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The interaction of solid-state electronic spins with deformations of their host crystal is an impor-
tant ingredient in many experiments realizing quantum information processing schemes. Here, we
theoretically characterize that interaction for a nitrogen-vacancy (NV) center in diamond. We derive
the symmetry-allowed Hamiltonian describing the interaction between the ground-state spin-triplet
electronic configuration and the local strain. We numerically calculate the six coupling-strength
parameters of the Hamiltonian using density functional theory, and propose an experimental setup
for measuring those coupling strengths. The importance of this interaction is highlighted by the fact
that it enables to drive spin transitions, both magnetically allowed and forbidden, via mechanically
or electrically driven spin resonance. This means that the ac magnetic field routinely used in a wide
range of spin-resonance experiments with NV centers could in principle be replaced by ac strain or
ac electric field, potentially offering lower power requirements, simplified device layouts, faster spin
control, and local addressability of electronic spin qubits.

I. INTRODUCTION

The nitrogen-vacancy (NV) color center consists of a
nitrogen atom substituting a carbon atom adjacent to
a vacancy in diamond (see Fig. . In the negatively
charged state, it shows a broad fluorescence with zero-
phonon-line at 637 nm™ and possesses a spin S = 1
ground staté®®.  The electron spin of the NV cen-
ter can be initialized, coherently manipulated, and read
out in optically detected magnetic resonance (ODMQ
experiments?, even at the level of individual centers®.
This electronic spin degree of freedom is robust even at
room temperature, and its coherence time is typically a
few microseconds in natural diamond?, reaching millisec-
onds in 2C enriched diamonds?. Because of these favor-
able properties of the NV center, it provides a versatile
and highly coherent platform for the experimental real-
ization of many quantum information schemes. To max-
imize the potential of these defects for various quantum
communicationt X2 quantum sensin , and quan-
tum computing®?2¥ applications, it is crucial to under-
stand the interaction of the center’s electronic system
with its environment, most notably externally induced
electromagnetic fields, and deformations of the crystal
lattice.

In this work, we provide a theoretical description
of the latter, i.e., the spin-strain interaction Hamilto-
nian of the spin-triplet ground-state electronic config-
uration of the negatively charged NV defect. Even
though in recent years this interaction has been stud-
ied intensively™@ 21257 4 our knowledge the correct
and complete form of the interaction Hamiltonian of the
ground-state spin-1 vector S and the 3 x 3 strain tensor
has not been established in the literature. To fill this gap,
we first derive the symmetry-allowed form of the spin-

Figure 1. Nitrogen-vacancy (NV) center in the diamond lat-
tice (Bravais cell depicted as a cube in black). {X,Y, Z} de-
fines the cubic reference frame and {z,y, 2} defines the NV
reference frame. Deformation of the diamond crystal is vi-
sualized in red for €4, = 0.1 strain component. We use this
high strain only for sake of clarity.

strain interaction Hamiltonian, see Eq. . Second, we
present numerical results for the six coupling-strength pa-
rameters appearing in the spin-strain interaction Hamil-
tonian (see Table m), which we compute using density
functional theory (DFT); we find reasonable agreement
with experimental results (see Table . Third, we pro-
pose a setup to measure those two coupling-strength pa-
rameters which have not been experimentally character-
ized yet (Section . Finally, we discuss how the spin-
strain interaction can contribute to various applications
of NVs in quantum information schemes (Section [VI). In
particular, our results reveal the possibility of using elec-



tric signals to control the magnetically allowed spin tran-
sitions of these defects, potentially offering lower power
requirements, simplified device layouts, faster spin con-
trol, and local addressability of spin qubits.

We formulate our results in terms of the spin-stress
interaction as well. We emphasize that our qualitative
considerations apply more generally, to the whole family
of spin-1 electronic states of defects with C5,, symmetry.

II. PRELIMINARIES

We choose the cubic reference frame such that its ori-
gin coincides with the vacancy, and the nitrogen is at
(a/4,a/4,a/4), with a being the width of the cubic cell.
The coordinates in the cubic frame are referred to as X,
Y, Z (see Fig. . The NV reference frame is defined via
its three orthonormal basis vectors, e, = (1,1,1)/v/3,
e, = (1,-1,0)/v/2, and e, = e, x e,. From now on,
unless noted otherwise, we use the NV frame, and z, vy,
and z refers to coordinates in the NV frame. This choice
of the reference frame implies that reflection upon the
xz plane is a symmetry of the structure. This reflection,
together with the 3-fold rotation around the z axis, gen-
erate the point group Cjs, of the defect.

In the presence of a homogeneous magnetic field B =
(Bz, By, B.), and in the absence of any electric field and
strain, the NV spin is described by the following Hamil-
tonian:

He/h=DS: +~.B- S, (1)

where h is Planck’s constant, D = 2.87 GHz is the zero-
field splitting, v, = 2.8 MHz/G is the electron gyromag-
netic ratio, and S = (S, Sy, S;) is the vector of spin-1
Pauli matrices. The eigenstates and eigenvalues of S,
will be labelled according to S,|mge) = mg|mge), where
ms € {—1,0,+1}.

The interaction Hamiltonian of a homogeneous electric
field E = (E,, E,, E,) with the NV spin is constrained

by the C3, symmetry of the defect, and hence described
by 273830

Hg = Hpo+ Hg1 + Hgs, (2a)
Hpo/h = d|S2E., (2b)
HEl/h = dﬁ_ [{SZ7SZ}Ew+{Sy,SZ}Ey], (20)
Hpa/h=dL [(S] = S2)Es + {5, Sy} Ey] . (2d)

Here, the lower indices 0, 1 and 2 refer to the difference in
the electron spin quantum numbers (mg) connected by
the corresponding Hamiltonian; e.g., Hg; has nonzero
matrix elements between |0e) and | + le). The coeffi-
cients d; = 17Hzcem/V and dj = 0.35Hzcm/V have
been inferred in the experiment of Ref. 38, However,
to our knowledge, the coefficient d’, has not been quan-
tified experimentally or theoretically; nevertheless it is
expected?? to have the same order of magnitude as d .

