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We present a study of optical electron spin-injection �optical orientation� in the bulk semiconductors GaAs,
Si, and CdSe from direct optical excitation with circularly polarized light. For GaAs and Si, we compare
pseudopotential calculations with calculations of a recent full-zone k ·p model. For GaAs, we find that there
can be up to 30% spin-injection at energies well above the band gap. For Si, which has very weak spin-orbit
coupling, we find that there can be up to 30% spin polarization from direct transitions. The relatively low
symmetry of wurtzite CdSe leads to an orientation dependent spin-injection, which can be up to 100% polar-
ized at the band edge. For each of these systems, full-zone calculations are made, which allow us to consider
excitation well above the band gap. An adaptive Brillouin zone sampling scheme is used, which allows us to
obtain rapid convergence of our spectra. A derivation of the spin-injection rate, which accounts for the coher-
ences excited in a semiconductor with spin-split bands, is also included.
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I. INTRODUCTION

Spin-polarized electrons are injected in the conduction
bands of semiconductors by the absorption of circularly
polarized light. Known as optical orientation, this effect
is a powerful tool in the field of spintronics, where it
is used to generate a spin-polarized electron density in
semiconductors.1,2 At low enough energies, k ·p methods can
be used to model the process. An eight-band model success-
fully describes the spin-injection rate in GaAs at energies up
to about 100 meV above the band edge. To describe excita-
tion at higher energies, a 14-band k ·p method can be used,3

which allows the split-off bands and higher-energy conduc-
tion bands to be included. While the bands from this model
are accurate up to roughly 0.5 eV away from the band edges,
they drastically fail for higher energies.

Other issues limit the effectiveness of the k ·p method.
The more realistic 14-band models depend on 11 parameters,
and even for GaAs, one of the most studied semiconductors,
these have not been derived from a single source in a con-
sistent manner. Some parameters come from experiment and
others from theory. For the more complicated semiconduc-
tors, realistic k ·p models are not even available.

In this work, we address the calculation of optical spin-
injection from density functional theory band structures.
Such ab initio band structures have recently been used to
study other spintronic effects.4–6 We restrict ourselves to
pseudopotential band structures based on the local density
approximation �LDA�+scissors correction, since this is the
simplest and still the most popular approach to the calcula-
tions of optical properties using full-zone band structures.
The LDA systematically underestimates the band gap, and so
a band gap correction, called the “scissors correction,” is
implemented. This rigidly shifts the conduction band ener-
gies by a constant amount. Where possible, we contrast the
LDA results with results from 30-band k ·p models to ad-
dress the validity of the k ·p results at higher photon ener-
gies.

One technical aspect important in this work, and in many
other band structure calculations, is that a large number of k
points are required to evaluate the Brillouin zone �BZ� inte-
grals accurately. Even using the full crystal symmetry to re-
duce the integration to the irreducible zone, many thousands
of k points are needed to obtain convergence. For example,
to evaluate the spin Hall spectra in GaAs, Guo et al.4 used
98 790 k points, obtained by segmenting the �X line into 56
intervals. Although we find that a fine division of the BZ is
also required to calculate the spin-injection tensors, the num-
ber of k points needed can be significantly reduced if one
does not restrict oneself to an equispaced mesh of k points.
Yao and Fang5 took a step in this direction by implementing
an adaptive scheme in which 26 k points are added around
targeted k points to produce a finer mesh. Even so, they
required over 2�106 k points, using a Monkhorst-Pack spe-
cial points method, to obtain converged spectra. As part of
this work, we present an adaptive linear analytic tetrahedral
integration method. It is a straightforward extension of the
widely used method of Blöchl-Jepsen-Andersen7 �BJA� and
can be used for any type of calculation involving density of
states, or joint density of states. Our adaptive procedure it-
eratively calculates the spectrum of interest at each step re-
fining the grid only in the area of the BZ, contributing to the
frequencies of interest where the spectrum is not converged.
The scheme can be easily applied to calculate other quanti-
ties relying on BZ integrals.

