UNIVERSITÄT KONSTANZ

Fachbereich Physik
Prof. Dr. Matthias Fuchs
Raum P 907, Tel. (07531)88-4678
E-mail: matthias.fuchs@uni-konstanz.de

Renormierungsgruppe und Feldtheorie Sommersemester 2008

Übungsblatt 4, Ausgabe 28.05.2008, abzugeben bis 04.06.2008

3. The Spherical Model

The n-vector model (often denoted the $O(n)$ model) is a useful model in statistical physics in which n-component classical spins of fixed length are placed on the vertices of a lattice of dimension d. The Hamiltonian for this model is given by

$$
H=\frac{1}{2} \sum_{i, j} J_{i j} \mathbf{s}_{i} \cdot \mathbf{s}_{j},
$$

where $J_{i j}$ is the coupling between sites i and j. The spin variable \mathbf{s}_{i} is an n-component vector $\mathbf{s}_{i}=\left(s_{i}^{(1)}, s_{i}^{(2)}, \cdots, s_{i}^{(n)}\right)$, where i labels the lattice site and there are N sites in total. The vector \mathbf{s}_{i} is subject to the constraint that $\mathbf{s}_{i} \cdot \mathbf{s}_{i}=n$. Special cases of the model are $n=0$ (self avoiding walk), $n=1$ (Ising model), $n=2$ (XY model) and $n=3$ (Heisenberg model). In 1968 H.E. Stanley showed that the $n \rightarrow \infty$ limit of the n-vector model is equilivilent to the Berlin-Kac spherical model, first introduced in 1952. The advantage of studying the spherical model is that it is exactly soluble and yields non-classical values for the critical exponents.
(a) Why is the integral representation

$$
\begin{equation*}
Z(K)=\int_{-\infty}^{\infty} d s_{1} \cdots \int_{-\infty}^{\infty} d s_{N} W\left(\left\{s_{N}\right\}\right) \exp \left(-\frac{1}{2} \beta \sum_{i, j} J_{i j} s_{i} s_{j}\right) \tag{1}
\end{equation*}
$$

equivilent to the standard expression for the partition function of the Ising model when the weight function is given by $W\left(\left\{s_{N}\right\}\right)=\prod_{i=1}^{N} \delta\left(s_{i}^{2}-1\right)$?
(b) The spherical model is a generalization of the Ising model in which the spin variables are allowed to take a continuous range of values $\left(-\infty<s_{i}<\infty\right)$. The spherical model partition function is again given by Eq.(1) but with the weight function $W\left(\left\{s_{N}\right\}\right)=\delta\left(\sum_{i=1}^{N} s_{i}^{2}-N\right)$. Discuss the differences between the spherical and Ising models. Why do we call this model 'spherical'?
(c) The delta function can be usefully expressed using the Laplace representation

$$
\delta\left(\sum_{i} s_{i}^{2}-N\right)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} d p^{\prime} \exp \left(p^{\prime}\left(N-\sum_{i} s_{i}^{2}\right)\right) .
$$

Use the identity $-\frac{1}{2} \beta \sum_{i, j} J_{i j} s_{i} s_{j}=N \alpha-\alpha \sum_{i} s_{i}^{2}-\frac{1}{2} \beta \sum_{i, j} J_{i j} s_{i} s_{j}$, to show that the partition function is given by

$$
\begin{equation*}
Z=\frac{e^{N \alpha}}{2 \pi i} \int_{\alpha-i \infty}^{\alpha+i \infty} d p e^{p N} \int d s_{1} \cdots \int d s_{N} \exp \left(-\sum_{i j}\left(p \delta_{i j}+\frac{1}{2} \beta J_{i j}\right) s_{i} s_{j}\right), \tag{2}
\end{equation*}
$$

where $p \equiv p^{\prime}+\alpha$ for arbitrary α. Why was it necessary to introduce the parameter α ? (HINT: Consider the convergence of the integrals).
(d) Assume translational invariance $J_{i j}=J_{i-j}$ to show that

$$
\begin{equation*}
Z=\frac{\pi^{N / 2} e^{N \alpha}}{2 \pi i} \int_{\alpha-i \infty}^{\alpha+i \infty} d p \exp \left(p N-\frac{1}{2} \sum_{\mathbf{q}} \log \left(p+\frac{1}{2} \beta J_{\mathbf{q}}\right)\right) \tag{3}
\end{equation*}
$$

