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Übungsblatt 4: Brownian motion and Langevin equation.

Brownian motion. In 1827 the Botanist Robert Brown observed that pollen grains suspended in
water exhibit very irregular motion. Brown found similar behaviour with other suspensions of fine
particles, even a powdered fragment of the Sphinx! This phenomena, Brownian motion, remained a
mystery until in 1905 Einstein (and independently, Smoluchowski) provided the explanation which
simultaneously provided strong evidence for the atomic nature of matter.

1. Einstein argued that the motion of a colloidal particle such as pollen suspended in a solvent
arises from the many random collisions with the much smaller solvent molecules. We begin
our description by introducing a time interval τ which is very small on the scale of the
observation time but large enough that the motion of the particle is uncorrelated within
neighbouring time intervals. Discuss the validity of assuming the existence of such a time
interval. Give an estimate for τ .

2. We now specify to the case of one spatial dimension. Generalization to higher dimensions is
then easy. If there are n non-interacting colloidal particles suspended in the solvent then in
interval τ the x-coordinate of particle i changes xi → xi + ∆i, where ∆i is a different positive
or negative value for each particle and which is independent from one time interval to the
next. The probability density φ(∆) is defined by dn = nφ(∆)d∆. Make a sketch of φ(∆). Why
does φ satisfy the condition φ(∆) = φ(−∆)? If ν = f(x, t) is the number of particles per unit
volume argue why the following Chapman-Kolmogorov equation should be satisfied

f(x, t + τ) =

∫ ∞

−∞

f(x + ∆, t)φ(∆)d∆.

3. By expanding f(x, t + τ) and f(x + ∆, t) in series for small values of τ and δ, respectively,
show that

f + τ
∂f

∂τ
= f

∫ ∞

−∞

φ(∆)d∆ +
∂2f

∂x2

∫ ∞

−∞

∆2

2
φ(∆)d∆,

where we have used the symmetry of φ(∆). By defining the diffusion constant
D = 1

τ

∫ ∞

−∞
∆2

2
φ(∆)d∆ we arrive at the diffusion equation for f(x, t)

∂f

∂t
= D

∂2f

∂x2
.

4. Solve the diffusion equation with the boundary conditions f(x, 0) = δ(x − x0),
f(x → ∞, t) = 0 to obtain

f(x, t) =
n√

4πDt
exp

(

− x2

4Dt

)

,

and show that the root-mean-square displacement λx ≡
√

〈x2〉 is given by λx =
√

2Dt
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Langevin equation In 1908, following Einstein’s original derivation, Langevin presented a new
approach to tackling Brownian motion. Langevin’s approach introduced the concept of a stochastic
differential equation, i.e. a differential equation with a term containing a random process. The
colloidal particle is subject to two forces. The first force is a viscous drag −6πησ, where η is the
viscosity and σ the particle diameter (we assume a spherical particle). This viscous drag can be
calculated from the Navier-Stokes equation of Hydrodynamics. The second force is a fluctuating
random force X which reflects the collisions of the solvent molecules with the colloid.

1. What value do we expect for the average of the flucuating force 〈X〉? Using Newtons second
law write an equation of motion for the position of the particle x(t) and show that this can be
written

1

2
m

d2

dt2
(x2) − mv2 = −3πησ

d(x2)

dt
+ xX,

where m is the mass of the particle and v = dx

dt
. Comment on the effect of the stochastic term

upon the solution x(t). Is x(t) deterministic? What kind of information can we expect to
obtain from such a stochastic differential equation?

2. By taking averages and using the equipartition theorem show that

1

2
m

d2

dt2
〈x2〉 + 3πησ

d

dt
〈x2〉 = kBT.

Where we have assumed that 〈xX〉 = 0. Solve this equation to obtain the general solution
d〈x2〉

dt
= kBT/(3πησ) + C exp(−6πησt/m). The term containing the integration constant can

be neglected. Why is this? Using this result obtain an expression for the root mean square
displacement λx. Finally, by combining this result with that from the previous exercise obtain
the fluctuation-dissipation result D = kBT/(6πησ) which connects the solvent viscosity to the
diffusion constant of the colloidal particle. Describe how this result can be used to obtain
Avogadro’s number from a Brownian motion experiment, given an independent value for the
gas constant R = 8.314 J K−1.

3. Consider again the approximation 〈xX〉 = 0. In making this assumption what are we
assuming about the statistical relationship between x and X? Discuss the relationship
between this assumption and that of Einstein, who assumed a time interval τ such that the
displacements ∆ in neighbouring intervals are uncorrelated. Calculate the quantity 〈vX〉.

4. We now consider the situation in three dimensions. Use Newton’s second law to write the
equation of motion for this case, noting that the random force is now a vector X. Use the
equipartition theorem and the assumption 〈r · X〉 = 0 to derive the following equation for the
mean square displacement of a colloidal particle initially at r(t = 0) = 0

〈r2〉 =
kBT

πησ
[t − τ1 (1 − exp(−t/τ1))] ,

where τ1 = m/(6πησ). Expand this result for short times t ≪ τ1 and for long times t ≫ τ1

and comment on the results.
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