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We theoretically investigate the influence of the fluctuating Overhauser field on the spin of an
electron confined to a quantum dot (QD). The fluctuations arise from nuclear angular momentum
being exchanged between different nuclei via the nuclear magnetic dipole coupling. We focus on the
role of the nuclear electric quadrupole moments (QPMs), which generally cause a reduction in inter-
nuclear spin transfer efficiency in the presence of electric field gradients. The effects on the electron
spin coherence time are studied by modeling an electron spin echo experiment. We find that the
QPMs cause an increase in the electron spin coherence time and that an inhomogeneous distribution
of the quadrupolar shift, where different nuclei have different shifts in energy, causes an even larger
increase in the electron coherence time than a homogeneous distribution. Furthermore, a partial
polarization of the nuclear spin ensemble amplifies the effect of the inhomogeneous quadrupolar
shifts, causing an additional increase in electron coherence time, and provides an alternative to the
experimentally challenging suggestion of full dynamic nuclear spin polarization.

PACS numbers: 71.70.Jp, 73.21.La, 76.60.Lz, 74.25.nj

I. INTRODUCTION

Using the spin of an electron confined to a quantum dot
(QD) has been proposed as one possible implementation
of a qubit1. One of the hardest challenges of its practi-
cal realization is the fast decoherence of the electron spin
caused by its interaction with the effective, time-varying
magnetic field known as the Overhauser field2–9. Physi-
cally, the Overhauser field originates from the hyperfine
interaction between the electron spin and nuclear spins
of the QD. The exchange of spin between different nuclei
via dipolar coupling combined with an imhomogeneous
hyperfine coupling strength lead to a time-varying Over-
hauser field. The loss of electron spin coherence can be
partially avoided by applying a π-pulse at time t = T/2
causing a reversal of the electron spin propagation and
leading to an electron spin echo at time t = T 10–12. How-
ever, if the Overhauser field varies in the interval [0, T ],
the electron spin state cannot be fully restored. Tech-
niques to prolong the electron coherence time by reducing
the fluctuations of the nuclear spins have been theoreti-
cally suggested13–22 and experimentally tested6,23–31. In
this paper, we study the effects of nuclear quadrupolar
shifts which impede the transfer of nuclear spin by caus-
ing certain transitions to be energetically forbidden.

An atomic nucleus having a non-uniform charge distri-
bution may posses an electric quadrupole moment11,12,32

which couples to electric field gradients (EFGs) causing
a shift in energy, known as the quadrupolar shift. The
EFGs can be external, originate from neighboring atoms
not participating in the nuclear spin transfer processes, or
due to strain. We focus on the special case for which the
EFGs have in-plane symmetry and where the symmetry
axis coincides with the axis of an externally applied mag-
netic field, B = B0ẑ. This leads to a quadrupolar shift
in energy proportional to I2z + c, where I = (Ix, Iy, Iz)
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Figure 1. Illustration of the QD containing many nuclear
spins (black arrows) each with corresponding operator I(n).
The nuclear spins couple to an electron spin (red ball with
arrow) via the hyperfine Hamiltonian and give rise of an effec-
tive magnetic field (large blue arrow). Because of the transfer
of nuclear spin between different nuclei and the inhomoge-
nous hyperfine coupling strength, the effective magnetic field
is fluctuating in time and is given by the stochastic vector
BHF(t).

is the nuclear spin operator and c is a constant.

Recent experimental work35 shows a significant in-
crease in nuclear coherence times when quadrupolar en-
ergy shifts were introduced via strain. This suggests that
the nuclear QPMs could be used as a way to prolong
electron coherence times and provides an alternative to
the experimentally challenging technique of complete dy-
namic nuclear spin polarization. In this paper, we try to
estimate the effect of the nuclear QPMs on the electron
spin coherence and its limitations.

