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Monolayer transition metal dichalcogenides (TMDs) offer a novel two-dimensional platform for
semiconductor devices. One such application, whereby the added low dimensional crystal physics
(i.e. optical spin selection rules) may prove TMDs a competitive candidate, are quantum dots as
qubits. The band structure of TMD monolayers offers a number of different degrees of freedom
and combinations thereof as potential qubit bases, primarily electron spin, valley isospin and the
combination of the two due to the strong spin orbit coupling known as a Kramers qubit. Pure
spin qubits in monolayer MoX2 (where X = S or Se) can be achieved by energetically isolating
a single valley and tuning to a spin degenerate regime within that valley by a combination of a
sufficiently small quantum dot radius and large perpendicular magnetic field. Within such a TMD
spin qubit, we theoretically analyse single qubit rotations induced by electric dipole spin resonance.
We employ a rotating wave approximation within a second order time dependent Schrieffer-Wolf
effective Hamiltonian to derive analytic expressions for the Rabi frequency of single qubit oscilations,
and optimise the mechanism or the parameters to show oscilations up to 250 MHz.

I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are graphite-
like indirect band-gap semiconductors in bulk, that when
isolated down to the monolayer (ML) limit become two-
dimensional visible range direct band-gap semiconduc-
tors, with a hexagonal crystal lattice structure1–5. The
combination of optically addressable electron spin and
valley isospin degrees of freedom6,7 and strong spin-
orbit coupling8,9 within a mechanically flexible ML10,11

which may be stacked with other ML materials as part
of the van der Waals (vdW) heterostructure engineer-
ing architecture12–14, has allowed for TMDs to be a vi-
able and desirable host for quantum technologies. Quan-
tum dots (QDs)15, single-photon emitters11,16,17, gate
defined nano-wires18,19, topological materials20,21, ML
superconductors22,23 as well as spin-24,25 and valley-
tronics26,27 have all been proposed or demonstrated with
TMD MLs.

Chemically, the semiconducting TMD MLs consist
of MX2 where M = Mo or W and X = S or Se,
where the M atomic layer is sandwiched between two X
atomic layers1–4, with broken inversion symmetry1,7,28,
and an M − X alternating hexagonal structure in the
plane of the ML1,3,29. The M atoms introduce strong
spin-orbit coupling8,9, which with the broken inversion
symmetry gives rise to spin-split conduction and va-
lence bands6,30,31. Under an out-of-plane magnetic field,
the splitting between the spin states in the conduction
band is shifted due to both a spin- and valley-Zeeman
effect32–35 introduced by a significant Berry curvature at
the band-edges32,36,37. Additionally, the Berry curvature
allows for optically addressable spin-valley states by cor-
rectly applied circularly-polarised light6,36.

QDs in TMD monolayers have been demonstrated by
a number of differenct methods. Electrostatic gating15,
strain11,16 and lattice defects38 have all been shown to
achieve 0-dimensional behaviour in TMD monolayers.
Strain and electrostatic gating however exhibit the most
promise for QDs for quantum information purposes39,

and a number of different methods of implementing a
qubit in a TMD QD have been proposed including spin-
valley Kramers qubits40, in which one and two qubit
gates have been proposed40,41, and pure-spin qubits42.
Pure-spin qubits, were shown to be achieveable by tun-
ing a combination of the QD radius and the out of plane

FIG. 1. Rabi frequency Ω of a MoS2 QD in dependance of
the dot radius Rd and out-of-plane magnetic field B⊥ where
Eac = 10−2 V/nm and B‖ = 1 T. The black dashed line gives
the points of spin degeneracy in the ground states of the K′