Two remarks on the spin-electric interaction Hamilto-
nian Hg: (1) The presence of Hgy in the spin-electric

Hamiltonian is a clear indication that coherent Rabi
oscillations within the state pairs |[0e) <> | + le) and
|0€) <> | — 1e) can be driven by an ac electric field. This
means, in principle, that any coherent-control experi-
ment where these transitions are driven by ac magnetic
field can also be done by replacing the ac magnetic field
with an ac electric field, e.g., created by a single metal-
lic gate electrode. To our knowledge, this opportunity
which is routinely exploited for various solid-state spin
systems* 43 and is known as electrically driven spin res-
onance or electric dipole spin resonance, has been over-
looked in the literature in the context of the magnetically
allowed |Oe) <> |[+1e) and |Oe) <> |—1) transitions of NVs
and similar defects with C3, symmetry. Since electric
control might bring significant advantages over magnetic
control (simplified device layout, well-confined control
fields allowing for local spin addressability, lower power
requirements, etc), this observation provides a strong mo-
tivation to characterize the coupling-strength parameter
d'| of Hgi both experimentally and theoretically. (2)
The experimental setup we propose in Sec. [V]to measure
spin-stress and spin-strain coupling-strength parameters
can be easily adopted to measure d, .

III. SPIN-STRAIN HAMILTONIAN

In our understanding, the spin-strain interaction
Hamiltonians used in the literature to characterize the
NV (and similar defects with C, symmetry) are incom-
plete. A central result of the present work is the most
general form of this Hamiltonian that is compatible with
the C5, symmetry of the NV. We find that this gen-
eral symmetry-allowed Hamiltonian is characterized by
six independent real coupling-strength parameters hyq,
h43, h25, hgﬁ, h157 hlﬁ, and has the fOHOWing form:

Hs = HEO + Hel + H527 (33’)
Hso/h = [h41(5rz + 5yy) + h435zz]533 (3b)

1 1
Hor = [hasens = Fhan(enn — )] 182052
1
+ 5 (hg@EyZ + h25€ajy) {Sy, SZ}, (3(;)
1 1
Heo/h = ) |:h165zz - §h15(€zz - 6yy):| (55 - Sﬁ)

1
+ §(h168yz + hlSExy){Sz7 Sy}7 (3d)

where ¢;; = (0u;/0x; + Ou;/0x;)/2 denotes the strain
tensor and u(r) is the displacement field. Similarly to
Eq. , the subscripts 0, 1, and 2 here refer to the dif-
ference in the electron spin quantum numbers mg con-
nected by the corresponding Hamiltonian. We present an
elementary derivation of Eq. , as well as a derivation
based on group representation theory, in Appendix [A]
Note that the symmetry-allowed form of the spin-
stress interaction, i.e., when the mechanical deformation
is characterized by the 3 x 3 stress tensor ¢ instead of



Table I. Spin-strain (h) and spin-stress (g) coupling-strength
parameters calculated from density functional theory. See
Appendix |E| for methodological details. Results are rounded
to significant digits.

parameter |value (MHz/strain)|parameter |value (MHz/GPa)
has 2300 = 200 ga3 24+£0.2
ha1 —6420 £ 90 ga1 —5.17£0.07
has —2600 £ 80 925 —2.17£0.07
hae —2830 £ 70 926 —2.58 £0.06
h1s 5700 £ 200 gis 3.6+0.1
hie 19660 £ 90 gie 18.98 +0.09

strain ¢, is completely analogous to Eq. . In what fol-
lows, we adopt a notation for the spin-stress Hamiltonian
H, that is analogous to Eq. , with the substitutions
e—oand h—g:

H, = Hoo + Ho1 + Hoo, (4a)
Hoo/h = [941(0ax + 0yy) + 9430:] 537_ (4b)
Hy1/h = % 926032 — %925(%;» — oyy) | {Sz, 5=}

+ %(9260'1/,2 + 92502y ){ Sy, 5= 1, (4c)
Hyo/h = % -9160':10,2 - 3915(0@«30 - Uyy)- (55 - 52)
+ %(Qwayz + 91502y ){ Sz, Sy - (4d)

Many recent works (e.g., Refs. [19, 2], and [31]) rely on a
heuristic spin-strain Hamiltonians built on an unjustified
analogy between strain and electric field. That approach
does not take into account the 3 x 3 tensor structure
of strain, therefore it provides an incorrect description
of the spin-strain interaction, even in the absence shear
strain. A recent work®® uses a spin-stress Hamiltonian
based on the 3 x 3 stress tensor o; their Hamiltonian
includes 4 real parameters, a1, as, b and ¢. That Hamil-
tonian is equivalent to our H,o + H,2; but incomplete
as it lacks the symmetry-allowed term H,; analogous
to Eq. ; we provide more details on its relation to
our results in Sec. [V We note that using the incom-
plete H,g + Hy2 Hamiltonian in Ref. [34]is justified as an
approximation, since the term H,; is a small perturba-
tion in the magnetic-field range addressed in those exper-
iments. We also remark that in a very recent work*% a
spin-phonon interaction Hamiltonian incorporating ma-
trix elements between |Oe) and | £ le) has been used to
describe spin relaxation in NVs.

IV. SPIN-STRAIN PARAMETERS FROM
DENSITY FUNCTIONAL THEORY

We use DFT to numerically compute the six coupling-
strength coefficients h41, etc., appearing in the spin-
strain Hamiltonian (3)). Methodological details are pre-
sented in Appendix [Bl The results are summarized in
Table[] Therein, we also present the spin-stress coupling-
strength coefficients g41, etc, which we obtain from the
h values using the stiffness tensor of bulk diamond, see
Appendix [C]

In Table [, we compare the numerical DFT results of
Table[[| to the experimental results of Ref.34. In Ref.[34]
four out of the six independent spin-stress coupling-
strength parameters of the spin-stress interaction Hamil-
tonian were measured. Ref. 34| defines these 4 spin-stress
coupling-strength parameters, denoted as a1, as, b, ¢, in
a ‘hybrid’ representation, where the spin-stress Hamilto-
nian is expressed in terms of the NV-frame components
of the spin vector (Sg, Sy, S-) and the cubic-frame com-
ponents of the stress tensor (oxx, oxvy, etc). To be able
to make a comparison between our DFT results and the
experimental ones, we now take the notations of Ref. [34]
and introduce d, e, N, N, to express our spin-stress
Hamiltonian H, in Eq. in this hybrid representation:

H,o/h = M_,S2%, (5a)
Hy1/h = No{Sz, 8.} + Ny {S,, S}, (5b)
Hoo/h = —Mqy(S2 — S7) + My{S2, Sy}, (5c)

where

M, =ai(oxx +oyy +0zz)

