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Übungsblatt 2: Hydrodynamics and viscous friction

Rotors on a lattice. In order to illustrate some of the essential features of
Hydrodynamics we consider a simple model consisting of rigid rotors on a lattice.
Each rotor can rotate freely without friction in the 2-dimensional x-y plane with a
nearest neighbour interaction which tends to align the rotors. In this model there
exists both a high temperature disordered phase and and low temperature ordered
phase which are reminiscent of the paramagnetic and ferromagnetic phases of the
Ising model. The model is sketched in the picture below.

1. The appropriate thermodynamic potential is given by
W (T, Ω) = E −ΩL− TS, where T, Ω, E, L and S are the temperature, angular
velocity, energy, total angular momentum and entropy, respectively. Discuss
why this is the correct potential to use in this case. Explain why this implies
the thermodynamic identity Tds = dǫ − Ωdl, where s, ǫ and l are entropy,
energy and angular momentum densities. Hydrodynamic variables obey
conservation equations and therefore exhibit temporal freqencies ∼ q for small
wavevectors. Identify the conserved densities (hydrodynamic variables) for this
model and derive the following equation relating the change in entropy to
changes in these variables

T
ds

dt
= −∇ · (jǫ − Ωjl) − jl · ∇Ω,

where jǫ and jl are the currents. By assuming the boundary condition that the
entropy/heat current Q = jǫ − Ωjl is zero on the boundaries of some large
volume V show that

T
dS

dt
=

∫

V

dr

[

−Q ·
(

∇T

T

)

− jl · ∇Ω

]

.

This equation gives the rate of entropy production in the system.



2. Consider first the situation when there is no dissipation in the system and the
entropy remains constant. What does this imply for the currents Q and jl?
With dissipation the rate of entropy production must be positive by the
second law of thermodynamics. In order to treat the dissipative case we
assume the following constitutive relations

Q = −κ∇T , jl = −Γ∇Ω.

Why are these relations physically reasonable and under what conditions
might they break down? Why must we require κ > 0, Γ > 0? There are no
constitutive relations coupling jl to ∇T or Q to ∇Ω because these quantities
have the same sign under time reversal. Finally, show that the diffusive
equations for the energy and angular momentum densities linearised about
Ω = 0 are given by

∂ǫ

∂t
= Dǫ∇2ǫ

∂l

∂t
= Dl∇2l,

where Dǫ = κ/Cl, Dl = Γ/I and we have used the thermodynamic relations
(

∂l

∂Ω

)

T
= I and

(

∂ǫ

∂T

)

l
= Cl. These equations are the phenomenological diffusion

equations for the conserved densities. Analogous equations exist for the
conjugate fields T and Ω which describe thermal and angular velocity diffusion.

Viscous friction. The shear viscosity η determines the friction one feels when
stirring fluids at not too large velocities. A simple calculation considers an
incompressible fluid described by the Navier-Stokes equations bounded by a moving
wall. Let the wall be at position z = 0 and move parallel to its orientation, viz.
uwall = u(t)x̂. Find the viscous force per area F (t) required to move the wall with
velocity u(t) under the assumption of laminar (non-turbulent) flow, which states
that the fluid velocity depends on the distance to the wall only, v(r, t) = v(z, t).
Hint: Make the most simple possible assumption for the boundary condition of the
fluid velocity at the wall. Then consider a single Fourier-mode for the wall velocity,
u(t) = uω cos ωt, and solve for the resulting friction at the wall, Fω. Why does the
term ’viscous skin effect’ apply? It is an interesting slightly involved excercise to
obtain F (t) by inverse Fourier-transformation. The result is

F (t) = −
√

ηρ

π

∫

t

−∞

ds
u̇(s)√
t − s

Discuss the long time behavior of F (t) for the case of a wall initially at rest and
then set to motion with constant velocity u0 at time t = 0.