valley. Note that the region where the RWA is valid is where
the freqencies calculated off-resonantly from the spin degen-
eracy line are small (blue), whilst the region where the max-
imum Ω deviates from the spin degeneracy line is where the
RWA breaks down. Inset: diagram of the setup considered
in this work of a gated TMD QD of radius Rd (purple rep-
resenting the TMD ML and cyan representing the top gate),
exposed to a static out-of-plane magnetic field B⊥, in-plane
magnetic field B‖ and an in plane AC-electric field Eac.
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magnetic field such that, within one valley, a near-spin-
degeneracy is reached. The magnetic field required to do
so is high (∼ 20 − 30 T) when considering only the nat-
ural spin- and valley-Zeeman contributions of the ML.
However, as previously mentioned, one of the benefits of
2D semiconductors is the access to vdW heterostructure
engineering. Thus, it has been shown that by layering
TMDs with magnetic monolayers such as CrI3 and EuS,
local time reversal symmetery violation in the TMD oc-
curs, significantly enhancing the valley-Zeeman effect ob-
sered in the TMD14,43–45. A similar result may also be
achieved with doping46. The modularity of vdW het-
erostructure devices, along with an optically initialisable
spin state, makes TMD QDs a strong contender to more
conventional bulk semiconductor qubit realisations.

Towards building a 2D quantum processor, the next
step, after realising a qubit, is a scheme for single qubit
gates, i.e. a reliable method of single-qubit state initi-
lasation and control. In this work, we demonstrate that
electric-dipole spin resonance (EDSR) may be achieved
in TMD pure-spin qubits. EDSR requires the coupling of
the qubit spin states to an external AC-electric field47,48,
which drives rotations between the spin states, such that
ideally microwave pulses can be used to perform the
desired single qubit gate. This has been theoretically
shown to be achievable in TMD QDs adopting a Kramers
qubit architechure, with the aid of an additional lattice
defect to mix the valley states40. We show that in a
valley-polarised pure-spin qubit architechure, EDSR is
achievable and with some parameter optimisation (dot
radius, magnetic fields etc.) oscilations of the qubit in
the ∼ 100 MHz regime are feasible.

This paper is structured as follows, firstly, in Sec. II,
the TMD QD Hamiltonian is given and the studied ma-
terial type and parameter regime for the pure-spin qubit
architechures is detailed. Then, in Sec. III, the EDSR
mechanism is introduced in detail, giving all relevant ma-
trix elements, as well as an effective qubit Hamiltanian
given by a time dependent Schrieffer-Wolff transforma-
tion. Thirdly, in Sec. IV, the rotating wave approxi-
mation is applied to derive expressions for the Rabi fre-
quency in the rotating frame. This is followed in Sec. V
by an analysis of the relevant parameters of the system to
maximise the qubit frequency. Lastly, in Sec. VI, a dis-
cussion and comparision of this architechure with other
known architectures is provided.

II. MONOLAYER TMD QUANTUM DOTS

In this work we assume an electrostatic-gate defined
QD in a TMD monolayer. With the appropriate selec-
tion of the TMD type, and a sufficiently large external
magnetic field, it has been shown that the spin-valley
locking may be overcome to provide a host for a valley
polarised pure spin qubit42.

A. Effective Hamiltonian

The energy levels of a single electron in a TMD quan-
tum dot in a perpendicular magnetic field (B⊥) at the
K or K ′ valleys may be obtained by solving the effective
low energy Hamiltonian39,42

Hτ,s
B⊥

= ~ωτ,sc α+α− + τs
∆cb

2
+

1 + τ

2

B⊥
|B⊥|

~ωτ,sc

+
1

2
(τgvl + sgsp)µBB⊥

(1)

where τ = ±1 is the valley index with 1(−1) ≡ K(K ′),
s = ±1 is the spin index with 1(−1) ≡↑ (↓), ωτ,sc is
the spin-valley dependent cyclotron frequency, ∆cb is the
spin-orbit splitting in the conduction band of the TMD,
gvl and gsp are the valley and spin out of plane g-factors
respectively and µB is the Bohr magneton. The spin-
valley dependance of ωτ,sc is due to the spin-valley de-
pendance of the effective mass at the band edges given
as 1/mτ,s

eff = 1/m0
el − τs/δmeff where δmeff is contingent

on the TMD type. The modified wavenumber operators
α± are α± = ∓ilBq±/

√
2 where lB =

√
~/eB⊥ is the

magnetic length and q± = qx±iqy where qk = −i∂k. The
potential of the QD is assumed to be an infinite square
well of radius Rd, which is reasonable when assuming
the electrostatic gates of the dot to be contacted to or
seperated by 1-2 layers 2D dielectric hexagonal boron
nitride15,49. Thus the quantum dot levels as a function
of B⊥ and Rd are given as

ε̃τ,sn,l = ετ,sn,l + τs
∆cb

2
(2)

where

ετ,sn,l = ~ωτ,sc
(

1 + τ

2

B⊥
|B⊥|

+
|l|+ l

2
− γn,l

)
+

1

2
(τgvl + sgsp)µBB⊥.

