffiffiffiffiffiffi
na3=p

p
.

Unfortunately, this mistake has been copied in the book by Ueda

[13, eq. (2.57)]. The correct result is given, for example, in [14, eq.

(2.23)], [15, eq. (25)], and [16, eq. (1.149)].
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fraction as function of temperature. Bogoliubov theory can

be expected to give reasonably accurate results when the

condensate fraction is large, i.e., for weak interaction and

low temperatures.

3 Inhomogeneous (disordered) case

The presence of an external potential substantially

complicates the situation, especially if UðrÞ is a random

function. For a given realization, the bosons condense

into a macroscopically populated eigenmode of the one-

body density matrix [9], whose precise form is shaped

by the interplay of kinetic, interaction, and potential

energy.

In the spirit of Bogoliubov theory, one first needs to find

the deformed condensate amplitude, given as a functional

UðrÞ ¼ U½UðrÞ� and depending of course also on l and g.

The total occupation number of this mode,

Nc ¼
Z

d3rjUðrÞj2 ¼
X

k

jUkj2; ð21Þ

is now larger than the occupation N0 ¼ jU0j2 of the

coherent mode k ¼ 0 alone [17]. The inhomogeneous

components Uk ¼ V�1=2
R

ddre�ik�rUðrÞ with k 6¼ 0

describe a ‘‘deformed condensate’’ [6] or ‘‘glassy fraction’’

[18]. In a second step, one may then describe the quadratic

fluctuations around this deformed condensate. We are

assured to find a well-defined set of elementary excitations

whenever the external potential is weak enough not to

fragment the condensate.

In this section, we first determine the condensate

amplitudes for a given external potential on the mean-field

level and thus derive disorder corrections to the mean-field

equation of state of the previous section. Our prediction for

the resulting dependence of the compressibility on disorder

strength compares rather well with recent measurements

with ultracold molecules confined to 2D in the presence of

laser speckle disorder [7].

In a second step, we put the quadratic Hamiltonian of

the fluctuations to use and calculate their contribution to

the GP. From there, we derive disorder corrections to the

condensate depletion, recovering the zero-temperature

results of [6] and extending them to finite temperatures.

3.1 Mean-field equation of state and compressibility

As before, we expand the grand-canonical Hamiltonian

Ĥgc ¼ H0 þ Ĥ2 þ . . . up to second order in the fluctua-

tions. On the mean-field level, the condensate amplitude

minimizes the Gross–Pitaevskii functional, which reads in

momentum representation

H0 ¼
X
kk0

U�k ðe0
k � lÞdkk0 þ Uk�k0

	 

Uk0

þ g

2V

X
kpk0

U�kU
�
p�kUp�k0Uk0 ð22Þ

and thus generalizes (3). For a weak external potential,

whose smoothed Fourier components [19]

~Uk ¼ Uk=ð2lþ e0
kÞ ð23Þ

are a set of small numbers, one can compute a perturbative

solution Uk ¼ Uð0Þk þ Uð1Þk þ Uð2Þk þ . . . around the homo-

geneous condensate Uð0Þk ¼ /0dk0 with /2
0 ¼ N

ð0Þ
c ¼ Vl=g

[20]:

(a) (b)

Fig. 1 Clean condensate fraction and depletion in 3D. a Single-

particle momentum distribution for reduced temperatures

s ¼ kBT=l ¼ 0; 0:2; 0:5; 0:7; 1:0; 1:4. b Condensate fraction nc=n

[Eq. (20)] as function of temperature for different values of the

dilute-gas parameter ðna3Þ1=2 ¼ 0:1; 0:01; 0:001
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Uð1Þk ¼ �/0
~Uk; ð24Þ

Uð2Þk ¼ �/0

X
k0

l� e0
k�k0

2lþ e0
k

~Uk0
~Uk�k0 : ð25Þ

Using this solution in (22), we find the ground-state GP

X0

V
¼ H0ðlÞ

V
¼ � l2

2g
þ lU0

g
� l

g

X
k

jUkj2

e0
k þ 2l

: ð26Þ

By virtue of nc ¼ �V�1oX0=ol, or by inserting the per-

turbative solution (24)–(25) directly into (21), the ensem-

ble-averaged equation of state becomes

gncðlÞ ¼ l� U0 þ
X

k

e0
kjUkj2

ðe0
k þ 2lÞ2

: ð27Þ

The first-order effect of the external potential is to shift the

chemical potential by its mean value UðrÞ ¼ U0. To second

order, at fixed l� U0, the external potential draws more

particles into the condensate.

