
PHYSICAL REVIEW B 96, 245412 (2017)

Hyperfine-induced dephasing in three-electron spin qubits
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We calculate the pure dephasing time of three-electron exchange-only qubits due to interaction with the nuclear
hyperfine field. Within the S = Sz = 1/2 spin subspace, we derive formulas for the dephasing time as a function
of the position within the stability diagram consisting of the (1,1,1) charge region and the neighboring charge
sectors coupled by tunneling. The nuclear field and the tunneling are taken into account in a second order
approximation. The analytical solutions accurately reproduce the numerical evaluation of the full problem, and
in comparison with existing experimental data, we find that the dephasing times are longer but on the same time
scale as for single spins.
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I. INTRODUCTION

Exchange-only qubits have attracted much attention due
to their valuable feature of providing full control over the
qubit by electrical gating of the dots themselves and the tunnel
barriers in between. This can be seen as an evolution of qubit
implementations in solid state systems that started with single-
spin qubits [1], followed by singlet-triplet qubits [2] in double
dots to arrive eventually to linearly arranged triple quantum
dots that are controlled via tunnel couplings to the middle dot
[3–8]. All these systems are prone to decoherence on various
time scales due to both magnetic and electrical noise. Electrical
noise is always present due to fluctuations of the potential on
the gates or background noise in the host material. This can be
addressed by operating the qubit at the so-called “sweet spots”
[5–7]. Magnetic noise is also important in case nonzero nuclear
spins are present in the vicinity of the qubit. This problem is
particularly severe for example in GaAs in comparison to Si
where the natural concentration of 29Si with nonzero spin is
relatively low (around 5%). But even in Si heterostructures,
isotope purification is often the answer if further expansion of
the dephasing time is needed. This underlines the necessity of
studying decoherence and dephasing due to nuclear magnetic
fields in exchange-only qubits [4,9–11], as well as developing
dynamical methods to correct decohering qubits [12–14]. This
research has already progressed much for single-spin qubits
[15–23], and for singlet-triplet qubits as well [24–31]. Much
of these results can also be found in a number of review articles
[8,32,33].

In this paper we try to further enrich our understanding of
the role of hyperfine interaction in dephasing in exchange-only
qubits. Within the S = Sz = 1/2 spin subspace, which is
decoherence-free against noise in a uniform magnetic field
[34], we explore the (1,1,1) charge sector and its surrounding,
see Figs. 1 and 2. We derive analytic formulas for the dephasing
time Tϕ with different logical qubit basis in the aforementioned
charge sectors, where Tϕ is obtained as a function of the
position in the stability diagram. We take the random nuclear
field into account by averaging the density matrix over an
ensemble of magnetic fields, thus obtaining a dephasing time
(generally also denoted by T ∗

2 ) which does not include the T1

relaxation, and in this sense, characterizing the pure dephasing
of the qubit. We then evaluate and discuss our findings, their

accuracy and symmetries, and compare them to results from
the existing literature.

II. THEORETICAL MODEL

In our model we consider a basis that consists of all three-
electron states with a total spin S = 1/2 and a z-projection
Sz = 1/2:

|0〉 = 1√
2

(|↑↑↓〉 − |↓↑↑〉), (1a)

|1〉 = 1√
6

(2|↑↓↑〉 − |↑↑↓〉 − |↓↑↑〉), (1b)

|3〉 = 1√
2

(|↑↓〉1 − |↓↑〉1)|·〉2|↑〉3, (1c)

|4〉 = 1√
2
|↑〉1|·〉2(|↑↓〉3 − |↓↑〉3), (1d)

|5〉 = 1√
2
|↑〉1(|↑↓〉2 − |↓↑〉2)|·〉3, (1e)

|6〉 = 1√
2
|·〉1(|↑↓〉2 − |↓↑〉2)|↑〉3, (1f)

|7〉 = 1√
2

(|↑↓〉1 − |↓↑〉1)|↑〉2|·〉3, (1g)

|8〉 = 1√
2
|·〉1|↑〉2(|↑↓〉3 − |↓↑〉3), (1h)

where the subscript numbers the dot occupied by electron(s)
with the given spin orientation, while |·〉 denotes an empty dot.
We include an additional leakage state |2〉 with a total spin of
S = 3/2 and Sz = 1/2 because it is coupled to states |0〉 and
|1〉 by the hyperfine interaction HHF = ∑3

i=1

∑
k AikSi · Ik:

|2〉 = 1√
3

(|↓↑↑〉 + |↑↓↑〉 + |↑↑↓〉), (1i)

where Aik is the hyperfine constant linking the the nucleus
k with spin Ik to the electron in dot i with spin Si . States
with different z components can be split off with an external
magnetic field. The states |0〉, |1〉, and |2〉 belong to the charge
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FIG. 1. Charge stability diagram: Lowest-energy charge states as
functions of the detunings ε and εm with Uc = 0.2 U . In the absence
of tunneling and hyperfine field, states |0〉, |1〉, and |2〉 are degenerate.