In QDs, EFGs are primarily caused by strain11,26,36–40,
leading to displacements of the nuclei which in turn cause
a modification of the charge distribution. If the nuclear
displacement varies slowly over the QD and the QPMs
are to a good approximation equal for all nuclei, the
quadrupolar shift is homogenous and may be modeled
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Figure 2. Energy level scheme of two nuclear spins I = 3/2
under the influence of an external magnetic field B0 along ẑ
and quadrupolar shifts. The external magnetic field causes
a Zeeman splitting of ~γB0 between spin levels differing by
∆Iz = 1. (a) Without any quadrupolar shifts, any two neigh-
boring energy levels differ by the same energy, thus allowing
any transition for which the total nuclear spin along B is con-
served. (b) With homogeneous quadrupolar shifts, all energy
levels are shifted by an amount proportional to I2z and tran-
sitions with different sets of initial and final states are inhib-
ited. (c) With inhomogeneous quadrupolar shifts the energy
levels of different nuclei are shifted by different amounts and
only the −1/2 ↔ 1/2 transitions are energetically allowed.
Here we have omitted any constant shift in energy, i.e. not
depending on Iz, since it does not contribute to the nuclear
spin dynamics.

by an additional term in the Hamiltonian which is equal
for all nuclei. This may be the case when external strain
is applied. If the stress is caused by a lattice mismatch
at the interface between different materials (e.g. GaAs
and InAs), the change in charge distribution will be more
random, causing an inhomogenous quadrupolar shift that
differs between different nuclear spins. In addition, the
random location of dopants is another source of inhomo-
geneous quadrupolar shifts35.

II. THEORETICAL MODEL

We study the dynamics of a single electron spin in a
QD, containing N atomic nuclei, each having spin I in
the presence of an external magnetic field, B. The elec-
tron and nuclear spins are influenced by each other via
the hyperfine coupling, which we model with the Hamil-
tonian

HHF = S ·
N
∑

n=1

AnI
(n), (1)

where n enumerates the atomic sites, An are hyperfine
coupling strengths5,7, S is the electron spin operator and
I
(n) are the nuclear spin operators. The hyperfine cou-
pling strengths depend on the atomic species and are
proportional to |Ψ(rn)|2 where Ψ(rn) is the electron en-
velope function at the atom site n with the position rn.
The nuclei are mutually coupled by their magnetic dipole

moments11 as described by the Hamiltonian

HD =
∑

n<m

αnm

(

I
(n) · I(m)

r3nm
− 3

[

I
(n) · rnm

] [

I
(m) · rnm

]

r5nm

)

,

(2)
where αnm = γnγm~

2µ0/4π with the nuclear gyromag-
netic ratios γn, rnm = rn − rm, and rnm = |rnm|. In
the presence of a strong magnetic field, the terms of Eq.
(2) not preserving the total nuclear spin projection along
B are strongly suppressed. Assuming B = B0ẑ we can
make the secular approximation

HD′ =
∑

n<m

α′
nm

[

I(n)z I(m)
z − 1

4
(I

(n)
+ I

(m)
− + I

(n)
− I

(m)
+ )

]

,

(3)
where α′

nm = γnγm~
2(1− cos2 θnm)/r3nm and θnm is the

angle between rnm and ẑ. The nuclear spins are further
influenced by the electric quadrupole moments which,
for the special case of planar symmetry and when the
quadrupolar symmetry axis coincides with ẑ, can be mod-
eled by the Hamiltonian

HQ = h
∑

n

ν
(n)
Q I(n)2z , (4)

where we choose not to include any constant shift in en-
ergy since it would not affect the nuclear spin dynamics.
In principle this model could be used for several nuclear
species at once, such as 69Ga, 71Ga, and 75As. However,
different species typically have different gyromagnetic ra-
tios and consequently have different spin transition ener-
gies. For this reason, the spin transfer between different
nuclear species at high magnetic fields is strongly sup-
pressed, and we include only one nuclear species.
The quantum state of the whole quantum dot includ-

ing nuclear and electron spins is an element of the prod-
uct Hilbert space H = HN ⊗ He, where HN = H⊗N

