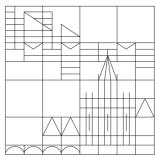
UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Matthias Fuchs Raum P 907, Tel. (07531)88-4678 E-mail: matthias.fuchs@uni-konstanz.de



Renormierungsgruppe und Feldtheorie Sommersemester 2008

Übungsblatt 3, Ausgabe 21.05.2008, abzugeben bis 28.05.2008

3. The Gaussian Approximation

In this problem we shall introduce the Gaussian approximation to incorporate fluctuation effects and will use this technique to calculate the critical exponents from a Landau free energy. The Gaussian approximation provides the lowest order systematic correction to mean field theory by assuming that the fluctuations are independent random variables. The Landau free energy is a functional of the order parameter field

$$L[\eta] = \int d^d \mathbf{r} \left(\frac{1}{2} \gamma (\nabla \eta(\mathbf{r}))^2 + at\eta^2(\mathbf{r}) + \frac{1}{2} b\eta^4(\mathbf{r}) \right) + a_0 V, \tag{1}$$

where γ , a, b (all positive) and a_0 are phenomenological parameters and $t = (T - T_c)/T_c$ is the temperature relative to the critical point.

(a) It is convenient to work in Fourier space using the transform pair

$$\eta_{\mathbf{k}} = \int d^d \mathbf{r} \, \eta(\mathbf{r}) \, e^{-i\mathbf{k}\cdot\mathbf{r}} \qquad \eta(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{k}} \eta_{\mathbf{k}} \, e^{i\mathbf{k}\cdot\mathbf{r}}.$$

Note that by retaining the discrete version of the back transform we will be able to perform functional integrals before taking the continuum limit. Set b = 0 in (1) and show that the Landau free energy can be expressed as

$$L[\eta] = \frac{1}{V} \sum_{\mathbf{k}} \frac{1}{2} |\eta_{\mathbf{k}}|^2 [2at + \gamma k^2] + a_0 V.$$
⁽²⁾

Mean field theory only considers states with $\mathbf{k} = 0$, corresponding to a spatially constant $\eta(\mathbf{r})$. States with $\mathbf{k} \neq 0$ represent fluctuations. Why is it necessary to introduce an upper limit Λ to the sum over \mathbf{k} ?

(b) The free energy is related to the Landau function by a functional integration over all possible order parameter fields

$$Z = e^{-\beta F} = \int \mathcal{D}\eta \, e^{-\beta L[\eta]}.\tag{3}$$

In general $\eta_{\mathbf{k}}$ is complex and both real and imaginary parts can be varied independently. The functional measure is then given by a product of integrals

$$\int \mathcal{D}\eta \equiv \int \prod_{|\mathbf{k}| < \Lambda} d(\operatorname{Re} \eta_{\mathbf{k}}) d(\operatorname{Im} \eta_{\mathbf{k}}),$$

Evaluate the functional integral (3) using the Landau function (2) to obtain the free energy

$$F = a_0 V - \frac{1}{2} k_B T \sum_{|\mathbf{k}| < \Lambda} \log\left(\frac{2\pi V k_B T}{2at + \gamma k^2}\right).$$
(4)

As the field $\eta(\mathbf{r})$ is taken to be real we have introduced a factor of 1/2 in front of the summation. Why? (*HINT: consider the relation between* $\eta_{\mathbf{k}}$ and $\eta_{-\mathbf{k}}$ for real $\eta(\mathbf{r})$).

(c) The two-point correlation function can similarly be calculated using a functional integral.

$$\langle \eta_{\mathbf{k}} \eta_{\mathbf{k}'} \rangle = \frac{1}{Z} \int \mathcal{D}\eta \ \eta_{\mathbf{k}} \eta_{\mathbf{k}'} \ e^{-\beta L[\eta]}, \tag{5}$$

where Z is given by (3). Show that this correlation function is given by

$$\langle |\eta_{\mathbf{k}}|^2 \rangle = \frac{k_B T V}{2at + \gamma k^2} \equiv V G_{\mathbf{k}} \tag{6}$$

for $\mathbf{k} = -\mathbf{k}'$ and that it is zero otherwise. Use the asymptotic $k \to \infty$ result $G_{\mathbf{k}} \sim k^{-2+\eta}$ to find the value of the exponent η and the sum rule $k_B T \chi_T = G_{\mathbf{k}=0}$ to find the exponent γ , where $\chi_T \sim |t|^{-\gamma}$. The correlation function can be written in the form

$$G_{\mathbf{k}} = \frac{k_B T}{\gamma (k^2 + \xi^{-2})},$$

where ξ is the correlation length. Find the exponent ν for the divergence of ξ at the critical point $(\xi \sim |t|^{-\nu})$.

- (d) Express the real space correlation function $G(\mathbf{r}, \mathbf{r}') = \langle \eta(\mathbf{r})\eta(\mathbf{r}') \rangle$ as a sum over **k** vectors. How can the translational invariance of the system be identified from this result?
- (e) We now calculate the heat capacity from (4). The heat capacity is given by

$$c = -T \frac{\partial^2 (F/V)}{\partial T^2}.$$
(7)

Perform the derivative to obtain c = A + B, where

$$A \equiv \frac{k_B T}{2V T_c^2} \sum_{|\mathbf{k}| < \Lambda} \frac{4a^2}{(2at + \gamma k^2)^2} \qquad B \equiv -\frac{k_B}{V T_c} \sum_{|\mathbf{k}| < \Lambda} \frac{2a}{(2at + \gamma k^2)}.$$

We will look at the two terms A and B seperately. Replace the summation in the expression for A by an integral and make a change of variables $\mathbf{q} = \xi \mathbf{k}$, where ξ is the correlation length, in order to extract the divergent behaviour. By considering the behaviour of the integral in various dimensions d show that $A \propto \xi^{4-d \sim t^{-}(2-d/2)}$, for d < 4 and that it remains finite for d > 4. Repeat this procedure for B to show that the specific heat behaves as $C \sim t^{-(2-d/2)}$ for d < 4 and remains finite for d > 4. We have thus shown that the specific heat exponent $\alpha = 2 - d/2$ in the Gaussian approximation.

(f) In parts (a)-(e) we have considered states with $T > T_c$ by considering fluctuations about $\eta(\mathbf{r}) = 0$. For $T < T_c$ we need to expand about one of the two spontaneously occuring minima in the free energy. We thus replace the potential for fluctuations by a harmonic potential. Using $\eta(\mathbf{r}) = \eta_s + \psi(\mathbf{r})$, where $\eta_s = \pm (-at/b)^{1/2}$, calculate the Landau free energy to quadratic order in $\psi(\mathbf{r})$ and express your answer in the Fourier components of $\psi(\mathbf{r})$. (HINT: Once you have obtained the Landau free energy in terms of ψ there is no need for a new calculation to arrive at the required result).