state (1,1,1), while in the other states, the electrons fill up the
TQD according to the charge stability diagram, see Fig. 1.

The second quantized Hamiltonian of our model takes the
form

H =
∑

i

εini + U0

∑
i

ni↑ni↓ + Uc

∑
〈i,j〉

ninj

+
∑

〈i,j〉,σ
ti,j (c†i,σ cj,σ + c

†
j,σ ci,σ )

+ gμB

2

∑
i

δBi(ni↑ − ni↓), (2)

where εi is the electrostatic potential, and ni = ni↑ + ni↓ is the
total number of electrons in dot i and the number of electrons
with a specific spin orientation, respectively. U0 is the on-site
Coulomb interaction potential in case of double occupancy and
Uc is due to interaction of electrons in neighboring sites 〈i,j 〉.
The sums run over i,j = 1,2,3. The tunnel coupling between

FIG. 2. Partitioning of the ε–εm space by the two lowest states
with Uc = 0.2 U . Here |0′〉 denotes the lower of the two states we
obtain after the hybridization of |0〉 and |1〉. The regions of interest
of this paper are shaded.

these sites is denoted by ti,j and c
(†)
i,σ annihilates (creates) an

electron in dot i with spin σ . For simplicity, we neglect the
external magnetic field, it serves only to split off states with
different Sz spin projections. In the Zeeman term, we only
take into account the z component of the Overhauser field
δBi = ∑

k AikIk/(gμB), where g is the Landé g factor and μB

is the Bohr magneton.
In the basis defined in (1), the matrix representation of the

Hamiltonian takes the following form:

H =
(

H01 V

V † Hc

)
, (3)

where

H01 =

⎛
⎜⎜⎜⎜⎝

0 − 1√
3
b+

√
2
3b+

− 1√
3
b+ 2

3b−
√

2
3 b−√

2
3b+

√
2

3 b− 1
3b−

⎞
⎟⎟⎟⎟⎠, (4)

V =

⎛
⎜⎜⎝

1√
2
tl

1√
2
tr

1√
2
tr

1√
2
tl 0 0√

3
2 tl −

√
3
2 tr −

√
3
2 tr

√
3
2 tl 0 0

0 0 0 0 0 0

⎞
⎟⎟⎠, (5)

and Hc can be found in Appendix A. The block H01 describes
the central (1,1,1) region, where the energy scale is shifted so
that these states are degenerate at 0 without tunneling and hy-
perfine interaction. The latter is characterized by b± = bl ± br,
where bl = gμB(δB1 − δB2)/2 and br = gμB(δB2 − δB3)/2
denote the left and right hyperfine field gradients. V accounts
for direct tunneling between the (1,1,1) states and states |3〉,
|4〉, |5〉, and |6〉 with the tunnel coefficients tl = t1,2 and
tr = t2,3. States |7〉 and |8〉 are not coupled directly to the
(1,1,1) states, they are coupled in Hc only to second order
in tl,r. On the other hand, state |2〉 is not coupled to any
other state by tunneling, but only by the nuclear field b±.
The block Hc describes the states around the (1,1,1) region
that have a charge state other than (1,1,1). Hc depends on
ε = ε1 − ε3 measuring the detuning between the outer dots and
on εm = ε2 − (ε1 + ε3)/2 + Uc, which is the relative detuning
of the middle dot. It also depends on the Coulomb interaction
parametrized by Uc and U = U0 − Uc. Uc is added to εm and
subtracted from U0 so that H has a more symmetric form. The
lowest energy states of H in the ε–εm space can be seen in
Fig. 1. The lowest two states however (other than the leakage
state) are the candidates for the logical qubit states, see Fig. 2.