where $J_{\mathbf{q}} \equiv \sum_{\mathbf{j}} J_{\mathbf{j}} e^{-2 \pi i(\mathbf{j} \cdot \mathbf{q}) / L}$ is the discrete Fourier transform of J_{i-j}.
(e) We now specify to nearest neighbour interactions for which $J_{i j}=-\epsilon(i, j$ nearest neighbours) and $J_{i j}=0$ (otherwise). First show that $J_{\mathbf{q}}=-2 \epsilon \sum_{l=1}^{d} \cos \left(2 \pi q_{l} / L\right)$, where $L \equiv N^{1 / d}$. Next, replace the sum by an integral to show that

$$
\begin{equation*}
Z=(\beta \epsilon)^{1-N / 2} \frac{\pi^{N / 2} e^{N \alpha}}{2 \pi i} \int_{\alpha-i \infty}^{\alpha+i \infty} d \xi e^{g(\xi)} \tag{4}
\end{equation*}
$$

where $\xi \equiv p / \beta \epsilon$ and α^{\prime} is a large real number. The function $g(\xi) \equiv N(\beta \epsilon \xi-\phi(\xi) / 2)$, where

$$
\phi(\xi)=\frac{1}{(2 \pi)^{d}} \int_{0}^{2 \pi} d \omega_{1} \cdots \int_{0}^{2 \pi} d \omega_{d} \log \left(\xi-\sum_{k=1}^{d} \cos \left(\omega_{k}\right)\right)
$$

and $\omega_{l} \equiv 2 \pi q_{l} / L$.
(f) Following all this rearrangement, the result (4) is suitable for approximation by the method of steepest descents, which becomes exact in the limit $N \rightarrow \infty$. Use this approximation method to show that

$$
\begin{equation*}
Z \approx(\beta \epsilon)^{1-N / 2} \pi^{N / 2} e^{N \alpha} \frac{e^{g\left(\xi_{s}\right)}}{\sqrt{2 \pi g^{\prime \prime}\left(\xi_{s}\right)}}, \tag{5}
\end{equation*}
$$

where ξ_{s} is the location of the maximum in $g(\xi)$, obtained from solution of the equation

$$
\begin{equation*}
2 \beta \epsilon=\frac{1}{(2 \pi)^{d}} \int_{0}^{2 \pi} d \omega_{1} \cdots \int_{0}^{2 \pi} d \omega_{d} \frac{1}{\xi_{s}-\sum_{k} \cos \left(\omega_{k}\right)} \tag{6}
\end{equation*}
$$

In $d=1$ and $d=2$ the spherical model exhibits no phase transition. In $d=3$ it can be shown that ξ_{s} is a smooth function of β only for $\beta<0.25272 / \epsilon$, thus identifying a critical point, $\beta_{c}=0.25272 / \epsilon$. Take the logarithm of Z followed by the limit $N \rightarrow \infty$ to obtain the exact free energy per site of the spherical model

$$
\begin{equation*}
\beta f=\frac{1}{2} \log (\beta \epsilon / \pi)-\beta \epsilon \xi_{s}+\frac{1}{2} \frac{1}{(2 \pi)^{d}} \int_{0}^{2 \pi} d \omega_{1} \cdots \int_{0}^{2 \pi} d \omega_{d} \log \left(\xi_{s}-\sum_{k=1}^{d} \cos \left(\omega_{k}\right)\right)-\alpha \tag{7}
\end{equation*}
$$

(g) We can now use our results to calculate some critical exponents. Specializing to $d=3$, prove that near β_{c} we have $\left(\xi_{s}-3\right) \sim\left(\beta_{c}-\beta\right)^{2}$ (HINT: The integral in (6) is dominated by the low ω behaviour of the integrand). Thus calculate the susceptibility and show that $\chi \sim|t|^{-\gamma}$, where $t=\left(T-T_{c}\right) / T_{c}$, with exponent $\gamma=2$. Calculate the internal energy per site $u=\frac{d \beta f}{d \beta}$ and thus the specific heat per site $c=-\beta^{2} \frac{d u}{d \beta}$. Show that the specific heat exponent $\alpha=-1$, where $c \sim|t|^{-\alpha}$), i.e. there is no specific heat anomaly. The remaining exponents of the spherical model can all be calculated exactly, but require more involved calculations. The spherical model values $\beta=\frac{1}{2}, \delta=5, \eta=0$ and $\nu=1$ should be contrasted with the results from mean field theory and the Gaussian model.