+ 2a2(0yz +ozx +oxv), (6a)
Ny =d(20z7z —oxx —oyy)
+e(20xy —oyz — 0zx), (6b)

N, :\/g[d((TXX—Uyy)+€(0yz—azx)], (6C)
My =b(2027 —oxx — 0yy)

+ c¢(20xy —ovz —0zx), (6d)
M, =V3bloxx —oyy) +cloyz —ozx)]. (6e)

The relations between the hybrid-representation param-
eters (a1, ag, b, ¢, d, e) and the NV-frame parameters
(ga1, etc) are given in the first two columns of Table
Importantly, H,o and H,s is identical to the spin-stress
Hamiltonian in Egs. (1) and (2) of Ref. 34l

In Table [[T, the DFT results for the cubic-frame spin-
strain coupling-strength parameters are listed in the third
column, whereas the experimental values®? are listed in
the fourth column*® According to Table [[I} the signs of
the DFT and experimental results are the same, and for
all 4 parameters determined from the experiment, the
order of magnitude matches well with that of the DFT
result. This suggests that the DFT method applied here
captures the key mechanism of interaction between the
electron spin and the mechanical deformation, and gives



Table II. Spin-stress coupling-strength parameters: Compar-
ison of density functional theory and experimental®® results.
Parameters in the hybrid representation (ai, a2, etc.) are
expressed in terms of the parameters in the NV-frame repre-
sentation (ga1, etc) in the second column. Par. and exp. are
abbreviations for ‘parameters’ and ‘experimental results’.

par. relation DFT (MHz/GPa)| exp** (MHz/GPa)
@ 20414943 —2.66 + 0.07 —4.440.2

as s 2.51 £ 0.06 3.7+0.2

b | =ty 1.94 4 0.02 23+0.3

¢ | “2a5—v20s —2.83 4+ 0.03 —3.5+£0.3

d | =estyZe —0.12+0.01 -

e | =2ms—v200 0.66 = 0.01 -

confidence in the predictions for the previously omitted
parameters d and e.

V. METHODS TO MEASURE THE
SPIN-STRESS PARAMETERS

To our knowledge, the spin-stress coupling strength pa-
rameters gos and ga¢ have not yet been measured. In this
section, we propose a method that allows to determine
those in an experiment which combines the controlled ap-
plication of mechanical stress and ODMR. The method,
inspired by the experiment of Ref. [46, requires a finite
magnetic field along the NV axis, which tunes the system
to the ground-state level anticrossing (GSLAC) where the
| — le) and |Oe) electronic states are approximately de-
generate, B, ~ B, = D/v. ~ 1024 G. In that setting,
mechanical stress can induce strong mixing of the spin
eigenstates of the coupled electron-nuclear system via the
coupling-strength parameters go5 and gsg. In turn, the
spin dynamics governed by this mixing can be detected
in a time-resolved fashion, via photoluminescence-based
optical readout of the NV spin system. First, in Sec-
tion [VA] we introduce our model, and show that the
mechanical stress can be thought of as an extra contri-
bution to the external magnetic field, see Eq. . Sec-
ond, in Section [VB| we describe an arrangement that
can be used to determine the axial spin-stress coupling-
strength parameters g41 and g43. Third, in Section [V.C|
we outline the experiment to determine the transverse
coupling-strength parameters go5 and gsg.

A. Effective magnetic field due to mechanical stress

The measurement schemes described here work in the
vicinity of the GSLAC, where the | — le) and |Oe) elec-
tronic spin levels are nearly degenerate. This is where the
stress-induced terms of H,1, which are typically much
smaller than the zero-field spin splitting D, are most ef-
fective in mixing these two electronic spin states. Due to

the presence of the N nuclear spin and hyperfine interac-
tion, there is a hyperfine structure of the energy spectrum
at the GSLAC#?. This is illustrated for the case of an 14N
nuclear spin in Fig. 2} instead of two electron spin levels
crossing at B, = By, there are six levels, with two level
pairs showing hyperfine-induced anticrossings. We focus
on the case when the N atom of the NV center is an N;
the analysis can be generalized straightforwardly for the
15N casdd6H48,

We assume that a magnetic field B, ~ B, is applied,
aligned with the NV axis. Formally we write the mag-
netic field vector as B = (B, By, B.), but we will con-
sider only the case B, = B, = 0. The 9-dimensional
Hamiltonian describing the coupled electron-nuclear sys-
tem in the presence of the magnetic field and mechanical
stress reads

H=H,+H, + H, + Hyy, (7)

where H, is defined in Eq. (1), H, is defined in
Eq. , H,, describes the nuclear Zeeman effect and the
quadrupole moment of the I = 1 spin of the N via

Hn/h = _’YnBzIZ +QI,§7 (8)
and Hpy describes the hyperfine interaction via
th/h:AHSZIZ-FAJ_(Sme—I—Sny). (9)

We use the eigenstates of I, as the basis for the nuclear
spin states, labelled according to I.|mn) = my|mn),
where my € {-1,0,+1}. Note that in H, we use
B = (0,0, B,) for simplicity. The literature values of
the coefficients*” are @ = —5.01 MHz, Aj| = —2.14 MHz,
AJ_ = —2.7 MHz.

The six low-energy eigenstates of the 9x9 Hamiltonian
H are shown in Fig. [2]as a function of the axial magnetic
field B,, in the vicinity of the GSLAC. For this plot, zero
stress is assumed. Solid lines highlight the three levels
that will be utilized to determine the spin-stress coupling-
strength parameters. In Fig. [2] anticrossings are induced
by hyperfine interaction, but far from the anticrossings
the depicted energy eigenstates are eigenstates of S, and
I, to a good approximation, and therefore are labelled
accordingly, as |mge, mn).