(3)

Here γn,l is the nth solution to M(γn,l, |l|+ 1, R2
d/2l

2
B) =

0, where M(a, b, c) is the confluent hypergeometric func-
tion of the first kind, given by the hard-wall boundary
conditon to Eq. (1).

B. Single dot spin qubit

The spin-valley locking due to spin-orbit coupling and
crystal symetries can be shown to be overcome, resulting
in a pure spin qubit42 with a TMD QD as opposed to a
spin-valley Kramers’ qubit40. By selecting the appropri-
ate TMD type, dot size and perpendicular magnetic field

a regime where ε
K(K′),↑
n,l = ε

K(K′),↓
n,l may be achieved.

MoS2 is the semiconducting TMD monolayer with the
smallest zero field spin splitting in the conduction band
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∆cb and a δmeff such that the condition εK
′,↑

1,0 = εK
′,↓

1,0

may be achieved for B⊥ ≈ 16 T in the first excited state
(n = 1, l = −1) and B⊥ ≈ 21 T in the ground state
(n = 1, l = 0) assuming Rd ≈ 10 nm. Assuming that the
QD is charged by a valley polarised source, either opti-
cally or by valley polarised leads, a pure spin qubit in an
MoS2 monolayer gated quantum dot may be realised.

III. ELECTRIC DIPOLE SPIN RESONANCE

A. External Influences

To achieve control over the qubit spin states, two ad-
ditional ingredients to the spin-orbit interaction inherent
in the crystal are needed; a spin-mixing interaction and
a driving field. These are achieved by subjecting the QD
to a static in-plane magnetic field and AC in-plane electic
field.

The Hamiltonian describing an in-plane magnetic field
along the x-direction is given as

HB‖ =
1

2
µBg‖B‖sx (4)

where g‖ is the in-plane g-factor, B‖ is the in-plane mag-

netic field and si where i = (x, y, z) is the ith spin Pauli
matrix, i.e. si = (~/2)σi. The in-plane g-factor is as-
sumed in this work to be g‖ = 2, as we assume a clean
crystal sample. The out-of-plane g-factor gs is material

dependent and given by the same 7-band k · p analysis
used to derive the effective Hamiltonian Eq. (1)39.

The real-space Hamiltonian of an AC-electric driving
field along the x-direction is given as

H̃ac = exEac cosωt (5)

where e is the elementary charge, Eac and ω denote the
field strength and frequency of the AC-field and t is time.
In the orbital basis this can be rewritten as approxi-
mately (see App. A):

Hac = σx
eEacRd cos(ωt)

2
√

2
(6)

where σi is the ith orbital Pauli matrix. From these ma-
trix elements, the full Hamiltonian for ESDR in TMD
QDs may be written.

B. 4 × 4 valley-polarised Hamiltonian

Due to our choice of material and B⊥ direction (posi-
tive along the z-axis), the valley in which the spin qubit
is achieved is the K ′. From all the elements collected
in Sec. II and III A, the full Hamiltonian of the valley-
polarised TMD dot with an in-plane magnetic field and
AC-electic field is

HK′ =
1

2


2εK

′,↑
1,0 −∆cb µBg‖B‖

eEacRd cos(ωt)√
2

0

µBg‖B‖ 2εK
′,↓

1,0 + ∆cb 0 eEacRd cos(ωt)√
2

eEacRd cos(ωt)√
2

0 2εK
′,↑

1,−1 −∆cb µBg‖B‖

0 eEacRd cos(ωt)√
2

µBg‖B‖ 2εK
′,↓

1,−1 + ∆cb

 (7)

for the qubit basis and the first excited orbital spin
states ({|l = 0,K ′, ↑〉, |l = 0,K ′, ↓〉, |l = −1,K ′, ↑〉, |l =
−1,K ′, ↓〉}) to which the qubit couples by the driving
field. From this, an approximate 2 × 2 time dependent
qubit Hamiltanian may be derived.