We thus find the mean-field compressibility

j�1
c ¼ gn2 1þ 4

X
k

e0
kjUkj2

ðe0
k þ 2lÞ3

 !
: ð28Þ

In all of the preceding expressions appears the pair-corre-

lation function (with V ¼ Ld in d dimensions)

jUkj2 ¼ U2 rd

V
CðrkÞ; ð29Þ

which contains information about the strength of disorder,

via the variance U2 of on-site fluctuations. It also specifies

spatial correlations, via the correlator CðrkÞ. This function

typically decays over a spatial correlation length r, which

is of the order of a micron in experiments involving laser

speckle. Then, (28) can be written

j�1
c ¼ gn2 1þ 4

U2

l2

Z
ddðrkÞ
ð2pÞd

k2n2CðrkÞ
ðk2n2 þ 2Þ3

 !
: ð30Þ

Thus, the compressibility is expected to decrease quadrat-

ically with increasing disorder strength U=l at fixed cor-

relation ratio r=n. The compressibility can be measured

with some precision in cold-atom experiments such as [7].

There a quadratic decrease in the compressibility is mea-

sured for weak disorder, in quantitative agreement with

(30), when evaluated in 2D with the correlation length

r � n comparable to the healing length, as shown in Fig. 2.

Since the 2D molecular BEC in the experiment is rather

strongly interacting, with a depletion of order unity

already without disorder, beyond-mean-field corrections

to the homogeneous compressibility jð0Þc ¼ 1=gn2 are

important. The plotted correction �jð0Þð1� aU2Þ therefore

starts from the experimentally measured value for �jð0Þ.
The agreement is satisfactory for disorder strengths U=l
not exceeding unity, as expected for a random potential

whose correlation length is of the order of the healing

length itself.

Comparing the two equations of state considered so far,

(15) and (27), we see that there are two small parameters:

the dilute-gas parameter
ffiffiffiffiffiffiffi
na3
p

and the dimensionless dis-

order strength U2=l2. Within the scope of this article, we

are interested in their first-order effects. Therefore, we do

not consider cross terms that would come from a higher-

order solution of the ground-state energy (the equivalent of

(10) including contributions from the fluctuations), which

is a somewhat ill-defined quantity in the presence of dis-

order anyway.3 Also, we do not attempt to derive the

condensate amplitude by minimizing the full GP including

the fluctuations (to be described shortly) and thus forego a

direct access to the thermal depletion of the condensate.

But as the homogeneous case showed, we are allowed to

use the ‘‘semicanonical’’ method by keeping l and con-

densate UðrÞ formally independent, and differentiating

with respect to l alone, inserting the mean-field solution

UðrÞ to the required precision at the end. In the following,

we take into account the first-order effect of disorder via a

compensating shift in l and can assume without the loss of

generality that the potential has zero mean, U0 ¼ 0, such

that only second-order corrections need to be discussed.

Fig. 2 Reduced 2D compressibility �j ¼ ð�h2=mÞon=ol as function of

disorder strength U=l. The data points are measured values from

Ref. [7] (courtesy of Brantut). The solid line is the result of (30) in 2D

for r ¼ n and a Gaussian correlation of the type (55), scaled to match

the disorder-free value for U ¼ 0

3 Notably, it does not seem evident how to implement a counterterm

that guarantees the convergence of (10) in the presence of disorder

[21].
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3.2 Quadratic fluctuation Hamiltonian

Turning now to the quantum fluctuations, also affection-

ately called ‘‘bogolons,’’ we first must ensure that they live

in the space orthogonal to the condensate [22]. This con-

straint can be respected in the density-phase parametriza-

tion (see also [23] for a number-conserving approach and

[24, 25] for the connection between both approaches),

where the excitations are given by [5, 6]

dŴk ¼
X

p

ukpĉp � vkpĉ
y
�p

� �
: ð31Þ

The transformation matrices

ukp ¼
1

2/0

a�1
p Uk�p þ ap

�Uk�p

h i
; ð32Þ

vkp ¼
1

2/0

a�1
p Uk�p � ap

�Uk�p

h i
; ð33Þ

contain the Fourier coefficients Uk of the condensate

amplitude UðrÞ and its inverse �UðrÞ ¼ nc=UðrÞ, which

encode the dependence on the external potential UðrÞ or

rather its Fourier components Uk, as described in (24) and

(25). In the absence of an external potential, the condensate

Uð0Þk ¼ /0dk0 renders this transformation diagonal in k, and

by choosing ak ¼ ð~ek=ekÞ1=2
, one recovers the homoge-

neous transformation (5).