When describing the effect of a nonzero mechanical
stress, it is possible and helpful to introduce the notion
of an effective magnetic field vector (@5, ®,, ®.), which
describes the combined effect of the actual magnetic field
and the stress-induced terms in the Hamiltonian. To see
this, let us first focus on the electronic degree of freedom
and the 2-dimensional low-energy electron spin subspace
at the GSLAC. The electronic Hamiltonian in this 2-
dimensional subspace is expressed using the correspond-
ing projector P = |0e){(0e| + |—1e)(—1e| as

0 B.—iB,
PH.P = hr, < B.+iB, p \fB ) . (10)
v B B



In the presence of a nonzero stress, described by the ma-
trix o, this Hamiltonian generalizes to

P, —i®,
0 Ty
P(He +HO')P = h’YE P, +id ’ (11)
=% B, —®,
V2
where we introduced the effective magnetic field compo-
nents

o, = B, + %";(am —Oyy) — %a (12a)
g25 926

(by = By — T%O'xy — anz, (12b)
ga1 943

O, =B, — —(0gs +0yy) — = 02. (12¢)
Ye . e

These expressions reveal that the mechanical stress can
be thought of as an extra contribution to the applied
magnetic field.

B. Measuring the axial spin-stress parameters ga1,
ga3

Our proposed experiment to determine g4 and g43
combines a controlled application of static uniaxial stress,
and optically detected magnetic resonance?®) in an ax-
ial magnetic field that tunes the NV spin system to the
GSLAC. Note that these coupling-strength parameters
have already been experimentally characterized by a dif-
ferent method in Ref. 34l

Energy (hxMHz)

-10

1018 1020 1022 1024 1026

Magnetic field B, (G)

1028 1030

Figure 2. Level structure of the "NV at the GSLAC as a
function of the axial magnetic field B,. All transverse mag-
netic field components and stress are zero, B, = By, = 0,
o = 0. The circle marks the crossing that serves to identify
the stress coupling coefficients g25, g26. The levels coupled
by the hyperfine interaction are shown with the same color
(red solid; light blue dashed). The arrows indicate the bright
radiofrequency magnetic transitions at the corresponding val-
ues of the magnetic field. In the absence of mechanical stress,
the dashed lines are invisible in optically detected magnetic
resonance.

The first stage of our proposed experiment is the ob-
servation of certain parts of the hyperfine level struc-
ture shown in Fig. ] At this stage, no mechanical
stress is applied. In the vicinity of the GSLAC, at
(Bz, By, B2) ~ (0,0,By), the coupled electron-nuclear
spin system is initialized to the state |1(0)) = |0e, —1n)
(blue solid line in Fig. [2) with an optical pulse. Then,
an ac magnetic pulse of a given frequency f, amplitude
B.., and duration 7 is applied. On the one hand, if that
magnetic pulse is off-resonant with respect to all energy
eigenstates in Fig. then the spin system remains in
its initial state, |1)(7)) o |0e,—1n). Then, a readout
optical pulse at time ¢ = 7 will result in significant pho-
toluminescence which is measured. Note that the pho-
toluminescence after the readout pulse is proportional to
the occupation probability of the |0e) electron spin state,
i.e., to the quantity > [(0e, myn|y(r))|°. On the other
hand, if the magnetic field pulse is resonant with one of
the transitions in Fig. [2] then it can change the initial
state to a state |¢(7)) that contains a reduced weight of
the |Oe) state, and thereby the photoluminescence signal
decreases.

To quantify this drop in the photoluminescence signal
upon resonant excitation, we will use the quantity

C=1- > [(0e,mmly(r)], (13)

mr=-—1,0,1

and call it the photoluminescence contrast. This quan-
tity characterizes how effective the magnetic pulse is in
inducing spin transitions: the value of C' is zero for an
off-resonant magnetic pulse, and can take values between
0 and 1 for a resonant magnetic pulse.

The black curves in Fig. Bp visualize the predicted
outcome of this experiment using the photoluminescence
contrast C, cf. Fig. 2 of Ref. 46. Our Fig. demon-
strates that key features of the hyperfine structure of the
spin levels of Fig. 2| can be mapped using this experi-
mental technique. To generate this plot, we calculated
the five resonant transition frequencies from the spec-
tral gaps in Fig. 2] We plot these five curves in Fig. Bp,
where the thickness of each curve is rescaled by the cor-
responding photoluminescence contrast C. Hence, the
black curves in Fig. reveal that for a given magnetic
field, at most two out of the five transitions are bright.
The bright transitions at three specific B, values are
also indicated in Fig. We calculated the photolumi-
nescence contrast C' based on standard two-level Rabi
dynamics in the rotating wave approximation, assuming
resonant driving frequency f, a magnetic pulse strength
b= gupBacT/h = \/5/4, and the ac magnetic field vector
being aligned with the x axis. Note that the above pulse
strength b corresponds to an exact electron-spin m-pulse
away from the GSLAC.

The second stage of the experiment is to repeat
this ODMR spectroscopy in the presence of uniaxial z-
directional strain, o,, # 0. The predicted photolumines-
cence contrast for the case of 0., = 1 GPa is shown by
the orange curves in Fig. [Bpb. Apparently, the spectrum
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Figure 3. Effect of mechanical stress on the photolumines-
cence contrast in optically detected magnetic resonance of an
MNV centre. Black: no stress, orange: ¢.. = 1GPa. The
curves show the dependence of hyperfine transition frequen-
cies as function of the axial magnetic field B, in the vicinity
of the GSLAC. The thickness of each curve is proportional to
the photoluminescence contrast C' (Eq. ; maximal thick-
ness corresponds to C' = 1. (a) High-energy transitions to |1e)
spin states. (b) Low-energy transitions within the subspace
of |0e) and | — 1e).

shifts along the B, axis. Measuring this shift reveals the
spin-stress coupling-strength parameter g43. In fact, sim-
ple analytical expressions can be obtained for the loca-
tions of the ODMR resonances, including the effect of the
considered uniaxial strain. By projecting the 9x9 Hamil-
tonian H to the two-dimensional subspace of |0e, 0n) and
| — le, In), and diagonalizing the resulting 2x2 Hamilto-
nian, we obtain the resonance frequencies corresponding
to the bright low-frequency transitions (blue — red tran-
sitions in Fig. [2)):

1 n 2
:i:\/Ai+4(A—D(1—’;)_Q+%<I)Z> ,

For magnetic fields significantly below the GSLAC, e.g.,
around B, = 1019 G in Fig. Bb, the bright transition
resonance frequency can be approximated by making a
zeroth-order expansion of fy (see Eq. (14)) in 4, and
substituting Eq. to the result, yielding

f+ = —AH +D —~.B, + 9g430. (15)

This implies that g43 can be directly calculated from the
measured stress-induced shift of the resonance frequency

at a given magnetic field (e.g., B, = 1019 G) via

Gas = f+(B:,0..) — f+<Bsz). (16)

