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Projection operators In previous exercises we have seen that a useful description of the
dynamics of a colloidal particle suspended in a liquid is provided by Langevin stochastic differential
equations. Such a description assumes that we can identify the relevant variables in the problem,
for example the colloidal particle positions and velocities, and represent the irrelevant variables
(positions and velocities of the solvent molecules) by a random noise term. Such an approach is
quite general. Given a system of N equations for the N variables ai(t) we can always choose a
subset of the ai(t) and eliminate the remaining variables to obtain a reduced description. Consider
the simplest case of two dynamical variables a(t) = (a1(t), a2(t)) whose time evolution is given by
the operator L with components Lij

∂

∂t
a(t) = L · a(t).

Let us suppose that the relevant variable is a1(t). Show that this equation is equivilent to

∂

∂t
a1(t) = L11a1(t) + L12

∫ t

0

ds exp[L22(t − s)]L21a1(t) + L12 exp[L22t]a2(0),

interpret the meaning of the three terms on the right hand side. Is this equation for a1(t)
Markovian? This procedure can be formalized using projection operators which project the
dynamics of the system onto the subset of relevant variables. If we define the projection operator
onto the relevent variable as P with components Pij = δi1δj1 rewrite the above solution for a1(t) in
terms of P and it’s complement 1 − P, which projects onto the irrelevant subspace.
We now consider a large number of variables and seek to derive a Langevin equation starting from
the Liouville equation. The projection operator onto the relevent subspace A is given explicitly by
PB = (B, A) · (A, A)−1 · A =

∑
j,k(B, Aj)((A, A)−1)jkAk where the (B, A) is a vector and (A, A) is

a matrix. For convenience we will define the Liouville operator by L = ∂/∂t, additional factors of i
can then be replaced at the end. Split the Liouville operator into two parts L = PL + (1−P)L and
use the operator identity exp[Lt] = exp[(1 − P)Lt] +

∫ t

0
ds exp[L(t − s)]P exp[(1 − P)Ls] to show

that
∂

∂t
A(t) = iΩ · A(t) −

∫ t

0

dsK(s) · A(t − s) + F (t),

where we have used the anti-Hermitian property of L and have defined iΩ = (LA, A) · (A, A)−1,
K(t) = −(LF (t), A) · (A, A)−1 and F (t) = exp[(1 − P)Lt](1 − P)LA. Discuss the origin and
meaning of F (t) and K(t) in our result.
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Transverse momentum diffusion

Consider the dynamical variable A(r, t) =
∑N

i=1 ai(t)δ(r − ri(t)), where ai is any physical quantity
such as the mass, velocity or angular momentum of particle i. If the variable A ia conserved show
that Ȧk(t) + ik · jAk (t) = 0, where jAk (t) is the corresponding current. A particularly important
dynamical variable is the density (ai = 1). Express the associated particle current jAk (t) in terms of
the velocity of particle i, ui(t).
The correlation function of two space ependent dynamical variables is defined as
CAB(r′, r′′; t′, t′′) = 〈A(r′, t′)B(r′′, t′′)〉 Show that for homogeneous liquids, translational invariance
in space and time CAB(r′, r′′; t′, t′′) = CAB(k′, t′ − t′′). What further simplification can we make if
the fluid is also isotropic? Thus prove the following sum rule for the ecend frequency moments of
the autocorrelation function

〈ω2〉AA = k2〈|jAkl
|2〉,

where jAkl
= k · jAk is the longitudinal current. Show that the auto correlation function of the density

current can be written in the form

Cα,β(k, t) = k̂αk̂βCl(k, t) + (δα,β − k̂αk̂β)Ct(k, t),

where α, β = x, y, z. Cl and Ct are the longitudinal and transverse current correlation functions.
Another important example is the momentum gi(q) =

∑
α pα

i eiqcdotrα. Write the microscopic
conservation law for this quantity in terms of the stress tensor σij , i, j = x, y, z. Use the symmetries
of gi(q) under spatial inversion r → −r, p → −p to show that 〈gi(q, t)gz(q)〉 ∝ δij. Finally show
that the Laplace transform of the correlation function of the transverse momentum

St(z) = 〈g∗
x(q)

1

L − z
gx(q)〉 = −

〈|gx(q)|2〉

z + iq2ηs

,

where z is the Laplace transform variable and ηs =
∫ ∞

0
dt 〈σxz(q=0,t)σxz(q=0,0)〉

〈|gx(0)|2〉
is the shear viscosity.
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