

*#WIRBLEIBENZUHAUSE* 

# **Theory seminar:**





# Superconducting quantum hardware for quantum computing

Dr. Amin Hosseinkhani Florian Ginzel Research Group of Prof. Guido Burkard





Universität Konstanz

- Huge investment in developing quantum science and technology.
- EU Quantum Flagship



- Superconducting qubits: one of the most promising candidates to encode quantum information
- Technology companies:

| nature Internation            | al weekly journal of | science       |         |               |    |
|-------------------------------|----------------------|---------------|---------|---------------|----|
| Home News & Comment Research  | Careers & Jobs       | Current Issue | Archive | Audio & Video | Fa |
| Archive Volume 532 Issue 7600 | News Artic           | le            |         |               |    |

#### NATURE | NEWS

<

# Europe plans giant billion-euro quantum technologies project

Third European Union flagship will be similar in size and ambition to graphene and human brain initiatives.

| Google           | IBM              | (intel)            | Microsoft             | The Quantum Computing Company <sup>TM</sup> | rigetti          |
|------------------|------------------|--------------------|-----------------------|---------------------------------------------|------------------|
| SC Qubits        | SC Qubits        | SC and spin Qubits | Topological<br>qubits | SC Qubits                                   | SC Qubits        |
| (Transmon qubit) | (Transmon qubit) | (Transmon qubit)   |                       | (Transmon qubit)                            | (Transmon qubit) |



Universität Konstanz

We study various types of superconducting qubits and their coherence properties.

A. Hosseinkhani Superconducting quantum hardware for quantum computing A

April 23, 2020

### Main literature:

Quantum Engineering: Theory and Design of Quantum Coherent Structures by Alexandre Zagoskin, Cambridge University Press 2011

Review articles:

Rev. Mod. Phys. 73, 357 (2001) Appl. Phys. Rev. 6, 021318 (2019)

Original publications:

Science **326**, 113 (2009). Phys. Rev. B 84, 064517 (2011) Nature Comm. 5, 5836 (2014) Phys. Rev. B 94, 104516 (2016) Science 354, 1573–1577 (2016) And etc.



Konstanz

Online access is made possible by the library of Universität Konstanz

• Content:



## We start by 4 introductory lectures

- Content:
  - → Lectures + Seminars
  - Lecture 1: Physics of BCS superconductors
    By Amin Hosseinkhani
    - Formation of superconductivity
    - → The ground state condensate; single quantum phase
    - → Quasiparticle excitations; gapped from the ground state condensate.
    - → Josephson Junctions; building blocks of SC







- Content:
  - → <u>Lectures</u> + Seminars
  - Lecture 2: Characterizing qubit coherence times
    By Florian Ginzel
    - $\rightarrow$  Environment watching the qubit  $\Rightarrow$  decoherence.
    - → Density matrix formalism
    - → Tracing out the environment
    - → Energy relaxation and pure dephasing





- Content:
- → <u>Lectures</u> + Seminars
- Lecture 3: Superconducting intrinsic noise: Quasiparticle (QP) poisoning By Amin Hosseinkhani

Phys. Rev. Lett. **106**, 077002 (2011) Phys. Rev. B **84**, 064517 (2011). arXiv:2003.04366

 Lecture 4: Suppressing QP-induced relaxation in superconducting qubits: normal-metals, vortices, pulse injection, etc By Amin Hosseinkhani

A. Hosseinkhani, PhD thesis, DOI: 10.18154/RWTH-2018-226909 Nature Comm. **5**, 5836 (2014) Science **354**, 1573–1577 (2016)









- Content:
- → Lectures + <u>Seminars</u>
- Student Seminar 1: Cooper-pair box and Quantronium Suggested references:
- Zagoskin, Sections 2.2.1 and 2.4
- Nature **398**, 786-788 (1999).
- Science **296**, 886-889 (2002).
- Student Seminar 2: Flux and Phase qubit

Suggested references:

- Zagoskin, Sections 2.2.2- 2.2.3 and 2.3.5
- Science **285**, 1036-1039 (1999).
- Phys. Rev. Lett. **89**, 117901 (2002).

### A. Hosseinkhani Superconducting quantum hardware for quantum computing April 23, 2020



Universität Konstanz





- Content:
- → Lectures + Seminars
- Student Seminar 3: Transmon and Fluxonium qubit
  Suggested references:
- Phys. Rev. A 76, 042319 (2007).
- Science **326**, 113-116 (2009).

 Student Seminar 4: Majorana fermions and the prospect of qubit application

Suggested references:

- Semicond. Sci. Technol. 27, 124003 (2012)
- arXiv:1404.0897
- Science **336**, 1003 (2012).





April 23, 2020





- Content:
- → Lectures + <u>Seminars</u>
- Student Seminar 5: Superconducting circuit protected by two-Cooper-pair tunneling
  - Reference: npj Quantum Information 6, 8 (2020)



$$H = 4E_C(N - N_g)^2 - E_J \cos 2\varphi,$$

Universität Konstanz

Student Seminar 6: Multiqubit devices; capacitive and inductive coupling

Suggested reference: Zagoskin, Sections 4.1.1., 4.1.2 and 4.1.3

#### Student Seminar 7: Coupling qubits to resonators

Suggested reference: Zagoskin, Sections 4.2.2., 4.2.3 and 4.2.4, 4.3.1 and 4.3.2



- Please choose your topic by Friday, May 8, 2020 and send me an email with your chosen topic (first come, first served.)
- Grading is based on your given seminar as well as your written report.
- Seminars should take ~ 45 to maximum 60 minutes

Any question?

- The report must be handed in <u>no later than 3 weeks</u> after the seminar is given.
- Should you have questions about the topics you picked, you can discuss them with us. Just send an email and make an appointment.

Zusammen gegen Corona

*#WIRBLEIBENZUHAUSE*