UZZ

The third, last stage of the experiment is to obtain g4
by repeating this ODMR spectroscopy in the presence of
uniaxial stress along n = (1,1,0)/v/2. In that case, the
stress tensor reads o;; = n;n;o, hence the three com-
ponents 0., = 0yy = 0gy = 0/2 are nonzero. Because
of the nonzero off-diagonal component o,,, a nonzero
effective magnetic field component ®, is present, see
Eq. , seemingly complicating the previous analysis.
However, assuming that our DFT predictions in Table [I
for the coupling-strength orders of magnitude are correct,
the effect of this o,-induced effective transverse mag-
netic field component on the energy spectrum can be ne-
glected away from the anticrossing, e.g., at B, = 1019 G.
Therefore, in this situation the stress-induced shift of the
resonance frequency can be translated to the coupling-
strength parameter g4; via

ga = f+(BZ,a);f+(Bz,0). (17)

We note that these coupling-strength coefficients g4;
and g43 can also be determined by utilizing the high-
energy |le,1n) spin state at the GSLAC and the cor-
responding ~ 6 GHz ac magnetic field pulses. This is
illustrated by Fig. [3h, where the photoluminescence con-
trast corresponding to the |Oe, 1n) — |le, 1n) transition
is shown in the absence (black) and presence (orange)
of z-directional mechanical stress. The relation between
the coupling-strength parameters and the shift of the res-
onance frequency is the same as for the low-energy tran-

sitions, see Eqs. and .

C. Measuring the transverse spin-stress
parameters go5, g26

Here we propose and quantitatively analyze a method
for measuring the transverse spin-stress coupling-
strength coefficients go5, gog. Similarly to the method in
the preceding subsection, this method also works in the
vicinity of the GSLAC. It is based on the experiment dis-
cussed and implemented in Section IV of Ref. 46, where
Larmor-precession spin dynamics was used to precisely
measure the magnetic-field component perpendicular to
the NV axis (see, e.g., their Fig. 3). Here we focus
on how to measure the coupling strengths gs5, gog in
the case when the magnetic field is aligned with the NV
axis. Our method relies on the observation of Larmor-
precession spin dynamics, which is affected by stress via
the spin-stress interaction described by Eq. . The role
of the transverse magnetic field components B, and By, in
the experiment of Ref. 46l is played by the stress-induced
transverse effective magnetic field components ®, and @,
in our setup.



First, recall the experimental scheme of Ref. [46] for the
special case when B, is tuned to the blue-red level cross-
ing in Fig. 2] B, = B., denoted by a circle. The two
states that meet at the crossing are, to a good approxi-
mation, |Oe, 1n) and |x) = (a|Oe Ony+|—1le, 1n)),

ey
where o = QJ“% ~ 0.5. For the readout, it will prove

1rnp0rtant that the weight of |x) in the |Oe) subspace

is |(0e, On|x)|?> ~ 0.2, significantly lower than 1. In the
presence of a small transverse magnetic field, the blue-
red level crossing in Fig. [2]is split to an anticrossing, due
to a coupling Hamiltonian matrix element between these
states, which enters the two-level Hamiltonian of |Oe, 1n)

and |x) as
B, —iB,
. (18
; ) (19)

H, o= e ( 0
2(14+a?) \ By +1iB,

In this setup, the experiment starts with an optical
pulse that initializes the spin system in [¢)(0)) = |Oe, 1n)
at t = 0. Because of the finite transverse magnetic field
in Eq. , this initial state is not an energy eigenstate,
and therefore the time evolution [¢(t)) exhibits complete
Larmor-precession cycles between the two states |Oe, 1n)
and |x). To observe this Larmor precession, the photo-
luminescence contrast C(7) was measured®® as a func-
tion of the waiting time 7 following the initialization.
This photoluminescence contrast C'(7) reveals the Lar-
mor precession, since the state |y) is mostly outside the
|0e) subspace. The frequency of this Larmor precession
is derived from Eq. :

[ 2 /

Here, we suggest to adopt this scheme to character-
ize the effective transverse magnetic field components
®, and ®, defined in Eq. , and thereby measure the
spin-stress coupling-strength coefficients go5 and gog. For
simplicity, we make the following specifications. First,
we take B, = B, = 0. Second, for an arbitrary uni-
axial stress o;; = on;n;, defined by its direction n =
(ng, ny,n.) and magnitude o, we suggest to tune B, to
the ‘virtual crossing point’, i.e., to a value B, = B.,
where the energy eigenvalues of |0e,1n) and |y) would
be degenerate in the virtual situation when the trans-
verse effective magnetic field components are turned off,
&, = &, = 0. That is guaranteed for ®, = B, which,
together with Eq. implies

- n, + n; + n
B, = B, + 941( ) 943 o (20)
Ve

This simple expression reveals that this virtual crossing
point can be identified once the parameters g41 and g43
have been measured, e.g., using the method of the pre-
ceding section.

At this virtual crossing point, the role of the trans-
verse effective magnetic fields ®, and @, is completely
analogous to the role of B, and B, in Ref. 46. Namely,

they force the spin system initialized in |Oe, 1n) to exhibit
complete Larmor precessions between the states |Oe, 1n)
and |y), with the Larmor frequency (cf. Eq. (19))

/2
L= m%\/@%‘i‘@i- (21)

From this, and using Eq. for the effective magnetic
fields, we find

2
fr = Zaind + g3en2nd + gasgaenan-(3n2 —n2)
e o(1 + a2)

with ny = (/n2 +n2.

Our result allows the identification of the coef-
ficients go5 and g9 by applying the uniaxial stress in
different directions and then measuring the Larmor pre-
cession frequency. For example, the absolute value of go5
can independently be measured by applying the uniaxial
stress in the direction m = (1,1,0)/v/2. In that case,
Eq. implies that this coupling-strength parameter is
deduced from the measured Larmor frequency via

lg25] = /81 & a2)|{f| ~ 3.17J;L|. (23)
Analogously, the absolute value of gog can independently
be measured with the uniaxial stress applied in the di-
rection n = (v/3,1,1)/y/5; for that case, we find

VI0U+0%) fr g oS (24)

|926|
2 |o| o]

We note that this procedure only allows us to deter-
mine the absolute values of the coupling-strength coef-
ficients. Nevertheless, it is straigthforward to generalize
the above procedure to determine the signs of the coeffi-
cients by utilizing a finite tranverse magnetic field. E.g.,
following up on our first example above, let us assume
that we apply compressive uniaxial strain ¢ < 0 along
n = (1,1,0)/v/2. If the sign of go5 is indeed negative, as
indicated by our DFT results in Table[l] then the trans-
verse effective magnetic field components read ¢, = 0
and ®, = B, — p|o|, with p > 0. Hence, according to
Eq. , the Larmor precession is slowed down gradu-
ally as a magnetic field component along the y axis is
switched on. On the other hand, if the sign of go5 is pos-
itive, then a small y-directional magnetic field will speed
up the Larmor precession.