Now, we seek the effective quadratic Hamiltonian that

describes these excitations. As the condensate mode U min-

imizes H0, the linear term in the expansion vanishes and the

relevant term is the second-order fluctuation Hamiltonian

Ĥ2 ¼ Ĥ
ð0Þ
2 þ Û; ð34Þ

where Ĥ
ð0Þ
2 ¼

P
k ekĉ

y
kĉk formally looks like the free-space

contribution—but please be reminded that the excitations

defined via (31) are not the plane-wave modes of the

homogeneous case. Furthermore, we recall that l ¼ gnc

has to be taken in expressions relating to the fluctuations at

the end, thus ensuring a real, gapless excitation spectrum.

And finally, we have discarded the zero-point contribution

of commutators, which would result, as explained above, in

a beyond-mean-field modification of the ground-state

energy, which is not investigated here. More importantly,

the spatial inhomogeneity leads to the appearance of the

scattering potential

Û ¼ 1

2

X
k;k0

0ðĉyk; ĉ�kÞ
Wkk0 Ykk0

Ykk0 Wkk0

� � ĉk0

ĉy�k0

 !
: ð35Þ

The impurity-scattering matrices

Wkk0 ¼
1

4
akak0Rkk0 þ a�1

k a�1
k0 Skk0

	 

� dkk0ek; ð36Þ

Ykk0 ¼
1

4
akak0Rkk0 � a�1

k a�1
k0 Skk0

	 

; ð37Þ

can be traced back to the terms hkk0 ¼ ðe0
k � lÞdkk0 þ

Uk�k0 þ 2gnck�k0 and gnck�k0 in the inhomogeneous gen-

eralization of Eq. (4):

Skk0 ¼
2

/2
0

X
pq

Uk�p hpq � gncp�q

	 

Uq�k0 ; ð38Þ

Rkk0 ¼
2

/2
0

X
pq

�Uk�p hpq þ gncp�q

	 

�Uq�k0 : ð39Þ

In contrast to the otherwise equivalent formulas in Refs. [5, 6,

10], we keep the chemical potential l and the condensate

mode [UðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ncðrÞ

p
¼ nc= �UðrÞ] separately here, in order

to be able to take partial derivatives with respect to l only. By

virtue of the perturbative expansion (24) and (25), the

effective scattering potential Û ¼
P1

n¼1 Û
ðnÞ

can be expan-

ded in powers of the external potential strength, U=l, up to

the desired order.

3.3 Fluctuation grand potential

The GP of fluctuations, described by the quadratic Ham-

iltonian (34), can be split into the sum of two terms:

X2 ¼ Xð0Þ2 þ dX2: ð40Þ

Indeed, the homogeneous contribution Xð0Þ2 ¼ � ln N0=b

from the partition function N0 ¼ trfexp½�bĤ
ð0Þ
2 �g has been

calculated as the second term in Eq. (13) above. Factoriz-

ing this known contribution, the complete partition func-

tion belonging to the quadratic Hamiltonian (34) can be

written as [26, eq. (10.13)]

trfexp½�bðĤð0Þ2 þ ÛÞ�g ¼ N0 exp½�
R b

0
dsÛðsÞ�

D E
0
; ð41Þ

where the thermal expectation value hXi0 ¼ trfq̂0TsXg
over the Gibbs state q̂0 ¼ N�1

0 exp �bĤ
ð0Þ
2

h i
, as well as the

Matsubara time evolution involves only the homogeneous

Hamiltonian. Thus, the disorder-produced shift in the GP,

�bdX2 ¼ ln exp �
Z b

0

dsÛðsÞ
� �� �

0

; ð42Þ

can now be computed straightforwardly by perturbation

theory in powers of the effective scattering potential (35).