I
is the Hilbert space of the nuclear spins, HI is the
Hilbert space of one nuclear spin which is spanned by
{|−I〉 , |−I + 1〉}, . . . , |I − 1〉 , |I〉}, and He is the Hilbert
space of the electron spin spanned by {|↑〉 , |↓〉}. In prin-
ciple, the time evolution of any initial state |t = 0〉 ∈ H
is given by |t > 0〉 = e−iHt/~ |t = 0〉 from the solution to
the Schrödinger equation, where

H = HD′ +HQ +HHF +HZ (5)

and

HZ = ~B ·
(

γeS+ γ
∑

n

I
(n)

)

(6)

is the combined electron and nuclear Zeeman term with
the electron gyromagnetic ratio γe = geµB/~, where
ge is the electron g-factor and µB is the Bohr mag-
neton. However, the dimension of the Hilbert space,
dimH = 2(2I + 1)N , grows exponentially with the num-
ber of nuclear spins N , and for a typical quantum dot
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containing 104 to 106 nuclei, a direct numerical calcu-
lation of its time evolution is unrealistic. To make a
suitable approximation, we divide the problem into two
parts by decoupling the electron from the nuclear spins.
This allows us to consider a sample of fewer nuclear spins
for which the spin dynamics are first simulated and then
used as an input to the electronic problem.
To study the nuclear spin dynamics we consider a

set of M ≪ N nuclei. From the eigenstates of

I
(n)
z for each nuclear spin we construct initial prod-
uct states |m0, t = 0〉 = |m0〉 ∈ HM , where |m〉 =
∣

∣

∣
m

(1)
z ,m

(2)
z . . .m

(M)
z

〉

=
∣

∣

∣
m

(1)
z

〉

⊗
∣

∣

∣
m

(2)
z

〉

⊗ · · · ⊗
∣

∣

∣
m

(M)
z

〉

and m
(n)
z is the projection of the n-th nuclear spin along

ẑ. The product states are eigenstates of the total nu-

clear spin projection operator along ẑ, Iz =
∑M

n=1 I
(n)
z

with eigenvalues
∑M

n=1 m
(n)
z , and are evolved directly by

|m0, t > 0〉 = e−iH′t/~ |m0〉, where H ′ = HD′ + HQ is
the Hamiltonian of the nuclear spins. The time-evolved
state vector gives the probability function for the eigen-
states |m〉 of Iz as pm0

(m, t) = |〈m|m0, t〉|2 and from
this probability function we define a stochastic vector

m(t) = (m
(1)
z ,m

(2)
z . . .m

(n)
z ) with probability pm0

(m, t).
The effective magnetic field from any product state |m〉
is given by

BHF(m) = B(m)ẑ (7)

where

B(m) =

〈

m

∣

∣

∣

∣

∣

M
∑

n=1

AnI
(n)

∣

∣

∣

∣

∣

m

〉

=
M
∑

n=1

Anm
(n)
z . (8)

The hyperfine field BHF has vanishing components along

x̂ or ŷ since
〈

m

∣

∣

∣
I
(n)
x

∣

∣

∣
m

〉

=
〈

m

∣

∣

∣
I
(n)
y

∣

∣

∣
m

〉

= 0 for any m

and n. Using the previously defined stochastic m(t), we
obtain a discrete-valued stochastic magnetic field

B(t) = B(m(t)) (9)

with non-Markovian dynamics. Although the probability
function of pm0

(m, t) is given by the time evolution for
any m0, B(t) is still a stochastic variable.
For a given B(t), finding the electron spin dynamics is

straight-forward by considering the Hamiltonian

He(t) = Sz(B(t) + ~γeB0), (10)

which describes the time-evolution of an initial state by

|t > 0〉 = e−i
∫

t

0
He(t

′) dt′/~ |t = 0〉. The effects of the static
magnetic field B0 is completely cancelled by the electron
spin echo and hence this term may be excluded from the
dynamics. Formally this can be achieved by going over
to the rotating frame11,12.
In order to study the electron spin echo we let the

electron spin state be given by |t〉 = c↑(t) |↑〉 + c↓(t) |↓〉
and choose c↑(0) = c↓(0) = 1/

