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3. The Gaussian Approximation

In this problem we shall introduce the Gaussian approximation to incorporate fluctuation
effects and will use this technique to calculate the critical exponents from a Landau free
energy. The Gaussian approximation provides the lowest order systematic correction to mean
field theory by assuming that the fluctuations are independent random variables. The Landau
free energy is a functional of the order parameter field

L[ η ] =

∫

ddr

(
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γ(∇η(r))2 + atη2(r) +
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bη4(r)

)

+ a0V, (1)

where γ, a, b (all positive) and a0 are phenomenological parameters and t = (T − Tc)/Tc is the
temperature relative to the critical point.

(a) It is convenient to work in Fourier space using the transform pair

ηk =

∫

ddr η(r) e−ik·r η(r) =
1

V

∑

k

ηk e
ik·r.

Note that by retaining the discrete version of the back transform we will be able to
perform functional integrals before taking the continuum limit. Set b = 0 in (1) and show
that the Landau free energy can be expressed as

L[ η ] =
1

V

∑

k

1

2
|ηk|

2[2at+ γk2] + a0V. (2)

Mean field theory only considers states with k = 0, corresponding to a spatially constant
η(r). States with k 6= 0 represent fluctuations. Why is it necessary to introduce an upper
limit Λ to the sum over k?

(b) The free energy is related to the Landau function by a functional integration over all
possible order parameter fields

Z = e−βF =

∫

Dη e−βL[η]. (3)

In general ηk is complex and both real and imaginary parts can be varied independantly.
The functional measure is then given by a product of integrals

∫

Dη ≡

∫

∏

|k|<Λ

d(Re ηk)d(Im ηk),



Evaluate the functional integral (3) using the Landau function (2) to obtain the free
energy

F = a0V −
1

2
kBT

∑

|k|<Λ

log

(

2πV kBT

2at+ γk2

)

. (4)

As the field η(r) is taken to be real we have introduced a factor of 1/2 in front of the
summation. Why? (HINT: consider the relation between ηk and η−k for real η(r)).

(c) The two-point correlation function can similarly be calculated using a functional integral.

〈ηkηk′〉 =
1

Z

∫

Dη ηk ηk′ e−βL[η], (5)

where Z is given by (3). Show that this correlation function is given by

〈|ηk|
2〉 =

kBTV

2at+ γk2
≡ V Gk (6)

for k = −k′ and that it is zero otherwise. Use the asymptotic k → ∞ result Gk ∼ k−2+η

to find the value of the exponent η and the sum rule kBTχT = Gk=0 to find the exponent
γ, where χT ∼ |t|−γ. The correlation function can be written in the form

Gk =
kBT

γ(k2 + ξ−2)
,

where ξ is the correlation length. Find the exponent ν for the divergence of ξ at the
critical point (ξ ∼ |t|−ν).

(d) Express the real space correlation function G(r, r′) = 〈η(r)η(r′)〉 as a sum over k vectors.
How can the translational invariance of the system be identified from this result?

(e) We now calculate the heat capacity from (4). The heat capacity is given by

c = −T
∂2(F/V )

∂T 2
. (7)

Perform the derivative to obtain c = A+B, where

A ≡
kBT

2V T 2
c

∑

|k|<Λ

4a2

(2at+ γk2)2
B ≡ −

kB

V Tc

∑

|k|<Λ

2a

(2at+ γk2)
.

We will look at the two terms A and B seperately. Replace the summation in the
expression for A by an integral and make a change of variables q = ξk, where ξ is the
correlation length, in order to extract the divergent behaviour. By considering the
behaviour of the integral in various dimensions d show that A ∝ ξ4−d∼t−(2−d/2), for d < 4
and that it remains finite for d > 4. Repeat this procedure for B to show that the
specific heat behaves as C ∼ t−(2−d/2) for d < 4 and remains finite for d > 4. We have
thus shown that the specific heat exponent α = 2 − d/2 in the Gaussian approximation.

(f) In parts (a)-(e) we have considered states with T > Tc by considering fluctuations about
η(r) = 0. For T < Tc we need to expand about one of the two spontaneously occuring
minima in the free energy. We thus replace the potential for fluctuations by a harmonic
potential. Using η(r) = ηs + ψ(r), where ηs = ±(−at/b)1/2, calculate the Landau free
energy to quadratic order in ψ(r) and express your answer in the Fourier components of
ψ(r). (HINT: Once you have obtained the Landau free energy in terms of ψ there is no

need for a new calculation to arrive at the required result).