To study dephasing in the (1,1,1) regime and in its
neighborhood where the hybridized |0′〉 state is one of the
lowest two states, we need to carry out separate calculations
according to the partitioning in Fig. 2. In every region, an
effective, reduced Hamiltonian needs to be found so that the
problem is tractable analytically. We start with the central,
|0〉 − |1〉 region. We assume that inside this region, not too
close to its borders, all the states other than the first three
are far away in energy, and if the tunnel couplings are small
enough, we can obtain an accurate approximation by applying
the Schrieffer-Wolff transformation [35] to H keeping only
|0〉, |1〉, and |2〉 and transforming out the rest of the basis
states. This involves the determination of a unitary operator
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e−S so that the basis transformation H̃ = e−SHeS leaves us
with a block-diagonal H̃ where the block with the states we
are interested in is effectively decoupled from the rest of
the states. We calculate this unitary operator with S ∝ tl,r in
the absence of the hyperfine field, and then we apply it to
the full Hamiltonian H with a finite hyperfine field. This is
providing us with an effective Hamiltonian in a transformed
basis |̃n〉 = e−S |n〉 with n = 0, . . . ,8. Up to second order in
tunnel couplings, the resulting Hamiltonian for the |0〉 − |1〉
region in the basis |̃0〉,|̃1〉,|̃2〉 is

H̃01 =

⎛
⎜⎜⎜⎜⎝

− 1
4J+ − 1√

3
b+ −

√
3

4 J−
√

2
3b+

− 1√
3
b+ −

√
3

4 J− 2
3b− − 3

4J+
√

2
3 b−√

2
3b+

√
2

3 b− 1
3b−

⎞
⎟⎟⎟⎟⎠,

(6)

with exchange couplings defined as J± = Jl ± Jr, where

Jl = 4Ut2
l

U 2 − (ε/2 − εm)2
(7)

and

Jr = 4Ut2
r

U 2 − (ε/2 + εm)2
. (8)

We next calculate the unitary operators that diagonalize H̃01

without the hyperfine field, then we apply this transformation
to H̃01 together with the hyperfine field to obtain H̃ ′

01. Here
we assume that the dephasing is due to longitudinal noise,
i.e., the wobbling of the energy levels of the Hamiltonian,
while the transverse noise in H̃ ′

01, which vanishes without the
nuclear field, plays no role. For this reason, we ignore all
the off-diagonal terms in H̃ ′

01 and we solve a 2 × 2 problem
without a leakage state. As we shall see, numerical tests
indeed justify this approximation. The time evolution opera-
tor V01(t) = exp ( − iH̃ ′

01t/h̄) 
 I − iH̃ ′
01t/h̄ − 1

2 H̃ ′2
01t

2/h̄2 is
constructed up to second order in time, where I is the identity
operator and h̄ is the reduced Planck constant. To extract the
qubit dephasing time, V01(t) is applied to the initial state of

1√
2
(|0′〉 + |1′〉), where |0′〉 and |1′〉 are the two lowest states

of H̃ ′
01. The evolution of this pure state can be described by

the corresponding density matrix ρ01(t), and its off-diagonal
element 〈0′|ρ01(t)|1′〉 characterizes the coherence of the state.
The nuclear field however randomizes the matrix elements of
ρ01(t), which we can take into account by averaging over δB1,
δB2, and δB3. Assuming that the δBi nuclear fields have an
uncorrelated, normal distribution around 0 with a variance of
σ 2

z = 〈δB2
i 〉 in the z direction, we can calculate the ensemble

averaged mixed state ρ01(t) up to second order in the hyperfine
field. (The third powers also average to 0.) In our system with
a Gaussian distributed nuclear noise, we can use the ansatz for
the coherence term

〈0′|ρ01(t)|1′〉 = 1
2 (1 − ct2)e

itω− t2

T 2
ϕ 01 , (9)

where the second order short-time approximation is used, for
the second order being the lowest that allows for the extraction
of the dephasing time Tϕ 01. The energy difference between
|0′〉 and |1′〉 is denoted by ω and c is a constant. Tϕ 01 can

FIG. 3. Temporal decay of the coherence 〈0|ρ(t)|1〉. The solid
line is obtained by evaluating Eq. (9) with Tϕ 01 from Eq. (10) and
c = 0, while the dots are calculated using the numerical evaluation
of the full problem without approximations by taking the average
of density matrices of states evolved by H from the initial state of
(|0〉 + |1〉)/√2 with 1000 random realizations of the hyperfine field.
Here ε/U = 0.4, εm/U = 0.5, Uc/U = 0.2, tl/U = 0.015, tr/U =
0.01 and g = 2.0, σz = 15 μT, which corresponds to natural Si [23].
Tϕ 01 = 656 ns.

