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Übungsblatt 8: Linear response theory

The Liouville operator The time evolution of the phase space probability density f(rN ,pN , t) is
given by the Liouville equation. The Liouville equation is the 6N -dimensional equation of
continuity of an incompressible fluid of points in phase space which can be neither created nor
destroyed. It can be written in compact form using the Poisson bracket notation

∂f

∂t
= {H, f},

where H is Hamilton’s function and the Poisson bracket of two phase space functions A and B is
given by

{A, B} =

N
∑

i=1

(

∂A

∂ri

· ∂B

∂pi

− ∂A

∂pi

· ∂B

∂ri

)

.

By defining the Liouville operator L = i{H, } find a formal solution to the Liouville equation in
terms of L. Consider a general function of the phase space coordinates A(r1, r2, · · · ,p1,p2, · · · ).
Express the total differential dA

dt
in terms of the partial derivatives of A with respect to the ri and

pi. Use Hamilton’s equations to show that A obeys an equation very similar to the Liouville
equation for the distribution function and show that the formal solution for the time evolution is
given by A(t) = exp(iLt)A(0).

Correlation functions The dynamic properties of many particle systems are conveniently
described in terms of their time correlation functions. In this problem we will obtain some useful
general properties of correlation functions. The time correlation function between two dynamical
variables A(t) ≡ A(rN(t),pN(t)) and B(t) ≡ B(rN(t),pN(t)) is written as
CBA(t′, t′′) = 〈A(t′)B(t′′)〉. Show that exp(iLt)A(rN ,pN) = A(rN(t),pN(t)) for Liouville dynamics.
The average 〈 〉 denotes either an ensemble average over initial conditions or a time averages.
Comment on the assumption that time and ensemble averages are equivilent. Under what
conditions might this not be the case? Show that an ensemble average can be written as

〈A(t′)B(t′′)〉 =

∫

dΓf0B(t′′) exp(−L(t′ − t′′))A(t′′),

where the Liouville operator acts to the right. Write the corresponding expression for the time
average. Because the canonical equilibrium distribution f0 ∝ exp(−βH0) is independent of time the
correlation function becomes a function of only the time difference t = t′ − t′′, CAB(t) = 〈A(t)B(0)〉.
This property is called stationarity. Show that stationarity implies the following

〈Ȧ(t)B(0)〉 = −〈A(t)Ḃ(0)〉 d2

dt2
〈A(t)B(0)〉 = −〈Ȧ(t)Ḃ(0)〉.

The two relations given above simply express the fact that L is hermitian with respect to the inner
product 〈A(t′)LB(t′′)〉. Integrate by parts to prove that L is a hermitian operator. Show that the
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time translational invariance of CAB(t) implies that CAB(t) = ǫAǫBCAB(t), where ǫA and ǫB are the
time-reversal signatures of the variables A and B. It is generally the case that H is of even parity
under spatial inversion ri,pi → −ri,−pi. What does this imply about the parity of the Liouville
operator? What is the time correlation function CAB(t) when A and B have opposite parities under
spatial inversion?
Of special importance are the autocorrelation functions CAA(t). Comment on how the above results
could be used to extract the velocity autocorrelation function in a liquid from observing the particle
displacements. In fact the autocorrelation function is generally defined as CAA(t) = 〈A(t)A∗〉 to
ensure that CAA(t) remains real. Use Schwarz’s inequality to prove that the correlation function is
bounded from above by it’s initial value

|CAA(t)| ≤ CAA(0).

Give a physical explanation why this result is to be expected. If we define the dynamical variables
in such a way as to remove their average values, CAB(t) = 〈δA(t)δB(0)〉, where δA(t) = A(t) − 〈A〉,
then we can define the Fourier transform CAB(ω). The function CAB(ω) is often called the power
spectrum and is important as it provides the connection between correlation functions and
numerous experimental measurements. Show that the power spectrum of an autocorrelation
function is always a real, even function of ω. By considering the average 〈AT (ω)A∗

T
(ω)〉 with

AT (ω) =
∫

T

−T
dt exp(iωt)A(t)/

√
2T show that the power spectrum of an autocorrelation function is

non-negative. Finally, show that the auto correlation function has the following short time
expansion

CAA(t) =
∞

∑

n=0

t2n

(2n)!
(−1)n〈|(iL)nA|2〉

and that the frequency moments of the power spectrum are related to derivatives of the t = 0 value
of the autocorrelation function (‘sum rules’)

∫

∞

−∞

dω ω2nCAA(ω) = (−1)n

(

d(2n)CAA(t)

dt(2n)

)

t=0

.

Linear response theory We now want to consider the effect upon dynamical variables of small
perturbations in the Hamiltonian. When the system is subject to some external influence the
Hamiltonian is modified H = H′ + H′(t), where the perturbation is a product of an applied space
and time-dependent field F (r, t) which couples to the dynamical variable A(r),
H′(t) = −

∫

drA(r)F (r, t). Using the results of the previous exercise and assuming that the system
is in equilibrium for t → −∞ show that to linear order in F (r′, t′) the perturbed distribution
function is given by

f(t) = f0 −
∫

t

−∞

dt′
∫

dr′ e−iL0(t−t′){A(r′), f(t′)}F (r′, t′),

where L0 is the Liouville operator of the unperturbed Hamiltonian. Using similar arguments show
that the mean change in the variable B resulting from the perturbation coupling to variable A is
given by

〈δB(r, t)〉 =

∫

t

−∞

dt′
∫

dr′ χAB(r − r′, t − t′)F (r′, t′),

where the response function χAB(r − r′, t − t′) = −{B(r, t), A(r′, t′)} and we have used the
hermitian property of the Liouville operator. Note that the response function is non-local in both
space and time, where the time non-locality reflects the memory of the system. Using the definition
of the time correlation function show that in equilibrium the following relation holds

∂

∂t
CAB(t) = −kBTχAB(t),
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where χAB(t) = 〈{f0, A
∗(t)}B〉. Thus show that the thermodynamic response χ0

AB
≡

∫

∞

0
dt χAB(t)

is given by χ0
AB

= χT

AB
(1 − fAB), where χT

AB
is the isothermal susceptibility and fAB is the

non-ergodicity parameter fAB = CAB(∞)/kBT .
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