VI. DISCUSSION
A. Potential applications

Time-dependent mechanical deformation for resonant
spin control. Coherent spin control in NVs via ac me-
chanical deformation has been demonstrated with ~ 1



MHz Rabi frequency for the magnetically forbidden | —
le) <> |le) transition®’. Our results imply that the other
two, magnetically allowed, transitions, |0e) <> |+1e), can
also be induced in a similar fashion. This suggests that,
in principle, the ac magnetic field used routinely for spin
control in NV-based experiments can be substituted by
ac mechanical driving. From the spin-strain Hamiltonian
H. of Eq. , we estimate that an ac strain €., with an
amplitude of 0.01 can provide mechanically induced Rabi
oscillations for the magnetically allowed transitions with
a Rabi frequency of ~ 5 MHz.

Time-dependent electric fields for resonant spin con-
trol. According to Eq. , an externally induced electric
field interacts with the NV spin, allowing for coherent
electric control of all three spin transitions of the NV.
Electric control of the magnetically forbidden transition
has been demonstrated in SiC#3 but that of the mag-
netically allowed transitions has yet to be achieved. In
Ref. [43] electrical Rabi frequencies of ~ 1 MHz were re-
alized for the magnetically forbidden transition. This
Rabi frequency is proportional to the coupling-strength
parameter d . Furthermore, from the dielectric strength
of SiC it was estimated that ~ 60 MHz electrical Rabi
frequencies should be reachable, comparable to magnetic
spin control with millitesla driving strength®®1 Noting
that the d; parameter and the dielectric strength are
similar for NV centers in diamond, and the d’| parame-
ter is expected“” to be of the same order of magnitude
as d , we speculate that the electrical Rabi frequencies
for the magnetically allowed transitions in diamond NVs
centers could also reach a few tens of MHz.

Electrically driven, mechanically assisted spin reso-
nance using piezoelectric elements. Our results regard-
ing the spin-strain coupling in Cs, symmetric defects
promote a new way of using electric signals for coher-
ent control, for all three transitions between the spin-1
basis states. Dynamical mechanical deformation can be
created by ac electric fields (voltages) via piezoelectric
elements attached to the diamond crystal, e.g., a ZnO
layer. The functionality of such arrangements has al-
ready been experimentally demonstrated using interdig-
ital transducers serving as transmitters and receivers of
surface acoustic waves of the diamond crystal>?38, The
magnitude of strain created by the ac electric field could
further be enhanced using mechanical cavity resonators>#
for the surface acoustic waves. The mechanical waves,
when tuned to resonance with the defect spin transition
frequency, can then drive coherent spin Rabi oscillations.
This working principle allows for devices where coherent
control of the defect spins is performed via electrically
driven, mechanically assisted spin resonance.

B. Open problems

Ezperimental characterization of the spin-strain and
the spin-electric parameters. As discussed above, the
spin-strain (spin-stress) coupling-strength parameters of

H.y (Hy1), namely hos and hag (g25 and gog, or d and
e, depending on the representation), are yet to be char-
acterized experimentally. Simliarly, the corresponding
spin-electric coupling-strength coefficient?” d'| in Eq.
is yet to be measured. We emphasize the technological
relevance of these parameters: the terms they multiply
in the Hamiltonian can induce magnetically allowed spin
transitions, i.e., of the |0e) <+ | = le) type; therefore, for
systems where these parameters are sufficiently strong,
ac electric or ac mechanical driving could substitute the
ac magnetic field that is routinely used in most coherent
spin-control experiments.

Quantitative description of mechanically and electri-
cally driven electron spin resonance. The static spin-
strain Hamiltonian and the DFT-based coupling-
strength parameters in Table [I] can be used to estimate
the time scale (Rabi time) of spin control for an ac me-
chanical drive with a given strain pattern. However, it
is known from the theory of spin-orbit-mediated electri-
cally driven spin resonance?®3, that even if an electric
field does not modify the spin Zeeman splitting, it can in-
duce transition between spin states. Hence it is expected
that an accurate description of mechanically or electri-
cally driven spin resonance for the NV, which probably
involves electronic spin-spin and spin-orbit interactions,
requires a careful treatment of dynamical effects.

Interaction of strain and electric fields with nuclear
spins. The coherence time of the nuclear spin of the
N atom in the NV exceeds that of the ground-state
electronic spin, and can be used as a long-lived quan-
tum memory”%. Furthermore, the NV can interact with
13C nuclear spins located in its vicinity. These highly
coherent nuclear spins are heavily exploited in NV-
based quantum-control experimentg2 2446500556 - which
is a strong motivation to understand the interaction of
solid-state nuclear spins with electric and strain fields.
Important steps in this direction have already been
taken®62 but the experimental and theoretical charac-
terization of the spin-electric and spin-strain interactions
for NV nuclear spins is yet to be done.

We anticipate that the nature of the problem is qual-
itatively different for (i) a spin-1/2 nuclear spin, e.g.,
of a N or a C atom, and (ii) a nuclear spin that
is larger than 1/2, e.g., of a “N atom. In case (i) the
nuclear spin does not interact directly with electric or
strain fields®?. However, these fields do interact with the
electronic spin, which can serve as a quantum transducer
that translates these fields to the nucleus via the hyper-
fine interaction®?o8BRCLOL0 (Knight field). In case (ii),
the nuclear spin has a nonzero electric quadrupole mo-
ment, and therefore can interact directly with electric
and strain fields via the local electric-field gradient®?/63,
Then, the direct interaction and the hyperfine-mediated
interaction will compete. In both cases (i) and (ii), the
results of our present work can serve as a starting point
to evaluate the hyperfine-mediated contribution.



