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Übungsblatt 7: Kramers’ equation, Escape rate problem and Positivity proof

Kramers’ equation In previous exercises we have seen that the probability density P (x, t) of the
position of a colloidal particle in an external field can be described by the Smoluchowski equation.
However, the Smoluchowski equation assumes that the momentum degrees of freedom equilibrate
much faster than the positions. This is known as the overdamped limit. In some situations we
cannot make this assumption and require the distribution function of both positions and velocities,
P (x, v, t). The partial differential equation for this function is Kramers’ equation.

1. Consider a colloidal particle suspended in a solvent and subject to an external potential V (x)
which give rise to Brownian and deterministic forces, respectively. For simplicity we will work
in one spatial dimension. Write a Langevin equation for the particle velocity. Combined with
the relation dx/dt = v we have two coupled (stochastic) differential equations.

2. The coupled Langevin equations for the position and velocity of the colloidal particle require
a two dimensional Fokker-Planck equation to describe the distribution function. The
Kramers-Moyal drift and diffusion coefficients in the multi-dimensional are Λi and Λij, with
i, j = x, v. Calculate the Fokker-Planck equation corresponding to the coupled Langevin
equations and show that this yields Kramers’ equation
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where P ≡ P (x, v, t), F(x) is the force arising from the external potential, m is the particle
mass and γ is proportional to the viscosity, γ = 6πηd. Kramers’ equation has many
applications but was first used by Hendrik Kramers for describing chemical reactions.

3. In the overdamped limit γ → ∞ we expect to recover the Smoluchowski equation for the
reduced distribution function P (x, t). However, taking this limit from Kramers’ equation is
delicate and is a problem of singular perturbation theory. Why can these difficulties be
anticipated simply from the gamma dependence in Kramers’ equation? Assume a series
solution in powers of γ−1, P (x, v, t) = P (0) + γ−1P (1) + γ−2P (2) + · · · . By equating the
coefficients of each power of γ we obtain a partial differential equation for each coefficient.
The solution for P (0)(x, v, t) involves an arbitrary constant of integration φ(x, t). The
equation for P (1)(x, v, t) requires P (0)(x, v, t) as input and therefore involves φ(x, t). By
integrating the P (1) equation over v we obtain the ‘solubility condition’ ∂φ/∂t = 0. The P (1)

equation can now be solved. By repeating this procedure higher order terms can be generated.
Obtain the series solution to order γ−1. By integrating over v to get rid of the v dependence
we finally arrive at the Smoluchowski equation
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Kramer’s escape rate problem In this problem we consider a Brownian particle sitting in a
deep potential well (see Figure 1) and consider the escape rate over the potential barrier.

1. As a first step show that the probability current S(x, t) in the Smoluchowski equation
∂P (x, t)/∂t = −∂S(x, t)/∂x can be rewritten in the following form
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where the potential is given by the indefinite integral of the force Φ(x) = −
∫ x

F (x′). If the
barrier is high then we expect that P (x, t) changes only slowly with time. This imples that
S(x, t) is approximately constant in space. By integrating between xmin and A show that
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2. Justify the approximation P (x, t) = P (xmin, t)e
−(Φ(x)−Φ(xmin))/kBT for values of x close to the

minimum. Find an expression for the probability p that the particle is located in a region
close to the minima between x1 and x2. The escape rate r is given by p/S. Combine your
results to obtain an expression for the escape rate r.

3. Make Taylor expansions of the potential Φ about the minimum and maximum to obtain
Gaussian approximations to the integrals in the expression for Φ to obtain the final result
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This result gives the rate at which particles escape over the barrier in the limit that the
barrier height becomes large (this result is sometimes called an Arrhenius formula). You
might have noticed the similarity to quantum mechanical problems, such as the tunneling of a
particle through a finite potential barrier. There is a close correspondence as the Schrödinger
equation is also a diffusion equation.

Positivity of solution to the Fokker-Planck equation The probability distribution of the
position of a Brownian particle P (x, t + τ) is related to the transition probability p(x, t + τ |x′, t) by
the Chapman-Kolmogorov equation P (x, t + τ) =

∫

dx′p(x, t + τ |x′, t)P (x′, t). It obeys the
Fokker-Planck equation ∂p(x, t + τ |x′, t)/∂t = LFP (x)p(x, t + τ |x′, t) with initial condition
p(x, t|x′, t) = δ(x − x′). Find the formal solution to this equation and by expanding your result for
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small time differences τ = t − t′ derive the following short time expansion of the transition
probability

p(x, t|x′, t′) = (1 + LFP (x)τ + · · · ) δ(x − x′).

We take the following form for the Fokker-Planck operator
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By using exp(x) ≈ 1 + x for x ≪ 1 and the Fourier integral representation of the delta function
derive the following result

p(x, t|x′, t′) =
1

2
√

πD(2)(x′)τ
exp

(

−
[x − x′ − D(1)(x′)τ ]2

4D(2)(x′)τ

)

valid for small time differences τ . Now we consider a starting distribution P (x0, t0) and how this
evolves to the distribution P (x, t). Divide the time difference into N small intervals of length
τ = (t − t0)/N and iterate the Chapman-Kolmogorov equation to connect P (x0, t0) with P (x, t).
The final result is obtained by inserting small τ solution of the Fokker-Planck equation. Using this
relation give an argument why the distribution P (x, t) must remain positive, given that we begin
with a positive initial distribution P (x0, t0).
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