be extracted from |ρ0′1′ |2/(ρ0′0′ρ1′1′ ), where ρ0′1′ is defined by
(9), and where ρ0′0′ and ρ1′1′ are the diagonal matrix elements
calculated with the corresponding states |0′〉 and |1′〉. The
quadratic term in the power series of |ρ0′1′ |2/(ρ0′0′ρ1′1′ ) equals
−2t2/T 2

ϕ 01, from which we can obtain the dephasing time,

Tϕ 01 =
√

3h̄

|g|μBσz

, (10)

in agreement with Hung et al. [11]. Note that the quadratic
term that delivers Tϕ 01 is independent from c, which makes c

irrelevant for our analysis at the moment. It is interesting that in
the (1,1,1) region, the dephasing time depends neither on the
detuning parameters ε and εm, nor on the tunnel couplings tl,r.
Nevertheless, this result agrees very well with the numerical
solution of the full problem, see Fig. 3.

We now turn to the region in the charging diagram where
the lowest two states are the |0′〉 and |7〉, see Fig. 2. In this
case, we use the Schrieffer-Wolff transformation to separate
the states |0〉, |1〉, |2〉, and |7〉 from the rest to obtain a reduced,
4 × 4 Hamiltonian H̃07. Since state |7〉 is not directly coupled
to any of the first three states, the first 3 × 3 block of H̃07 is
equal to H̃01. Similarly as before, we diagonalize H̃07 such
that the off-diagonal elements of H̃ ′

07 vanish for zero hyperfine
fields. The extraction of the dephasing time leads us to

Tϕ 07 = 2
√

3h̄

|g|μBσz

√
2 + Jl+Jr√

J 2
l −JlJr+J 2

r

. (11)

As we see, unlike in the (1,1,1) region, the dephasing
time depends on the exchange couplings here. We can
identify two limiting cases: if Jl = Jr (for example tl = tr and
εm = 0), Tϕ 07 = Tϕ 01, while if Jl � Jr or Jl � Jr, Tϕ 07 ≈
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2h̄/(|g|μBσz). It can be shown that these are the two limiting
cases for the minimum and the maximum of Tϕ 07.

To obtain results for the opposite region with state |8〉 being
the lowest in energy, we need to interchange tl and tr and
change the sign of ε. This is effectively swapping Jl and Jr,
which leaves Tϕ 07 unchanged, meaning that we can use the
same formula in the opposite region,

Tϕ 08(ε,εm,tl,tr) = Tϕ 07(ε,εm,tl,tr). (12)

In the case of the |0′〉 − |3〉 region, we keep state |3〉
together with the first three states, and we repeat the usual
procedure to arrive to a somewhat more complex expression
for the dephasing time, which can be found in Appendix B.
The asymptotic expressions for two limiting cases however are
the same simple expressions we have found before

Tϕ 03(ε,εm,tl � tr) ≈ 2h̄

|g|μBσz

(13)

and

Tϕ 03(ε,εm,tl � tr) ≈
√

3h̄

|g|μBσz

. (14)

Using again symmetry considerations, we can easily tell
the dephasing time in the regions we have not covered yet:

Tϕ 04(ε,εm,tl,tr) = Tϕ 03(−ε,εm,tr,tl), (15)

Tϕ 05(ε,εm,tl,tr) = Tϕ 03(ε, − εm,tr,tl), (16)

and

Tϕ 06(ε,εm,tl,tr) = Tϕ 03(−ε, − εm,tl,tr). (17)

It can be shown that in all seven regions, Tϕ only depends
on the ratio of the tunnel couplings tl/tr and not on their
magnitude. This is consistent with the fact that the off-diagonal
elements of the corresponding effective Hamiltonians H̃ ′

0n do
not contribute to Tϕ 0n in this approximation. The Schrieffer-
Wolff transformation however relies on the assumption that
the tunnel couplings are small relative to the smallest energy
difference between the two sets of the basis states that are de-
coupled by this transformation. Here and also in general during
the calculation, we neglected terms that were small in third or
higher orders in the tunnel couplings. As a consequence, we
should expect inaccuracies at the borders between the regions
of interest, if we test our results within a distance from a border
on the order of magnitude of the tunnel couplings.