VII. CONCLUSIONS

We have established the spin-strain and spin-stress in-
teraction Hamiltonians for the NV ground state, and nu-
merically determined the six independent parameters of
this Hamiltonian using density functional theory. Fo-
cusing on the new Hamiltonian term H.; identified in
this work, we proposed an NV-based experimental setup
where spin effects caused by a static mechanical deforma-
tion can be observed, and suggested coherent mechanical
or electric spin control of the the magnetically allowed
spin transitions. All qualitative considerations of this
work should hold for the whole family of defects with
C3, symmetry and spin-1 electronic states.
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Appendix A: Symmetry analysis of the spin-strain
Hamiltonian

In this Appendix, we describe two derivations of the
symmetry-allowed spin-strain Hamiltonian H. of Eq. .
The first derivation is an elementary one, without refer-
ence to group representation theory, whereas the second
one builds upon concepts of the latter. The two methods
yield the same result Eq. .

1. Elementary derivation

Our goal is to find the most general form of the Hamil-
tonian describing the interaction between a homogeneous
strain and the ground-state spin (spin-1) of the NV. More
precisely, we aim at finding the most general form of the
interaction that is (i) allowed by the requirement of time
reversal symmetry, (i) allowed by the spatial symmetries
(Cs,) of the structure, (iii) linear in the elements of the
strain tensor e.

The interaction Hamiltonian should be quadratic in
the components of the spin vector S = (S, S5,,5,), as
time reversal symmetry changes the sign of those, and the

interaction Hamiltonian should be invariant upon time
reversal. Our S is dimensionless, fulfilling S? = 2.
Therefore, our starting point is the Hamiltonian

H. = >

a,B,v,0€{z,y,z}

hamgSaSgaw;, (Al)

where h is a four-dimensional matrix with real entries.
Apparently, h has 81 independent elements; this will now
be reduced, first without invoking any symmetries of the
considered system.

To this end, we exploit the fact the 9-element set
{8.58]la, 8 € {x,y,2}} is overcomplete (linearly de-
pendent) in the six-dimensional vector space of 3 X
3 Hermitian time-reversal invariant matrices. A six-
element basis of that vector space is provided by,
€8 (1, 3{S,, Sy}, 1{Sy. 5.}, 1{S.. 5.}, 52,52 — §2) =
(30,%1,...,55). We will neglect the unit matrix X
from now. Furthermore, we will refer to ¥ as a map
(Sﬂc7 Sy7 SZ) = Z(S) = (Ela 223 ceey 25)

A further simplification is allowed by the fact that
the strain tensor is symmetric. Therefore it can be
thought of as a six-dimensional column vector, ¢ =
(Eza) Eyy» €22y Eyzy Ezay smy)T. We will consider € as a func-
tion that maps the strain tensor to a six-dimensional vec-
tor, £ — €(g).

Using these simplifications, we can express the most
general Hamiltonian as

5 6
He = Z Z hnvzne'm
n=1v=1

where h is a 5 x 6 matrix with real entries, i.e., it is
characterized by only 30 independent elements.

We will now further reduce this number using the spa-
tial symmetry of the NV. Its symmetries are the isome-
tries in the group Cs,. Those are generated by a 3-fold
rotation around the z axis, R, and the reflection on the
xz plane, M. These isometries are represented on a po-
sition vector by the 3 x 3 matrices

(A2)

27 27

cos 5 —sin =t 0
R=| sin% cos?T 0 |, (A3)
0 0 1
and
1 00
M=|0-10], (A4)
0 0 1
respectively.

A point isometry transforming the structure also trans-
forms the associated physical quantities. For us, one of
the relevant quantities is the strain tensor, which is trans-
formed as € — ReR™! and € — MeM~!. The other
relevant quantity is the spin vector, which transforms as
a pseudovector (or axial vector). That is, the rotation is



represented on the spin as S — RS, but the reflection is
represented as S +— M’S with
-10
M=1 01
0 0 -1
We require that the Hamiltonian is invariant against

the transformations of the point group of the structure;
formally that is written as

5 6 5 6
DY hneZa(S)en(e) = YD hnuEn(RS)e,(ReRTY),

0
0 (A5)

n=1v=1 n=1v=1
(A6)
and
5 6 5 6
SN hnZa(S)en(e) = 0D hanZn(M'S)e,(MeM 1),
n=1v=1 n=1v=1

(A7)

Both of these equations form a homogeneous linear set
of 30 equations, with the 30 h,, coupling-strength coeffi-
cients being the unknowns. Hence these equations estab-
lish linear relationships between the various h.,, coeffi-
cients, that is, they reduce the number of free parameters
in the Hamiltonian.

These equations can be solved, e.g., symbolically using
computer algebra. Inserting the solutions to H. yields
our symmetry-allowed spin-strain interaction Hamilto-
nian of Eq. (3).

2. Derivation based on group representation theory

The C, symmetry group of the NV has three irre-
ducible representations (irreps): the trivial 1D irrep Ay,
the 1D irrep As and the 2D irrep E. The quadratic spin-
component combinations that transform according to the
trivial A; irrep are

FEPY = 52 4 82, (A8)
fa, Spm =52 (A9)

Analogously, the hnear strain-component combinations
tranforming as A; are

f(straln) rn + Eyys (A].O)

(A11)

We will refer to the number of these combinations as
n(A;) = 2. There are no such combinations transform-
ing according to A, i.e., n(4z) = 0. The quadratic
spin-component combinations forming 2D vectors, which
transform according to the 2D irrep E, are

f(straln)

. 2 _ Q2
= (e ) (A12)
_{Sxﬂ Sy}
(Spm) {SZWSZ} A13
E2 ( {Sy,sz} . ( )

10

Analogously, the linear strain-component combinations
forming 2D vectors, which transform according to F, are

(strain) _ Exz — Eyy Al4

E,1 ( —25xy ) ’ ( )

strain Exz

e = ( ) . (A15)
Eyz

These imply n(E) = 2.