Taking the logarithm leaves us with the connected corre-

lations, which up to second order read

b dX2 ¼
Zb

0

ds ÛðsÞ
* +

0

� 1

2

Zb

0

ds
Zb

0

ds0 ÛðsÞÛðs0Þ
* +c

0

:

ð43Þ
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With the help of Wick’s theorem, all correlations can be

expressed by Matsubara Green functions connecting the

matrix elements (36) and (37) of Û. Expanding these in

turn to second order in the external potential, we find

dXð2Þ2 ¼
X

k

W
ð2Þ
kk mk þ 1

2

h i

þ 1

2

X
kk0

W
ð1Þ
kk0


2 mk � mk0

ek � ek0
� Y

ð1Þ
kk0


2 1þ mk þ mk0

ek þ ek0

� �
:

ð44Þ

This expression for the disorder-induced correction to the

GP of quantum fluctuations is the central result of this

article. Let us emphasize that our approach, starting from

the deformed condensate background, takes into account

all contributions that are of second order in U (and thus

goes beyond the method of Huang and Meng [27, 28]). Fur-

thermore, this result only involves elementary perturbation

theory and does not rely on the replica method. Its obvious

drawback is its perturbative nature. We therefore do not make

any claims concerning the strong-disorder regime, nor do we

cover high temperatures or strongly interacting regimes,

where interactions between excitations become important

(see [21, 29]). Here, we rather wish to provide an account as

complete as possible of disorder effects up to second order in

U=l at low temperatures, where Bogoliubov theory applies.

3.4 Condensate depletion

We are nowin the position to compute the particle number shift

dN2 ¼ �odXð2Þ2 =ol due to the disorder. When this number is

compared to the number of particles in the condensate, Nc,

we find the additional condensate depletion caused by the

inhomogeneous potential, or ‘‘potential depletion’’ for short.

In the partial derivative of (44) with respect to�l at fixed nc,

we set l � gnc � gn in the end because the expression is

already of first order in the dilute-gas parameter and second

order in the disorder strength. We find the following collection

of identities helpful: �o~ek=ol ¼ 1, as well as

� oek

ol
¼ u2

k þ v2
k; ð45Þ

� oSkk0

ol
¼ 2gnk�k0

l
; ð46Þ

with �nq ¼ ½n2
c=ncðrÞ�q. Applying these to Eqs. (36) and

(37), one finds

� oWkp

ol
¼

a2
ka2

p �nk�p þ nk�p

2akapl=g
þ ukvk

ek
þ upvp

ep

� �
Ykp; ð47aÞ

� oYkp

ol
¼

a2
ka2

p �nk�p � nk�p

2akapl=g
þ ukvk

ek
þ upvp

ep

� �
Wkp: ð47bÞ

Via (36)–(39) and nk ¼ V�1
P

k0 Uk�k0Uk0 , we express the

right-hand sides in terms of the perturbative solution of the

Gross–Pitaevskii equation (24)–(25). The relevant expres-

sions up to second order read

gnð1Þq ¼ �2l ~Uq ¼ �g�nð1Þq ; ð48Þ

gn
ð2Þ
0 ¼

X
q

e0
qj ~Uqj2; g�n

ð2Þ
0 ¼

X
q

ð4l� e0
qÞj ~Uqj2; ð49Þ

and

W
ð1Þ
kp ¼ ~w

ð1Þ
kp

~Uk�p; ð50Þ

W
ð2Þ
kk ¼

X
q

~Uq

 2 ~w
ð2Þ
k;kþq; ð51Þ

with ~w
ð1Þ
kp and ~y

ð1Þ
kp as given in Ref. [6] and

~w
ð2Þ
k;kþq ¼ 2e0

k þ 3e0
q þ ðe0

k þ lÞkkq

h i
e0

k=ek; ð52aÞ

~y
ð2Þ
k;kþq ¼ 2e0

k þ e0
q � e0

ke
0
q=lþ lkkq

h i
e0

k=ek: ð52bÞ

The term kkq ¼ ðe0
k�q þ e0

kþq � 2e0
k � 2e0

qÞ=2e0
k vanishes in

the present case of a quadratic dispersion relation e0
k / k2,

but is nonzero in the case of a lattice potential [10].