C. Time dependent Schrieffer-Wolff transformation

A second order time dependent Schrieffer-Wolff trans-
formation (TDSWT) is employed to isolate a time de-
pendent effective qubit Hamiltonian50 (for a complete
derevation see App. B). The relevant terms of the trans-
formation are

HEDSR(t) = H̃(0) + H̃(1) + H̃(2)(t) (8)

where

H̃(0) =
∑
s,l

˜ετ,s1,l |s, l〉 〈s, l| (9a)

H̃(1) =
µBg‖B‖

2
sx (9b)

H̃(t)(2) =
E2

acR
2
d[1 + cos(2ωt)]

36~ω0,−1
s,s

σz (9c)

where ωl,l
′

s,s′ is the energy difference between the two QD

levels εK
′,s

1,l and εK
′,s′

1,l′ expressed as an angualar frequency

such that, for example εK
′,↑

1,0 −ε
K′,↓
1,−1 = ~ω0,−1

↑,↓ . The small
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parameters for the TDSWT are the electric field strength
eEacRd/~ω0,0

↑,↓ � 1 and in plane magnetic field strength

µBg‖B‖/2~ω0,0
↑,↓ � 1. Accordingly, Eq. (8) leads to a

block diagonal Hamiltonian for which the relevant time
dependent qubit basis portion may be extracted as

HEDSR(t) =εK′,↑1,0 +
e2E2

acR
2
d[1+cos(2ωt)]

16~ω0,−1
↑,↑

µBg‖B‖
2

µBg‖B‖
2 εK

′,↓
1,0 +

e2E2
acR

2
d[1+cos(2ωt)]

16~ω0,−1
↓,↓

 .

(10)

IV. RABI OSCILATIONS

From the time-dependent qubit Hamiltonian given in
Eq. (10), a transformation into the rotating basis may be
performed and the rotating-wave approximation applied
to derive the Rabi-oscillation frequency in the rotating
frame as

Ω̃ =
3µBg‖B‖e

2E2
acR

2
d

(
ω0,−1
↓,↓ − ω

0,−1
↑,↑

)
4

√(
36~µBg‖B‖ω0,−1

↑,↑ ω0,−1
↓,↓

)2

+
(
e2E2

acR
2
d

[
ω0,−1
↓,↓ − ω

0,−1
↑,↑

]
− 36~2ω0,0

↑,↓ω
0,−1
↑,↑ ω0,−1

↓,↓

)2
. (11)

Note that in this form, the implicit dependance of the

Rabi frequency Ω̃ on B⊥ is within all the ωl,l
′

s,s′(B⊥) fre-

quencies while the depenance of Ω̃ on the spin-orbit split-
ting of the conduction band ∆cb is within ω0,−1

↑,↑ (B⊥,∆cb)

and ω0,−1
↓,↓ (B⊥,∆cb). The difference between the two

however, present in the numerator of Eq. (11) is not de-
pendent on the spin-orbit splitting. Note that, as the spin
splitting due to the spin orbit interaction is decreased,
so too is the maximum Rabi frequency achievable, and
as ∆cb → 0 the in-plane magnetic field small parame-
ter condition of the TDSWT is violated and all of the
calculations made up to this point are no longer valid.

A further simplification of Eq. (11) may be given as its
dominant term

Ω =
µBg‖B‖e

2E2
acR

2
d

(
εK
′,↑

1,−1 − ε
K′,↓
1,−1

)
48∆cb

[
εK
′,↑

1,0 − ε
K′,↑
1,−1

] [
εK
′,↓

1,0 − ε
K′,↓
1,−1

]
~2

(12)

assuming εK
′,↑

1,0 ≈ εK
′,↓

1,0 , i.e. operating at the spin qubit

regime. The physics of the terms dropped from (11) to
give (12) are apparent from the following expansion