√
2. He(t) is diagonal in

the eigenbasis of Sz and the time evolution is directly
given by

|t〉 = e−iϕ(t) |↑〉+ eiϕ(t) |↓〉√
2

, (11)

where ϕ(t) =
∫ t

0
B(t′) dt′/2 and since we are using the

rotating frame there is no extra phase difference from
the electron Zeeman splitting. The change in elec-
tron spin state due to the evolving ϕ(t) can be par-
tially undone by applying a π-pulse around x̂ at t =
T/2 which transforms the electron state according to
α |↑〉+ β |↓〉 −→ β |↑〉+ α |↓〉 and at time t = T the elec-
tron spin will be in the state |T 〉 = (e2iϕ(T/2)−iϕ(T ) |↑〉+
e−2iϕ(T/2)+iϕ(T ) |↓〉)/

√
2. We denote the projection onto

the initial electron state by

λ[B(t)](T ) = 〈T |0〉 = cos[2ϕ(T/2)− ϕ(T )], (12)

which gives a measure of the quality of the electron echo
as a function of echo time. An exhaustive description of
the electron dynamics from a given initial nuclear state
|m0〉 is given by averaging over all possible temporal re-
alizations

fm0
(T ) =

∫

λ[B(t)](T )pm0
[B(t)][DB(t)], (13)

where pm0
[B(t)] is the probability density functional

taking a function B(t) as a parameter33, and the
∫

. . . [DB(t)] denotes the functional integration over all
possible B(t). However, except for the case of the fully
polarized initial state when m0 = ±(I, I, . . . , I), the set
of all possible temporal realizations is infinite and since
the p(B(t), t) needs to be calculated numerically, fm0

(T )
is approximated by performing a set of random walks in-

stead. For this purpose we let B(t) =
∑M

n=1 Anm
(n)
z (t)

be given for a discrete set of times by randomly selecting
m(t) with probabilities pm0

(m, t). This way we obtain
the approximation

f̃m0
(T ) =

1

K

K
∑

k=1

λ[Bk(t)](T ), (14)

and K is the number of samples and Bk(t) are the ran-
domly chosen realizations of the Overhauser field. This
differs from a typical random walk of Monte-Carlo type
since the steps are chosen from a time dependent proba-
bility distribution leading to non-Markovian dynamics.
A typical electron spin echo experiment consists of av-

eraging several measurements for which the initial nu-
clear states do not need to be identical. To incorporate
this we define an average fidelity for a set of L measure-
ments according to

F (T ) =
1

L

(

L
∑

l=1

f̃ml
(T )

)2

, (15)
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where ml represent the initial nuclear states, from which
the probability distribution pml

(m, t) is calculated nu-
merically. The initial states are in turn chosen randomly
with the thermal equilibrium probabilities

p(m) =
1

Z
exp

[

−~γB0

∑

n m
(n)
z

kBTN

]

, (16)

where we have used the partition sum

Z =
∑

m

exp

[

−~γB0

∑

n m
(n)
z

kBTN

]

, (17)

and where TN is the nuclear spin temperature. We de-
fine the nuclear spin polarization as η = −〈Iz〉 /NI with

〈Iz〉 =
∑

m
p(m)

∑N
n=1 m

(n)
z which leads to the relation

η = tanh
gNµ0B0

2kBTN
(18)

between η and B0/TN .

III. RESULTS

Using ensembles of 6 spins I = 3/2, arranged on a line
with rn = anx̂ for n = 1 . . . 6 and a = 5.56 Å, for each
parameter set of polarization and quadrupolar shifts we
performedK = 10000 random walks for each of L = 1000
random initial states producing typical fidelity vs. echo
time curves shown in Fig. 3. We used the hyperfine

couplings An = Ae−n2/62 to model the varying coupling
strength for an electron in a QD. A was adjusted to give a
typical34 electron spin coherence time of 1 ms for the un-
polarized case and without quadrupolar shifts. Rather
than in the absolute coherence time, we are primarily
interested in the change of the coherence time due to
polarization and quadrupolar shifts. Experiments35,37–41