We can write down the potential depletion as

dnð2Þ ¼ � 1

V

odXð2Þ2

ol
¼ 1

V

X
q

GðqÞ Uq

 2; ð53Þ

with a kernel GðqÞ ¼ ð2lþ e0
qÞ
�2P

k
~M
ð2Þ
kkþq defined in

terms of the envelope

~M
ð2Þ
kp ¼ v2

k þ u2
p þ ðmk þ m0k ~w

ð2Þ
kp Þðu2

k þ v2
kÞ

þ mpðu2
p þ v2

pÞ þ ukvkð1þ 2mkÞ
~y
ð2Þ
kp

ek
� 2þ

e0
k�p

l

" #

� 2
1þ mk þ mp

ek þ ep
ukup þ vkvp þ

ukvk

ek
~w
ð1Þ
kp

� �
~y
ð1Þ
kp

� m0k �
1þ mk þ mp

ek þ ep

� �
ðu2

k þ v2
kÞ
ð~yð1Þkp Þ

2

ek þ ep

� 2
mk � mp

ek � ep
ukup þ vkvp �

ukvk

ek
~y
ð1Þ
kp

� �
~w
ð1Þ
kp

þ m0k �
mk � mp

ek � ep

� �
ðu2

k þ v2
kÞ
ð ~wð1Þkp Þ

2

ek � ep
;

ð54Þ

where m0k ¼ omk=oekjl¼gnc
¼ bðmk þ m2

kÞ. Equation (53)

leaves a certain freedom to exchange p and k in the indi-

vidual components of ~M
ð2Þ
kp . In the spirit of Ref. [6], we

have used this freedom to write down Eq. (54) in a way

that allows the identification of dn
ð2Þ
k �

P
q j ~Uqj2 ~Mk;kþq
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with the momentum distribution of the condensate deple-

tion induced by the disorder. The kernel GðqÞ is plotted for

different reduced temperatures as a function of q in Fig. 3a.

Now, we evaluate Eq. (53) in the case of a disorder

potential with strength U and correlation length r:

jUqj2 ¼ V�1U2ð2pÞ3=2r3 expð�q2r2=2Þ: ð55Þ

Results are shown in Fig. 3b as a function of the disorder

correlation length for different temperature values. In all

cases, there is an increase in the depletion due to disorder.

At first sight surprisingly, this depletion diminishes with

temperature in the regime of uncorrelated disorder r� n.

However, the disorder correction as shown in Fig. 3b is

expressed in units of the homogeneous quantum depletion

at zero temperature (16). Thus, it adds to the thermal

depletion discussed in Fig. 1, to the effect that the total

depletion increases with both temperature and disorder.

We have found (Figs. 1b, 3b) that for temperatures up to

kBT.l and for not too strong disorder U.l, the depletion

dnð0Þ þ dnð2Þ remains of the same order of magnitude as the

zero-temperature homogeneous depletion dn0, which a

posteriori validates the Bogoliubov method.

Finally, we note that the bulky expression for the

envelope function (54) can be simplified significantly in the

Thomas-Fermi regime r	 n, where the condensate profile

can faithfully follow the variations of the disorder potential

on the length scale r. In this case, the disorder correlation

(55) tends to a Dirac d-function and the potential depletion

dnð2Þ is dominated by the diagonal elements ~M
ð2Þ
kk , which

are given as

~M
ð2Þ
kk ¼

ðk2n2 � 1Þð1þ 2mk � 2m0kekÞ þ 2ðk2n2 þ 1Þm00ke2
k

knð2þ k2n2Þ5=2
:

ð56Þ

Summing over k then gives Gð0Þ (left edge of Fig. 3a),

which is proportional to the depletion in the Thomas-Fermi

limit r=n!1 (right edge of Fig. 3b).

3.5 Connection to the canonical frame

At a given value of the chemical potential, the disorder

potential draws more particles into the condensate

[Eq. (27)]. In Refs. [5, 6], the canonical frame is used,

where this effect is compensated by a shift Dl ¼
�
P

q e0
qj ~Uqj2 of the chemical potential [5], which results in

different second-order expressions (49) and (52). In par-

ticular, the expression for the potential depletion given in

Ref. [6, Eqs. (48) and (49)] differs slightly from the one

given here in Eqs. (53) and (54), even at zero temperature.

Equation (54) goes over to its canonical form at fixed nc by

replacing ~w
ð2Þ
kp and ~y

ð2Þ
kp with their canonical expressions

(given in Ref. [6]) and by dropping the term e0
k�p=l in the

second line of Eq. (54). In fact, the difference between the

two frames can be written as

dn
ð2Þ
canonical � dnð2Þgc ¼ Dl

odnð0Þ

ol
; ð57Þ

where dnð0Þ ¼ V�1
P

k½v2
k þ mkðu2

k þ v2
kÞ� is the homoge-

neous depletion at finite temperature. With this shift, the

kernel functions shown in Fig. 3a would begin with the

same values at q ¼ 0 and then decrease monotonically as

function of q without crossing each other. Likewise, the

disorder-induced depletion of Fig. 3b would become

monotonic without crossings; the zero-temperature curve

takes the same form as in Figure 4 of [6].