Ω̃ = Ω(1 + δ1 + δ2 + . . . ) (13)

where

δ1 =
e2E2

acR
2
d

[
ω0,−1
↓,↓ − ω

0,−1
↑,↑

]
36~2ω0,0

↑,↓ω
0,−1
↑,↑ ω0,−1

↓,↓

×

1 +
e2E2

acR
2
d

[
ω0,−1
↓,↓ − ω

0,−1
↑,↑

]
72~2ω0,0

↑,↓ω
0,−1
↑,↑ ω0,−1

↓,↓

 (14a)

δ2 =

(
µBg‖B‖

)2
2
(
~ω0,0
↑,↓

)2 . (14b)

From this, δ1 can be reasoned as a shift due to the AC
stark effect as it is a perturbation in a higher order of
Eac and δ2 is the plane Zeeman shift due to B‖. From
this form of the Rabi frequency, the effect of the EDSR
fields may be probed.

�� �� �� �� �� ��
�

�

��

��

��

��

FIG. 2. The out-of-plane magnetic field B⊥ dependance
of the Rabi frequency Ω for MoS2 QDs with Rd = 11 nm
(red), 12 nm (black), 13 nm (purple), 14 nm (blue) and 15 nm
(green), with Eac = 10−2 V/nm and B‖ = 50 mT.

Firstly, the effect of the strength of the AC-electric
field Eac is clearly quadratic. As such, this value shall be
fixed at 10−2 V/nm, a reasonably achievable electric field
amplitude that is consistent with the validity of the small
parameter assumption in the following calculations. The
effect of B⊥ can be seen in both Fig. 2 and 3. Fig. 2
shows the dependance of Ω on B⊥ for a number of dot
radii. There is a clear peak for each radius and clear
minimum, where Ω → 0, at which ω0,−1

↓,↓ = ω0,−1
↑,↑ . The

reason for this interference is clear in Fig. 3. The avoided
crossings for the qubit states and the orbitally excited
states do not align with B⊥, as such, there are values
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FIG. 3. The out-of-plane magnetic field B⊥ dependance
of the QD level splittings expressed as angular frequencies
ω0,−1
↓,↓ (red), ω0,−1

↑,↑ (black), ω0,0
↑,↓ (purple) and ω−1,−1

↑,↓ (blue),

for MoS2 QDs of with Eac = 10−2 V/nm, B‖ = 50 mT and
Rd = 15 nm.

of B⊥ that are after one avoided crossing and before the
second. This manifests itself in Fig. 3 where each of the
kinks in the gradient of the ω0,−1

↓,↓ and ω0,−1
↑,↑ lines occur

at the avoided crossings. It is in between these two kinks
that the destrutcive intereference is such that ω0,−1

↓,↓ =

ω0,−1
↑,↑ and Ω → 0. The effect of B‖ is also not fully

apparent from Eq. (12). Of course, from the denominator
as B‖ → 0 so does Ω → 0, as there is no spin mixing
mechanism at this limit, but the relationship between
the two is not linear, as a wider avoided crossing can be
detrimental to the rotation speed. As is seen in Fig. 4,
there is a clear peak in the achieveable Ω at ∼ 50 mT,
followed by a plateau at ∼ 1 T, for a range of radii.

��� ��� ��� ��� ��� ��� ���
�

�

��

��

��

�� �� �� �� ��

���

���

����

FIG. 4. Rabi frequency on resonance for MoS2 QDs with
Rd = 11 nm (red), 12 nm (black), 13 nm (purple), 14 nm
(blue) and 15 nm (green), and Eac = 10−2 V/nm. Inset: Ex-
tracted maximum Rabi frequency Ω with dot radius Rd for
MoS2 QDs with Eac = 10−2 V/nm and B‖ = 1 T.

V. OPTIMAL OPERATIONS

Understanding in detail the effects of each of the con-
tributing EDSR mechanisms on the derived single qubit
rotational frequency now allows for an optimisation of
the EDSR procedure. However, there is still one param-
eter with which the mechanism may be optimised, the
dot radius. Fig. 1 gives Ω̃ in dependence of Rd and B⊥
at constant Eac and B‖, showing a clear peak running
along the spin-degeneracy line as well as the interference
line under the peak. Note that here the full expression
Ω̃ is plotted as to demonstrate where the RWA starts
to break down, as for Rd & 22.5 nm, the higher order
terms deviate the peak from around the spin degeneracy
point and the Rabi frequency divererges past the reaons-
able range of the assumed driving frequency (microwave).
The reduced form of the Rabi frequency Ω gives exactly
the same result below this point, without showing the
deviation at larger dot radii. The inset of Fig. 4 shows
more explicitly the Rd dependance of the maximum Rabi
frequency achieveable when at a fixed B‖ = 1 T. Here a
near logarithmic increase in achieveable Rabi frequency.
This trend is easily exploitable but comes with a signifi-
cant cost in B⊥.