report QP shifts up to several MHz, and in initial cal-
culations we investigated QP shifts in the MHz range.
However, we found that the electron spin coherence does
not change significantly when exceeding 2 kHz, and thus
we limit the quadrupolar shifts to 2 kHz in our calcu-
lations. In order to systematically study the effects of
polarization and quadrupole moments, we fit the echo
curve to the function

f(T ) = (1− F∞) exp(−T 4/T 4
2 ) + F∞, (19)

where T2 will be called the coherence time and F∞ is an
asymptotic value. Physically, the two terms can be re-
garded as the nuclear spin ensemble having both a fluctu-
ating part causing the decaying term and a static one giv-
ing rise to the asymptote F∞. The form of the exponen-
tial T 4 decay can be found by considering low-frequency
noise42.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

F
(T

)

Echo Time (T) [ms]

η = 0, νQ = 0
η = 0, νQ = 2 kHz (hom.)
η = 0, νQ = 2 kHz (rnd.)
η = 0, νQ = 2 kHz (lin.)

η = 0.8, νQ = 0

Figure 3. Typical electron spin echo curves for various nuclear
parameters. The cyan line shows the electron spin echo with-
out quadrupolar moments and nuclear polarization. The red
line shows the effect of including a homogeneous quadrupo-
lar shift of 2 kHz. The blue and green lines show the the
effect of 2 kHz random and linear inhomogeneous quadrupo-
lar shift, where the inhomogeneity is characterized by a ran-
dom distribution and linear gradient respectively, described
below. The purple line shows the effect of nuclear spin po-
larization of 80%. We observe that for a highly polarized
nuclear spin ensemble, as for the situation with large inhomo-
geneous quadrupolar shifts, the echo fidelity does not vanish
completely even at long times.

A. Effect of polarization

We begin with studying the effects of increasing the
nuclear polarization without including quadrupole mo-
ments. Fig. 4 shows the electron spin coherence time
T2 and the asymptotic fidelity F∞ as a function of nu-
clear spin polarization η. For increasing nuclear spin po-
larization both electron spin coherence time and fidelity
asymptote increase. The increasing F∞ suggests that
the nuclear spin dynamics is not only slowed down but
also that there is a growing part of the nuclear spin en-
semble that remains static. For a complete polarization
η = 1 the nuclear spins become completely static and
T2 → ∞ and/or F∞ → 1. This is an expected result
and polarizing the nuclear spins has been proposed as
a method to prolong electron coherence times. Practi-
cally, this method has proven to be challenging and so far
η = 65% is the the maximal dynamic nuclear spin polar-
ization reported29, which further motivates searching for
alternative ways to reduce the nuclear spin fluctuations.

B. Effect of quadrupolar shifts

We now turn our attention to the quadrupole moments.
As described in the introduction, there is a significant dif-
ference between homogeneous quadrupolar shifts, where
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Figure 4. Effect of increased nuclear spin polarization. When
the nuclear spin polarization is increased, both electron coher-
ence time T2 and asymptotic fidelity F∞ increase. Not shown
in the figure is the situation of η = 1, which would lead to a
unit asymptotic fidelity or infinite electron coherence time.

all nuclear spins experience the same shifts in energy,
and inhomogeneous quadrupolar shifts, where each nu-
clear spin may experience a different effect. Using an
unpolarized ensemble of M = 6 nuclear spins as before,
the homogeneous quadrupolar shifts are modeled by

HQ = hνQ

M
∑

n=1

I(n)z

2
. (20)

For the inhomogeneous quadrupolar shift we investigate
two different distributions and use the Hamiltonian

HQ =
2hνQ
M − 1

M
∑

n=1

(n− 1)I(n)z

2
(21a)