The symmetry-allowed spin-strain Hamiltonian is an
arbitrary linear combination of the scalar products of
the above-defined (1D and 2D) vectors that transform
according to the same irrep. Formally, this is written in
a compact fashion as follows:

n(T)

Z Z CFUT( lgipin) ’ lgij;rain)> . (A16)

I'€irreps o,7=1

Here, the quantites cr,- are independent real coefficients
(coupling-strength parameters) that are not constrained
by symmetry, and can be determined from microscopic
models or experiments, as discussed in the main text. Ac-
cording to the counts of the previous paragraph, the sum
in Eq. has 8 terms, and therefore there are 8 in-
dependent coupling-strength coefficients. However, since
a uniform energy shift of the spin states in the Hamilto-

nian can be disregarded, and f(bpm) nd f(bpm) do add

up to a constant due to S% + 55 + 52 = 2, we can set
CA;,11 = CAy,1,2 = 0 without the loss of generality. This
implies that there are six independent nonzero coupling-
strength parameters.

Direct evaluation of the terms in Eq. (A16) and com-
parison with Eq. allows to establish the relations be-
tween the coupling-strength coefficients:

cay 2.1 = ha, (Al7a)
cay,2,2 = hag, (A17D)
CE1,1 = ihw, (Al7c)
CE12 = _%hlﬁ, (A17d)
CE21 = —ihzs, (A17e)
CE2,2 = %h26 (A1T7f)

Appendix B: Computing spin-strain parameters
with density functional theory

We determined the spin-strain coupling-strength pa-
rameters using numerical DFT calculations. We applied
DFT for electronic structure calculation combined with
geometry optimization, using the PBE functional®® in
the plane-wave-based Vienna Ab initio Simulation Pack-
age (VASP )T The core electrons were treated in the



projector augmented-wave (PAW) formalism™. The cal-
culations were performed with 600 eV plane wave cutoff
energy. The model of the NV in bulk diamond was con-
structed using a 512-atom diamond simple cubic super-
cell within the I'-point approximation. We use a nega-
tive sign convention for compressive strain. To model the
structure subject to mechanical strain, described by the
strain tensor e, we deform the cubic supercell to a paral-
lelepiped, whose edge vectors are obtained by transform-
ing the undeformed edge vectors with the matrix 1 4 ¢
in the cubic reference frame, and allow the atomic posi-
tions to relax. For each strain configuration, the elements
of the 3 x 3 zero-field splitting matrix D, defining the
ground-state spin Hamiltonian via H = ST . D . S, were
calculated using the VASP implementation by Martijn
Marsman with the PAW formalism™2.

We illustrate our methodology to obtain the six spin-
strain coupling-strength coefficients with the example of
hig. To determine hig, we deform the supercell using
a strain tensor whose only nonvanishing element is ¢,
and obtain the D matrix from the calculation. Due to
Eq. , the chosen strain configuration implies that the
Hamiltonian has the form

1 0 hig O
H = isyzST' h16 0 h26 S. (Bl)
0 he O

This, together with the above definition of the D matrix,
yields

(B2)

To be able to estimate the numerical error of our DFT
calculations, we infer the derivative in Eq. using
a sequence of calculations with 11 equidistant values of
€y» between -0.01 and 0.01. The resulting D, (e,.) data
points are shown in Fig. From a linear fit, shown as
the solid line in Fig. we infer the coupling-strength
coefficient hig via Eq. and its standard deviation.

Similar procedures can be applied to determine the
remaining five coupling-strength parameters, and the re-
sults are shown in Table [l with the following remarks.
(i) To obtain the value of hy; and its error in Table
we calculated the corresponding results from the €., de-
pendence of the D matrix, as well as from its e, de-
pendence, and averaged these results. (ii) We used sim-
ilar averaging in the case of hog and hig, which we cal-
culated from from the ., dependence, as well as from
its ¢, dependence (the latter is illustrated in Fig. [4)).
(iii) We determined the values for hos and his from the
€gy dependence. In Table EL we also present the spin-
stress parameters (g41, etc), which we determined from
the DFT-based spin-strain parameters using the conver-
sion procedure detailed in Appendix [C]

11

calculation @
100 linear fit —— ¢

D,y (MHz)

-0.01 -0.005 0 0.005 0.01

Figure 4. Strain dependence of the zero-field splitting matrix
element D,,. Data points show the DFT results for the ma-
trix element D,,, as a function of the strain component ez,
with all other strain components set to zero. Solid line shows
a linear fit, with a slope of 9832 + 9 MHz/strain, allowing to
obtain the coupling-strength parameter his via Eq. .

Appendix C: Converting spin-strain parameters to
spin-stress parameters

To calculate the spin-stress coupling-strength param-
eters in Table [] from the DFT-based spin-strain pa-
rameters, we start from the stiffness tensor C' of bulk
diamond, and take the following values™ for its ele-
ments in the cubic reference frame: C7; = 1076 GPa,
Cio = 125 GPa, Cyy = 576 GPa. First, we trans-
form the stiffness tensor to the NV frame; we denote
the resulting 6 x 6 stiffness matrix in the Voigt notation
as C. To convert our spin-strain Hamiltonian Eq.
to spin-stress Hamiltonian, we express the strain com-
ponents in Eq. using stress components via € =
C~ 1o, where € = (Ezas Eyy» €22y 26ys, 2650, 264y) and o =
(Ozas Oyy, 022y Oyz, 0za, Ozy) are now also in Voigt nota-
tion; note the factor of two in front of the off-diagonal
strain components.

The inverted stiffness tensor in the NV frame reads

Cht ot ot 0o CcE o
n Cn Cp 0 =Ch 0
Cnt Opt Oxt 0 0 0
0 0 0 Cit 0 O
1 1—51 O O 4;11 0
0 Ci 0 Cg

15
0 0

yielding the following following expressions for the spin-



stress parameters:

10

11

12

13

14

15

ga1 = ha1 (O3 + OR') + hus O (C2a)
gz = 2hy1 Ot + haz O3 (C2b)
go6 = h%%O;f — has Ot (C2c)
925 = has (O3 — O') — hosCr' (C2d)
gi6 = hméC;ll - h15Cf51 (C2e)
915 = h1s (O3 — ') — hiCy! (C2f)

12

These relations, together with the numerical values of
the inverse stiffness matrix elements,

C' =86-107° 1/GPa,

Ot =83-107° 1/GPa,

—1

Cpl =198-107° 1/GPa, Cgg' =186-107° 1/GPa,

Ozt =9-107° 1/GPa,

o =—7-107° 1/GPa, Cp'=—-4-107°1/GPa,
Ci = —17-107° 1/GPa,

are used to obtain the g41, etc values in Table m
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