As a proposal for an optimal operational regime, con-
sider a dot of Rd = 20 nm. To satisfy both the condi-
tions of the RWA and experimental preferences, only the
regime where the qubit detuning is within the microwave
range < 300 GHz shall be considered. This is shown in
Fig. 5, where a clear peak region at B⊥ = 23.5 T and
B‖ = 20 mT can be seen. At this optimised point a very
desirable Rabi frequency of ∼ 250 MHz is reached. How-
ever, there is a band where Rabi frequencies ∼ 100 MHz
are attainable, allowing for less precise control of the
magnetic fields to access a desirable frequency range.

VI. DISCUSSION

To implement a pure-spin qubit with fast single gate
operations we find that a good choice consists of an
MoS2 QD of radius Rd = 20 nm, in a external out-of-
plane magnetic field B⊥ = 23.5 T, in-plane magnetic field
B‖ = 20 mT and a microwave frequency AC-electric field

of strength Eac = 10−2 V/nm. This allows for a Rabi
frequency of Ω = 250 MHz. All of the assumed field
parameters are within reasonable viability. The B⊥ re-
quirement is high, however this can be reasonably miti-
gated by vdW heterostructre engineering with magnetic
monolayers. All calculations given assume the qubit is
implemented in a free standing TMD ML, to give an up-
per limit on what would be experimentally required. Re-
cent advances in vdW heterostructure engineering have
shown that significant valley-Zeeman enhancement can
be achieved by layering the TMD on a ML or low dimen-
sional magnetic material14,43,44. Ideally, a vdW stack of
hBN - CrI3 or EuS - MoS2 - hBN would be used to im-
plement a TMD spin quantum processor. The purpose
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FIG. 5. The out-of-plane B⊥ and in-plane B‖ magnetic field
dependancies of the Rabi frequency Ω for an MoS2 QD of
radius Rd = 20 nm where Eac = 10−2 V/nm only within the
microwave qubit detuning range.

of the hBN is to protect the other MLs from degredation
as well as improve the optical response of the TMD for
state initialisation51–53.

The gate speed shown here is an order of magnitude
faster within reasonable experimental limitations than
has been shown in the alternative single dot approach to
TMD qubits, the Kramers qubit40. This assumes a clean
cystal, unlike the Kramers qubit that requires a defect
to mix the valleys. While defects are currently inherent
to TMD samples, they are usually undesirable, and in
the proposed pure-spin qubit scheme offer a dephasing
mechanism. However, the K-valley levels are higher in
energy and become more energetically separated at lower
Rd, therefore, some tradeoff between gate speed and sta-
bility can be made in the case of valley-mixing crystal de-
fects. Additionally, there has recent significant progress
in synthesising low defect rate monolayers by chemical as
opposed to mechanical means54.

The ∼ 100 MHz single gate rotations makes this 2D
qubit implementation competitive with more conven-
tional bulk semiconductor achitechures. Both GaAs
and Si 2D electron gas gated single spin qubits have
experimentally shown Rabi oscillations in the order of
∼ 10 MHz47,55,56. However, in TMDs, these fast gate
speeds are required as spin lifetimes have only been mea-
sured up to a few nanoseconds57. This is however, ex-
pected to improve with the advent of cleaner crystal sam-
ples.The promise of similar to improved speeds attainable
with the TMD device proposed here, in a flexible and
optically active medium, further position 2D semicon-
ductors as exciting novel materials for quantum device
applications.
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Appendix A: Dipole Matrix