III. DISCUSSION

We evaluated the formulas (10)–(17) for a set of realistic
parameters in the entire shaded region in Fig. 2. The result
can be seen in Fig. 4. At the borders of the various regions,
discontinuities may appear which are a consequence of using
different basis states in the regions. These states typically hy-
bridize close to the borders, which cannot be taken into account
in our model due to the Schrieffer-Wolff transformation. The
discontinuity is apparent at the border with regions on the
left and right, which can be expected from the fact that states
|7〉 and |8〉 are only indirectly coupled to |0〉 and |1〉, and
due to the second order approximation, this coupling is lost

FIG. 4. Dephasing time in nanoseconds for realistic input pa-
rameters: Uc/U = 0.2, tl/U = 0.015, tr/U = 0.01 and g = 2.0,
σz = 15 μT, which corresponds to natural Si [23]. In the upper figure,
the analytic formulas for Tϕ 0n are evaluated, while in the lower figure,
the numerical solution of the full problem is plotted, which is also
accurate close to the borders, see the main text.

entirely in the effective, reduced Hamiltonians H̃ ′
07 and H̃ ′

08.
Nevertheless, a comparison to a numerical analysis reveals that
due to this loose coupling there is indeed a very sharp, steplike
change at these borders, and the overall agreement between
the analytical and numerical results is very good (see upper
and lower part of Fig. 4). The dephasing time plotted in the
lower part of Fig. 4 was calculated by the numerical evaluation
of the full Hamiltonian H , followed by its diagonalization and
the time evolution of an initial state consisting of an equal
superposition of the lowest two eigenstates. This pure state
is then mixed by the hyperfine field and the dephasing time
is extracted from the density matrix the same way as we did
before. With this calculation, we do not need to discriminate
between important and negligible states and the result will
remain valid also close to the borders. The darkest shade of
blue, which can be seen in the numerical results at the borders
in question, is not present in the color bar for the sake of easier
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FIG. 5. Dephasing time in nanoseconds for symmetric input
parameters: Uc/U = 0.2, tl/tr = 1 and g = 2.0, σ = 15 μT.

comparison with the analytical results. There is a narrow peak
here reaching up to 2.5 μs at εm = 0, where we have a sharp
avoided crossing between the states that are only indirectly
coupled to each other.

The transition through the borders between the charge
sectors in the ε–εm space can be fast or slow in the same sense
as in the case of Landau-Zener transitions. The characteristic
speed that makes the difference depends on the energy splitting
in the avoided crossing that is the coupling between the two
states that are crossing otherwise. If one crosses a border
quickly enough, the transitions will be nonadiabatic and we
arrive to a superposition of states not including the ground
state in the given region. If at the beginning, we initialize the
qubit in the lowest two states of the central region, then we will
remain in this basis of H̃ ′

01, and the dephasing time is constant
and given by expression (10) for the whole region of interest.

If one moves slowly, however, and crosses the borders
adiabatically keeping the qubit in the two lowest states, we
will create a hybrid qubit with a charge character, where two
of the three electrons form a singlet state in one dot with
zero spin, thus providing a natural protection against hyperfine
noise. This explains why the dephasing time increases in the
corresponding regions neighboring (1,1,1).

There is an overall twofold rotational symmetry in the plots
meaning that Tϕ(ε,εm,tl,tr) = Tϕ(−ε, − εm,tl,tr). The maxima
can be found in the upper right and the lower left region if tl >

tr (see Fig. 4), and in the upper left and the lower right region
if tl < tr. It can be shown that Tϕ(ε,εm,tl,tr) = Tϕ(−ε,εm,tr,tl)
is valid in general.

The symmetry is even higher if tl = tr. In this case, we
have two mirror planes and Tϕ(ε,εm,tl,tl) = Tϕ(−ε,εm,tl,tl) =
Tϕ(ε, − εm,tl,tl), as shown in Fig. 5. It follows from (10),
(11), and (12) that if tl = tr, then Tϕ(ε,εm = 0,tl,tl) =√

3h̄/(|g|μBσz) in all three regions along the ε axis (εm = 0),
which is the shortest dephasing time. For typical values of
σz, this minimal Tϕ can be found in Table I. It turns out

TABLE I. Tϕ 01 = √
3h̄/(|g|μBσz) evaluated at typical hyperfine

field strengths [23].

