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Übungsblatt 3: Hydrodynamics II and Debye-Waller Factor

Rotors on a lattice II. In the previous problems sheet we considered a simple model for
Hydrodynamics consisting of rotors on lattice sites. We considered only the disordered phase but
for sufficiently low temperatures the rotors tend to align into an ordered phase reminiscent of the
ferromagnetic phase in the Ising model. In addition to the Hydrodynamic modes associated with
conserved variables the ordered phase displays an additional slowly varying long wavelength mode.
Such additional modes occur quite generally when a continuous symmetry is broken.
In the ordered phase we can consider course graining over a mesoscopic volume to obtain a
spacially varying average rotor direction n(x) = [cos θ(x), sin θ(x)], where θ(x) is the local average
angle. The vector n(x) is called the director and is zero in the disordered phase. Gradients of θ(x)
give rise to an elastic free energy

Fel =
1

2

∫

dx ρs(∇θ(x))2,

where ρs is a stiffness parameter. In order to extend our hydrodynamics to the ordered phase we
must include a new thermodynamic variable vθ(x) = ∇θ(x) which has the conjugate variable
hθ(x). The appropriate thermodynamic function is

W (T, Ω, [hθ]) = E − ΩL − TS −

∫

dxh θ(x) · vθ(x),

where [·] indicates a functional dependence. Derive a relation between the intensive quantities
s, ǫ, l,vθ(x). Show that we can expand the Legendre transformed potential W̃ (T, Ω,vθ) for small vθ

to obtain
W̃ (T, Ω,vθ) = W (T, Ω) + Fel(T,vθ).

The compnents of the conjugate field satisfy hθi = −T
(

∂s
∂vθi

)

ǫ,l
= V −1

(

∂W̃
∂vθi

)

T,Ω
which give

hθi = ρsvθi to lowest order in vθi.
Consider the equation of motion for the angle

dθ(x)

dt
+ (−Ω + X ′) = 0,

where we have split the ’current’ into two contributions. Why does X ′ = 0 describe the
non-dissipative case. We can thus write an equation of motion for vθ

∂vθ

∂t
= −∇(X ′ − Ω).

Using this result, the relation between the intensive quantities and the conservation laws for ǫ and l
show that the entropy production equation becomes

T

(

∂s

∂t
+ ∇ · (Q/T )

)

= −Q · (∇T/T ) − (jl + hθ) · ∇Ω − X ′∇ · hθ,
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where the heat/entropy current is given by Q = jǫ − Ωjl − hθX
′

As was the case in the disordered phase we can postulate consitutive equations for the dissipative
parts of the currents

Qi = −κij∇jT

jli = −hθi − Γij∇jΩ

X ′ = −γ∇ · hθ = −γρs∇
2θ.

In ordered phase the dissipative coefficients become tensors, why? Finally derive the linearized
hydrodynamic equations for the ordered phase

∂ǫ

∂t
= C−1

l κij∇i∇jǫ

∂θ

∂t
= Ω + γρs∇

2θ = I−1l + γρs∇
2θ

∂l

∂t
= ρs∇ · vθ + Γij∇jΩ = ρs∇

2θ + I−1Γij∇i∇jl.

Comment on the coupling between these equations. For the case without dissipation we have that
Qi, jli and X ′ are all zero. Find the modes of the system in this case.

The Debye-Waller factor. In this problem we will consider scattering of waves from a crystal
structure and the effect of motion in the crystal lattice on the intensity of the Bragg peaks. In the
early days of x-ray scattering it was not clear whether Bragg peaks would be destroyed or simply
reduced by thermal motion, an issue which is closely connected to the presence of long range order
in a solid. The Debye-Waller factor describes the effects of temperature on the Bragg peaks and
thus is a useful measure of crystalline order.
The scattering cross section of a material (ordered or disordered) is proportional to the correlator of
density fluctuations in Fourier space 〈n(q)n(−q)〉, where n(x) =

∑

i δ(x − xi). By Considering the
Ursell function

Snn(x1,x2) = 〈n(x1)n(x2)〉 − 〈n(x1)〉〈n(x2)〉

show that the scattering cross section is proportional to

NSnn(q) + |〈n(q)〉|2.

Show also that for a liquid the second term gives a contribution N2δq,0. What is the meaning of
this result?
When the sample is crystalline we can imagine the atoms to be located at the sites of a periodic
lattice. Show that for a crystal at zero temperature n(q) = Nδq,G, where G is a reciprocal lattice
vector. The cross section thus recieves a contribution ∼ N2 due to constructive interference
whenever the probe wavevector q = G. These are the Bragg peaks. Now consider a finite
temperature for which the atoms are slightly displaced from their perfect lattice sites, ri = Ri + ui,
where the lattice sites are at Ri and small displacements are ui. We can express the small
displacements as a Fourier sum ui =

∑

q Uq exp(−iq ·Ri), where Uq is the vector amplitude of the
mode with wavevector q. Make a series expansion of nq in powers of Uq and look at the behaviour
as q → ∞ where exp(−iq · Ri) = 1. Focus on the dominant contribution to the series −1

2
|k · Uq|

2

to show that in this Gaussian approximation

n(k) =
∑

i

eik·Ri exp

(

−
∑

q

k2

6
〈UqU−q〉

)

=
∑

i

eik·Rie−W .

W is the Debye-Waller factor. Using elasticity theory it can be shown that the correlation function
〈UqU−q〉 ∼

1

q2 . What does this suggest about long range order in a two dimensional crystal?
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