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Übungsblatt 1: Ferrohydrodynamics

Ferromagnetism is observed in many solid metals (e.g. iron or nickel) at
temperatures below the Curie temperature Tcurie. As the temperature of a
ferromagnetic sample is increased it first undergoes a transition to a paramagnetic
solid at Tcurie and then melts to form a liquid at some higher temperature Tmelt. As
Tmelt > Tcurie ferromagnetic fluids (ferrofluids) are not found in nature. However,
such ferrofluids can be synthesized by suspending magnetic colloidal particles in a
solvent. Each colloidal particle has a solid, single domain magnetic core and acts like
a small magnet. If an external magnetic field H is applied then the particles within
a small volume element of the fluid can align to give an induction field B(r), where r

is the center of the element. The presence of a B field density within the fluid adds
additional terms to the standard hydrodynamic equations which lead to interesting
and unusual flow behaviour.
In classical hydrodynamics the density ρ(r, t) and velocity v(r, t) are fields which
can vary in space and time. These functions may then, in principle, be found from
the Navier-Stokes equations. We will consider the derivation of the analogous
equations for an incompressible ferrofluid.

1. Entropy equation. For a system with total momentum G and velocity v the
grand potential is given by −Ω(µ, V, T,v) = −E + µN + TS + G · v. Taking
differentials of this expression leads to the entropy equation (see problem 58 in
Statistical Mechanics 1). Consider how the entropy equation is modified for a
ferrofluid in an external field.

2. Magnetic stress-tensor In a normal non-magnetic fluid viscous forces enter
the equations of motion via the stress tensor. However, in a ferrofluid we must
also consider the contribution of an additional magnetic stress tensor. The
diagonal elements reflect the influence of a magnetic energy density within a
fluid element on the pressure. Consider the meaning of the off diagonal
elements. When there are also electric charges present it is appropriate to use
the Maxwell stress tensor, given by

Tmaxwell

αβ = ǫ0(EαEβ + c2BαBβ −
1

2
(E · E + c2B · B)δαβ).

Derive this expression using Maxwells equations, the Lorentz force and
Newtons principle (action = reaction). Expressing the force as a spatial
integral over a force density allows connection to be made to the divergence of
the Maxwell stress tensor. When E = 0 we obtain the magnetic stress tensor
Tm.



3. Equation of motion Consider a cubic volume element in the ferrofluid with
volume dV = dxdydz, large enough to contain many particles but small
compared to variations in the density and velocity fields. Express the
momentum of this element as a function of dV, ρ and v. By considering a
volume element which moves with the flow argue that Newtons law becomes

ρ
Dv

Dt
= fg + fp + fv + fm,

where the fi are the gravitational, pressure, viscous and magnetic force
densities. Think about the meaning of each term on the right hand side of this
equation. The notation D/Dt indicates the convective (also known as the
substantial or material) derivative. What is the convective derivative and why
is it useful here?

4. Navier-Stokes equation Give expressions for fg and fp in terms of the
acceleration due to gravity g and the pressure acting on the element p(ρ, T ).
The viscous stress tensor Tv for an incompressible fluid (∇ · v = 0) is related
to the velocity by the Newtonion constitutive relation Tv = η[∇v + (∇v)T ].
By taking divergences of Tv and Tm find an expressions for the viscous and
magnetic forces fv. Thus show that the Navier-Stokes equation for ferrofluids is
given by

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p∗ + µ0M∇H + η∇2v + ρg,

where p∗ is an effective pressure, modified by the presence of magnetic field
energy within the element. Note that the term µ0M∇H comes from using
Maxwell’s relation ∇ · B = 0, Ampère’s law in the absence of current
∇× H = 0 and assuming that B and H are parallel.

5. Bernoulli equation We now derive the Ferrohydrodynamic Bernoulli
equation from the Navier-Stokes equation for an incompressible ferrofluid.
First consider the viscous term η∇2v and show that for irrotational flow
(∇× v = 0) the viscous term is zero. It can be assumed that the
magnetization M is approximately constant in space such that
∇MH ≈ M∇H . Use the vector identity v · ∇v = ∇(1

2
v2) − v × (∇× v) to

obtain the ferrohydrodynamic Bernoulli equation

−ρ
∂φ

∂t
+ p∗ +

1

2
ρv2 + ρgh − µ0MH = f(t),

where φ is the velocity potential (v = −∇φ) and f(t) is a constant of
integration. For steady state flows ∂φ/∂t = 0 and f(t) = const.