The dipole matrix elements represent the off-diagonal
elements that in the case of this work couple the qubit
states with the first excited orbital states. These are
calculated as follows

dnl,n′l′ = 〈ψnl|H̃ac|ψn′l′〉 (A1)

where H̃ac is given by (5). Here the wavefunctions are
derived from Eq. (1) as42

ψn,l = A(γn,l, ρ)eilθρ|l|/2e−ρ/2M(γn,l, |l|+ 1, ρ) (A2)

where A(γn,l, ρ) is the normalising factor. Importantly

for this work, the matrix element 〈ψn,l|H̃ac|ψn,l〉 = 0

while 〈ψn,l|H̃ac|ψn,l′〉 6= 0 for l 6= l′. The value of these
matrix elements can be calculated numerically. The cor-
responding matrix element is dependent on B⊥ and Rd,
however, we find that the dependance on B⊥ is so slight
(< 0.01%) that for this work we shall simply assume

〈ψ0,1|H̃ac|ψ0,0〉 ≈
eEacRd

2
√

2
. (A3)

Appendix B: Full TDSWT Derivation

The time-dependent Schrieffer-Wolff transformation is
a perturbative method to derive an effective block diag-
onal Hamiltonian H̃(t) from a dense Hamiltonian H(t)
such as Eq. (7)50. We proceed by applying the unitary
transformation U(t) = e−S(t), such that

ψ̃(t) = e−S(t)ψ(t), (B1)

and, using the time-dependent Schrödinger equation,
−i~ ∂

∂tψ(t) + H(t)ψ(t) = 0, leading to the transformed
Hamiltonian

H̃(t) = e−S(t)H(t)eS(t) + i~
∂e−S(t)

∂t
eS(t). (B2)

Here S(t) is some block off-diagonal matrix. From this set
up, a power-series expansion can then be applied which
can be simplified to give

H̃(t) =

∞∑
j=0

1

j!
[H(t), S(t)]

(j)−i~
∞∑
j=0

1

(j + 1)!

[
Ṡ(t), S(t)

](j)
(B3)
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where [A,B]
(0)

= A and [A,B]
(n+1)

=
[
[A,B]

(n)
, B
]
.

Here, S(t) is solved for by assuming H̃(t)off-diagonal =
0. At this point no approximation has been made.
The approximation made to solve Eq. (B2) such that

H̃(t)off-diagonal = 0 is a power-series expansion of the
small parameters (in plane electric and magnetic fields)
of the S(t) matrix

S(t) = S(t)(1) + S(t)(2) + S(t)(3) + . . . (B4)

where S(t)n is the nth order of the power-series.

At this point, all the necessary definitions have been
made to perform a general TDSWT, as such, now only a
second order perturbation of the Eq. (7) will be consid-
ered with small parameters are the electric field strength
eEacRd/~ω0,0

↑,↓(B⊥) � 1 and in-plane magnetic field

strength µBg‖B‖/~ω0,0
↑,↓(B⊥) � 1. The effective Hamil-

tonian with corrections up to second order is given by

H̃(t) = H̃(0) + H̃(1) + H̃(t)(2). (B5)

From this, the expansions in H̃(t) can be solved from

Eq. (B2) as

H̃(0) = H0 (B6a)

H̃(1) = H1 (B6b)

H̃(2)(t) =
1

2

[
H2(t), S(t)(1)

]
. (B6c)

Here H0 is the diagonal part of Eq. (B2), H1 is the block
diagonal part omitting the diagonal part of Eq. (B2) and
H2(t) is the block off-diagonal part of Eq. (B2), which
for the case of the EDSR mechanism described trans-
lates as the QD levels H0 =

∑
s,l ε

K′,s
1,l |s, l〉 〈s, l|, in-plane

magetic field Eq. (4) for H1 and AC-electric field maxtrix
elements Eq. (6) for H2. Only S1(t) needs to be solved

for, which is done by applying the H̃(t)off-diagonal = 0
condition giving [

H0, S(t)(1)
]

= −H2. (B7)

So finally, a block diagonal of the qubit and the excited
orbital space may be approximated where the qubit space
of Eq. (B5) is given as Eq. (10).
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31 A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta,

G. Burkard, and V. I. Fal’ko, Phys. Rev. B 88, 045416
(2013).

32 A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke,
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