HQ =
hνQ
Y

M
∑

n=1

XnI
(n)
z

2
, (21b)

where Xn ∼ U(0, 1) and Y =
∑M

n=1 Xn/M , so that the
average quadrupolar shift is νQ all cases. The Hamil-
tonian (21a) describes a linear gradient in quadrupo-
lar shifts and Eq. (21b) describes random quadrupo-
lar shifts. Fig. 5 shows the effect of homogenous and
inhomogeneous quadrupolar shifts on the electron coher-
ence time and asymptotic fidelity, which in both cases
increases with increasing QP strengths νQ. Furthermore,
we note that the inhomogeneous quadrupolar shifts lead
to marginally longer electron coherence times than the
homogeneous ones. Finally we note that there also is a
difference in the asymptotic value F∞ between the ho-
mogeneous and inhomogeneous case. For the inhomoge-
neous QP shifts the asymptotic value increases, an effect
that is almost absent for the homogeneous case. There
is, however, not a large difference between the linear and
random inhomogeneous QP shifts. Comparing to the ef-
fect of inhomogeneous quadrupolar moments to the one
of increased nuclear polarization without QP shifts shown
in Fig. 4, we find similar coherence times and fidelity

asymptote at η = 70% and νQ = 2 kHz, suggesting both
can be used as a way of increasing electron coherence
time. This supports the idea that quadrupole moments
may be used to obtain a quantum dot with a frozen nu-
clear bath, as proposed recently35.

C. Combined effect of polarization and

quadrupolar shift

When both inhomogeneous quadrupolar shifts and nu-
clear spin polarization are included, we expect to see fur-
ther enhancement of the electron spin echo. For a partial
polarization, the population of nuclear spins will be dom-
inated by Iz = 3/2 and Iz = 1/2 states. On the other
hand, inhomogeneous quadrupolar shifts effectively sup-
press transitions between these states and the nuclear
spins should remain mostly static. Fig. 6 shows the echo
fidelity F (T ) when quadrupolar shifts are introduced to
an ensemble of nuclear spins with 70% polarization. For
homogeneous QP shifts there is little change in the elec-
tron coherence but for inhomogeneous QP shifts, the elec-
tron spin coherence is strongly increased to levels above
the one corresponding to νQ = 0 and a degree of polar-
ization of η = 90%, shown in Fig 5. We also observe that

0

0.1

0.2

0 500 1000 1500 2000

F
∞

Quadrupolar strength (νQ) [Hz]

0.6

0.8

1

1.2

T
2
[m

s]

homogeneous QP
inhomogeneous (linear) QP

inhomogeneous (random) QP

Figure 5. Electron coherence time T2 and asymptotic fidelity
F∞ including homogeneous (red curves), linear (green curves,
Eq. (21b)), and random (blue curves, Eq. (21b)) inhomo-
geneous QP shifts. Upper panel: Electron coherence times
T2. For high QP strengths, the inhomogeneous shift leads
to marginally longer electron coherence times since all tran-
sitions except between Iz = −1/2 and Iz = 1/2 are energeti-
cally forbidden. For small QP strengths, the inhomogeneous
shift may lead to a smaller change in electronic coherence
times than for the homogeneous shift because parts of the nu-
clear system experience a relatively small shift in transition
energy. Lower panel: The asymptotic fidelity F∞ of the elec-
tron spin. At higher quadrupolar shifts, the inhomogeneous
case resembles the effects of increased nuclear spin polariza-
tion. There is almost no difference between the linear and
random inhomogeneous shifts but the effect is not observed
for homogeneous quadrupolar shift.
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0
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0.4
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0 2 4 6 8 10

F
(T

)

Echo Time (T) [ms]

νQ = 0
νQ = 2 kHz, hom.

νQ = 2 kHz, lin.
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Figure 6. Echo fidelity for a nuclear spin ensemble of polar-
ization η = 0.7 with linear (green curve) and random (blue)
inhomogeneous quadrupolar shifts as well as with homoge-
nous (red curve) QP shift and without quadrupolar shift (pur-
ple curve). The inclusion of inhomogeneous qudrupolar shifts
leads to a significant change in the coherence of the electron.
There is a clear change in slope around T = 2 ms correspond-
ing to the transitions between the two different time scales.
The homogeneous quadrupolar shifts do not have a large ef-
fect on the electron coherence.