4 Conclusions

We have applied the grand-canonical formulation to the

problem of disordered Bose–Einstein condensates, which

brings conceptual advantages over the conventional

canonical frame. Once the grand potential is determined,

one obtains relevant physical quantities by differentiation.

The condensate mode UðrÞ plays a special role in the

grand-canonical Bogoliubov approach. In principle, it has

to minimize the grand potential, which includes a back

(a)

(b)

Fig. 3 Disorder-induced condensate depletion (53) for different

values of the dimensionless temperature s ¼ kBT=l. a the kernel

GðqÞ, whereas b the potential depletion dNð2Þ compared to the clean

depletion (16) at zero temperature in units of the square of the

dimensionless disorder: D ¼ dnð2Þ=½dn0ðU=lÞ2�
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action of the excitations on the condensate. For the main

work of this article, we have chosen the equivalent

‘‘semicanonical’’ approach, where one keeps the conden-

sate as a parameter that is inserted only at the end of the

calculation (i.e., after taking derivatives). To the desired

precision, it is then sufficient to determine the condensate

mode by minimizing the ground-state energy.

Concerning physical results, we have mainly focused on

the speed of sound, the compressibility, as well as on the

particle fractions condensate fraction and condensate

depletion. In particular, we have reproduced previous

results [6] on the disorder-induced condensate depletion

from the perspective of the grand-canonical picture and

have extended them to the case of finite temperatures.

Appendix: Grand-canonical condensate density

with beyond-mean-field corrections

In Sect. 2, we have determined the condensate density nc

by minimizing the ground-state energy E0 at fixed l. This

amounts to determining the condensate density, once and

for all, at zero temperature. When the temperature is raised,

then of course thermal excitations will appear, which

deplete the condensate. This effect can be explicitly

accounted for by determining nc directly from the GP X at

finite temperature. Then, using this (now l and T depen-

dent) solution, one has a GP Xðl; TÞ that depends only on

l, and not separately on gnc anymore. The total density

then derives by differentiation with respect to this l alone.

This proper grand-canonical procedure yields the same

results than the ‘‘semicanonical’’ method used in Sect. 2

above, as demonstrated in the following.

Requiring that the homogeneous GP, Eq. (13), be sta-

tionary, oX=oncjl ¼ 0, yields the condensate density

nc ¼
l
g
� 5

ffiffiffi
2
p

12p2

1

n3
�
Z

d3k

ð2pÞ3
mk

oek

ognc


l

ð58Þ

with now a T-dependent contribution. Inserting this solu-

tion into (10) yields actually the same ground-state energy

(12) as before. The reason is that the beyond-mean-field

correction nc ¼ ðl=gÞ þ Dnc does not contribute there to

lowest order, since this correction is only used in the mean-

field term H0, Eq. (3), for which

ðgnc � 2lÞgnc ¼ �ðl� gDncÞðlþ gDncÞ ¼ �l2 ð59Þ

to the order considered. Thus, the ground-state energy

E0ðlÞ is unchanged, just as the GP, Eq. (13). The differ-

ence now is that the excitation energy inside the fluctua-

tions is to be taken at the Bogoliubov dispersion eB
k from

Eq. (8) as function of l alone. Thus, the total number of

particles (for the same l) is now different, namely

n ¼ � 1

V

oE0

ol
�
Z

d3k

ð2pÞ3
mk

oeB
k

ol
; ð60Þ

with oeB
k =ol ¼ e0

k=e
B
k . However, also the condensate den-

sity (58) is now temperature-dependent. The difference

between these two densities is the depleted density

dn ¼ n� nc ¼ dn0 �
Z

d3k

ð2pÞ3
mk

oeB
k

ol
� oek

ognc


l

 !
ð61Þ

with the zero-temperature depletion dn0 given by Eq. (16).

As for the thermal depletion, the dispersion relation is such

that the difference in derivatives appearing there is pre-

cisely the result we had before:

oeB
k

ol
� oek

ognc


l

¼ oek

ol


gnc

: ð62Þ

Thus, (20) still holds as before, and all zero-T results are

identical anyway. It is largely a matter of taste whether one

wants to have a T-dependent contribution to nc or not, and

whether one wants to have the GP depend really on l
alone. Both approaches, strict grand canonical and ‘‘semi-

canonical,’’ are equivalent.
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