Host material GaAs Natural Si 800 ppm 29Si

σz 2.1 mT 15 μT 1.9 μT
g −0.44 2.0 2.0
Tϕ 01 ∝ σ−1

z g−1 22 ns 0.66 μs 5.2 μs

that these dephasing times are on the same time scale as for
single spins [11,15,32], but to be more precise, they tend to
be approximately a factor of 2 larger. Indeed, in GaAs, the
single-spin dephasing time is usually found to be around 10 ns
[25,27,32]. For natural Si, Maune et al. measured a dephasing
time of 0.36 μs [29], and for purified Si with 800 ppm residual
29Si content, Eng et al. obtained 2.3 μs [31].

IV. CONCLUSIONS

Mapping the dephasing time of exchange-only qubits over
a wider region in the parameter space defined by the gate
potentials opens up the possibility for better designs of pulse
sequences where the important distinction has to be made
between gate operations and keeping the qubit intact as long as
possible between subsequent gate operations. Understandably,
the storage of the qubit state should be in relative protection
from potentially competing noise sources, optionally even
outside of the central (1,1,1) region. For this reason, it is
imperative to know how much the qubit is affected by noise
at different coordinates in this parameter space, and how
the map of hyperfine-induced dephasing relates to the map
of the “sweet spots” of charge noise-induced dephasing [5].
Motivated by this end, we calculated the pure dephasing
time of three-electron exchange-only qubits due to interaction
with the nuclear hyperfine field. As our main result, we
derived formulas for the dephasing time as a function of the
position within the stability diagram consisting of the (1,1,1)
charge region and the neighboring charge sectors coupled by
tunneling within the S = Sz = 1/2 spin subspace. The random
nuclear field is taken into account by averaging the density
matrix to an ensemble of magnetic fields up to second order.
The tunnel couplings and the time of the initial states’ evolution
are also approximated up to second order. The analytical
solutions accurately reproduce the numerical evaluation of the
full problem. A comparison with existing experimental data
finds that dephasing of single spins is generally faster by a
factor of 2 than dephasing of three-electron spin qubits. We
demonstrated however that dephasing in our system can be
further reduced by a factor of 2/

√
3 by moving the qubit to

neighboring hybrid qubit regions where the singlet state of two
electrons provide additional protection from nuclear noise. Our
analysis also applies to the resonant exchange (RX), always-on
exchange-only (AEON), and hybrid qubits.

ACKNOWLEDGMENTS

We are grateful for valuable discussions with Maximilian
Russ. This work was supported by the DFG program SFB 767
and by ARO through Grant No. W911NF-15-1-0149.

245412-5



CSABA G. PÉTERFALVI AND GUIDO BURKARD PHYSICAL REVIEW B 96, 245412 (2017)

APPENDIX A: THE HAMILTONIAN BLOCK Hc

The block of H that describes the states around the (1,1,1) region with a charge character

Hc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U − br + 1
2ε − εm 0 0 0 tr 0

0 U + bl − 1
2ε − εm 0 0 0 tl

0 0 U + bl + 1
2ε + εm 0 −tl 0

0 0 0 U − br − 1
2ε + εm 0 −tr

tr 0 −tl 0 U + Uc + ε 0

0 tl 0 −tr 0 U + Uc − ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A1)

Note that states |7〉 and |8〉 are coupled to the (1,1,1) states only in this block and only to second order in the tunnel couplings tl,r.
So that the Schrieffer-Wolff transformation works, the diagonal elements of Hc, must be much larger in absolute value than tl,r.

APPENDIX B: ANALYTICAL EXPRESSION FOR Tϕ 03

In the case of the |0′〉 − |3〉 region, we obtain the dephasing time

Tϕ 03 = 2h̄

|g|μBσz

√
c2

7 − c7c8 + c2
8

, (B1)

where

clr =
√

J 2
l − JlJr + J 2

r ,

c3 = 2 − (ε − 2εm)/U, c4 = t2
l /U,

c5 = 12(Jl − Jr)
2c4

3c
2
lr + {

c3Jr[16c4 + c3(c3Jl + 2clr)] − (
8c4 + c2

3Jl/2
)
[8c4 + c3(c3Jl/2 − clr)] − 4c2

3J
2
r

}2
,

c6 = c3clr[8c4 + c3(c3Jl/2 − 2Jr)]/c5,

c7 = 1 − 2c6
(
8c4 + c2

3Jl/2
)2 + 4c6

(
c5c6 + 2c2

3c
2
lr

)
Jr/clr,

and

c8 = 2c6
(
64c2

4 + 8c3c4(c3Jl − clr − 2Jr) + c2
3

{
Jl

[
c2

3Jl/2 − (4 + c3)clr
]
/2 − c3JlJr + 4J 2

r

})
.
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