there seems to be two time scales for the decay of the
electron spin coherence. For this reason we extend the
fitting function to

f(T ) = Fae
−T 4/T 4

2a + Fbe
−T 4/T 4

2b + F∞, (22)

where Fa + Fb + F∞ = 1. Here, T2a corresponds to the
decoherence of the part of the nuclear ensemble fluctuat-
ing rapidly by the unsuppressed −1/2 ↔ 1/2 transitions
and T2b corresponds to the slowly fluctuating part ex-
changing spin via the inhibited transitions. The two co-
herence times T2a and T2b are shown as functions of the
quadrupolar shift in Fig. 7. T2b increases strongly for in-
creasing quadrupolar shift, supporting the claim that this
is related to the population undergoing inhibited transi-
tions, while T2a is largely unaffected by the QP shifts
which indicates that this is caused by the allowed spin
Iz = 1/2 ↔ Iz = −1/2 transitions. The effect on the
asymptotic fidelity F∞ can be seen in Fig. 8. For both
linear and random quadrupolar distribution F∞ increases
as a function of νQ and reaches values over 50% similar
to the ones found for a polarization of η = 90% for the
case of νQ = 0, shown in Fig. 4. The ratio Fb/Fa shows
a weak increase with νQ, indicating that the slow deco-
herence increase in relative magnitude to the fast one.
Together, the increasing F∞ and Fb/Fa demonstrate a
simultaneous reduction of decoherence rates and an in-
crease in final coherence. For weak quadrupolar shifts
νQ < 600 Hz the reduction of nuclear spin transfer is too
small for Fb and T2b to be accurately distinguished and
determined.
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inhomogeneous (linear) QP
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Figure 7. The two coherence times T2a and T2b for homo-
geneous (red curve), linear inhomogeneous (green curve) and
random inhomogeneous (blue curve) quadrupolar shifts in-
cluding η = 70% nuclear polarization. Upper panel: The slow
decoherence T2b corresponding to inhibited transitions which
strongly increases with increasing quadrupolar strength νQ.
There is little difference between linear and random inhomo-
geneous distribution. For the homogenous QP distribution,
there is no observed slow decoherence, and no T2b can be
found. Lower panel: The fast decoherence T2a corresponding
to the −1/2 ↔ 1/2 which remains relatively constant when
the quadrupolar strength is increased.
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Figure 8. The coherence weights Fa, Fb, and F∞ for dif-
ference quadrupolar strengths and distributions when using
η = 70% nuclear polarization. The upper panel shows the
ratio Fb/Fa between slow and fast electron decoherence. For
increasing quadrupolar strength, there is a small increase in
the slow part, but little difference between linear and ran-
dom quadrupolar shift distribution. The lower panel shows
the asymptotic fidelity F∞. For both distributions of inho-
mogeneous quadrupolar shifts, there is a clear increase with
increasing quadrupolar polar strength while the homogeneous
distribution remains practically constant.
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IV. DISCUSSION AND CONCLUSIONS

We have investigated the effect of nuclear quadrupole
moments (QPMs) on the coherence time T2 of an elec-
tron in a quantum dot undergoing an electron spin echo.
We found that the presence of QPMs together with elec-
tric field gradients increase the electron coherence time.
The effect is larger if inhomogeneous quadrupolar shifts
are present than in the case of homogeneous shifts. For
the inhomogeneous case, the effect on the electron spin
coherence is similar to that of increased nuclear spin po-
larization, suggested as an alternative method to prolong
electron coherence. We found almost no difference be-
tween the two investigated distributions of quadrupolar
shifts (linear and random). The impact of the QPMs
is significantly increased if the nuclear spin ensemble is
also partially polarized, leading to a greater population

of the nuclear spin states which can only transfer spin via
inhibited processes. This suggests applying the existing
technique of partially polarizing the nuclear spins dy-
namically to quantum dots having a large built-in or ex-
ternally applied inhomogeneous strain, which would lead
to a significant increase of electron coherence times not
achievable using only dynamic nuclear spin polarization
with existing methods. Our findings also support recent
suggestions35 to utilize the QPMs to create a quantum
dot nearly free from nuclear spin fluctuations.
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