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3. The Spherical Model

The n-vector model (often denoted the O(n) model) is a useful model in statistical physics in
which n-component classical spins of fixed length are placed on the vertices of a lattice of
dimension d. The Hamiltonian for this model is given by

H =
1

2

∑

i,j

Jijsi · sj,

where Jij is the coupling between sites i and j. The spin variable si is an n-component vector

si = (s
(1)
i , s

(2)
i , · · · , s

(n)
i ), where i labels the lattice site and there are N sites in total. The

vector si is subject to the constraint that si · si = n. Special cases of the model are n = 0 (self
avoiding walk), n = 1 (Ising model), n = 2 (XY model) and n = 3 (Heisenberg model). In
1968 H.E. Stanley showed that the n → ∞ limit of the n-vector model is equilivilent to the
Berlin-Kac spherical model, first introduced in 1952. The advantage of studying the spherical
model is that it is exactly soluble and yields non-classical values for the critical exponents.

(a) Why is the integral representation

Z(K) =

∫

∞

−∞

ds1 · · ·

∫

∞

−∞

dsN W ({sN}) exp

(

−
1

2
β
∑

i,j

Jijsisj

)

, (1)

equivilent to the standard expression for the partition function of the Ising model when
the weight function is given by W ({sN}) =

∏N
i=1 δ(s2

i − 1)?

(b) The spherical model is a generalization of the Ising model in which the spin variables are
allowed to take a continuous range of values (−∞ < si < ∞). The spherical model
partition function is again given by Eq.(1) but with the weight function

W ({sN}) = δ
(

∑N
i=1 s2

i − N
)

. Discuss the differences between the spherical and Ising

models. Why do we call this model ‘spherical’?

(c) The delta function can be usefully expressed using the Laplace representation

δ

(

∑

i

s2
i − N

)

=
1

2πi

∫ i∞

−i∞

dp′ exp

(

p′

(

N −
∑

i

s2
i

))

.

Use the identity −1
2
β
∑

i,j Jijsisj = Nα − α
∑

i s
2
i −

1
2
β
∑

i,j Jijsisj, to show that the
partition function is given by

Z =
eNα

2πi

∫ α+i∞

α−i∞

dp epN

∫

ds1 · · ·

∫

dsN exp

(

−
∑

ij

(

pδij +
1

2
βJij

)

sisj

)

, (2)

where p ≡ p′ + α for arbitrary α. Why was it necessary to introduce the parameter α?
(HINT: Consider the convergence of the integrals).



(d) Assume translational invariance Jij = Ji−j to show that

Z =
πN/2eNα

2πi

∫ α+i∞

α−i∞

dp exp

(

pN −
1

2

∑

q

log

(

p +
1

2
βJq

)

)

, (3)

where Jq ≡
∑

j Jj e
−2πi(j·q)/L is the discrete Fourier transform of Ji−j.

(e) We now specify to nearest neighbour interactions for which Jij = −ǫ (i, j nearest

neighbours) and Jij = 0 (otherwise). First show that Jq = −2ǫ
∑d

l=1 cos(2πq l/L), where
L ≡ N1/d. Next, replace the sum by an integral to show that

Z = (βǫ)1−N/2πN/2eNα

2πi

∫ α+i∞

α−i∞

dξe g(ξ), (4)

where ξ ≡ p/βǫ and α′ is a large real number. The function g(ξ) ≡ N(βǫξ − φ(ξ)/2),
where

φ(ξ) =
1

(2π)d

∫ 2π

0

dω1 · · ·

∫ 2π

0

dωd log

(

ξ −

d
∑

k=1

cos(ωk)

)

and ωl ≡ 2πql/L.

(f) Following all this rearrangement, the result (4) is suitable for approximation by the
method of steepest descents, which becomes exact in the limit N → ∞. Use this
approximation method to show that

Z ≈ (βǫ)1−N/2πN/2eNα eg(ξs)

√

2πg′′(ξs)
, (5)

where ξs is the location of the maximum in g(ξ), obtained from solution of the equation

2βǫ =
1

(2π)d

∫ 2π

0

dω1 · · ·

∫ 2π

0

dωd
1

ξs −
∑

k cos(ωk)
. (6)

In d = 1 and d = 2 the spherical model exhibits no phase transition. In d = 3 it can be
shown that ξs is a smooth function of β only for β < 0.25272/ǫ, thus identifying a critical
point, βc = 0.25272/ǫ. Take the logarithm of Z followed by the limit N → ∞ to obtain
the exact free energy per site of the spherical model

βf =
1

2
log(βǫ/π) − βǫξs +

1

2

1

(2π)d

∫ 2π

0

dω1 · · ·

∫ 2π

0

dωd log

(

ξs −

d
∑

k=1

cos(ωk)

)

− α (7)

(g) We can now use our results to calculate some critical exponents. Specializing to d = 3,
prove that near βc we have (ξs − 3) ∼ (βc − β)2 (HINT: The integral in (6) is dominated
by the low ω behaviour of the integrand). Thus calculate the susceptibility and show that
χ ∼ |t|−γ, where t = (T − Tc)/Tc, with exponent γ = 2. Calculate the internal energy per
site u = dβf

dβ
and thus the specific heat per site c = −β2 du

dβ
. Show that the specific heat

exponent α = −1, where c ∼ |t|−α), i.e. there is no specific heat anomaly. The remaining
exponents of the spherical model can all be calculated exactly, but require more involved
calculations. The spherical model values β = 1

2
, δ = 5, η = 0 and ν = 1 should be

contrasted with the results from mean field theory and the Gaussian model.