Another issue in calculations of this sort, when performed
for noncentrosymmetric semiconductors such as GaAs, is
that the energy bands are spin split in certain directions. The
splitting is typically smaller than the energy width of the
laser pulse, and so the pulse can excite multiple bands. This
causes coherences to be excited, which must be accounted
for to describe the optical spin-injection rate in these semi-
conductors. Bhat et al. had given a heuristic argument for the
inclusion of coherence between spin-split bands in optical
spin-injection calculations based on Fermi’s golden rule.3,6 In
Sec. II of this paper, we use a density matrix approach to
show, from a microscopic derivation, how the coherences are
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to be included. In Sec. III, we describe the computational
details involved in obtaining the relevant matrix elements
and the Brillouin zone integrations. In Sec. IV, we compare
the LDA results for GaAs with a recently detailed 30-band
k ·p model.8,9 Our results indicate that the degree of spin
polarization can be reliably calculated with LDA ab initio
band structures. We then turn to optical orientation in other
materials. We first look at absorption in bulk Si, where, to
date, optical orientation has only been observed indirectly.10

We neglect the phonon interaction, and so our results are
limited to absorption across the direct band gap. We com-
plete our study by considering optical orientation in bulk
wurtzite CdSe, where the electronic structure is more com-
plicated than in the zinc-blende crystals, and no simple full-
zone k ·p models exist. We summarize our results in Sec. V.

II. THEORY

In this section, we derive expressions for the spin-

injection rate Ṡ�t�. The external laser perturbation is taken to
be

Hext�t� = − eraEa�t� , �1�

where e is the electron charge, r is the position operator, and
E�t� is the electric field of the applied laser. The superscript
Roman characters indicate Cartesian coordinates. When re-
peated, as in Eq. �1�, the coordinates are to be summed over.
We follow Adams11 and Blount12 to separate the interband
and intraband matrix elements of the position operator. For
this work, the intraband components do not play a role.

We initially consider the response to a continuous wave
field,

E�t� = E���e−i�t + E*���ei�t, �2�

at the level of Fermi’s golden rule �FGR�. Neglecting many-
particle effects and phonon scattering, the spin-injection rate
into the conduction bands of a clean, cold semiconductor is
proportional to the field intensity,1,13

Ṡa = �abc���Eb�− ��Ec��� . �3�

The quantities �abc��� constitute a third rank pseudotensor.
In the context of nonlinear optics, ���� is analogous to a
second-order susceptibility, except that it is a pseudotensor
instead of a tensor.

A FGR derivation gives an expression for �abc��� in terms
of the band energies and matrix elements,

�abc��� =
2�e2

�2 � d3k

8�3�
c,v

Scc
a �k�rvc

b �k�rcv
c �k����cv�k� − �� .

�4�

Italics subscripts indicate band indices. Throughout this
work, c will refer to a conduction band and v to a valence
band; we assume that in the ground state, the valence bands
are fully occupied and the conduction states are empty. For a
band m, the Bloch states �mk� have energy eigenvalue
��m�k�. The quantity �cv�k� is defined as the difference
�cv�k�	�c�k�−�v�k�. The quantity Scc

a �k� comes from the
spin matrix element


ck�Ŝa�mk�� = Scm
a �k���k − k�� , �5�

and the off-diagonal dipole matrix elements rcv
a �k� are related

to the velocities of the Bloch states through

rcv
a �k� =

vcv
a �k�

i�cv�k�
, �6�

where


ck�v̂a�vk�� = vcv
a �k���k − k�� . �7�

From Eq. �4�, it can be shown that the pseudotensor �abc���
is imaginary and that it changes sign under exchange of the
last two indices.13 Here and throughout this paper, we as-
sume, as is commonly done,1 that the hole spins relax very
quickly and we neglect them, focusing only on the electron
spins; measurements have led to estimates of 110 fs for the
heavy-hole spin lifetime in GaAs.14

One disadvantage of a FGR derivation is that it fails to
capture the excited coherences. The conduction bands in the
noncentrosymmetric semiconductors are spin split by a small
amount,15,16 typically smaller than the energy width of the
laser pulse, and so the pulse excites a coherent superposition
of the two conduction bands. Even for very long pulses with
narrow energy widths, dephasing effects lead to an energy
width of the bands large enough that spin-split states can
become quasidegenerate. These coherences can be added in
“by hand,” but to more rigorously include them, we use a
multiple scale approach to solve the equation of motion for
the single particle density matrix �mn�k ; t�. The dynamical
equation for the density matrix is

d�mn�k;t�
dt

= − i�̂mn�k��mn�k;t� −
i

�
��Hext�t�,��k;t���mn.

�8�

In this equation,

��Hext�t�,��k;t���mn = Hmp
ext�t��pn�k;t� − �mp�k;t�Hpn

ext�t� ,

�9�

where repeated level indices are summed over, and we have
included the possibility of loss and dephasing in �̂mn�k� by
putting

�̂mn�k� = �mn�k� − i�mn, �10�

where �mn is taken to be positive.
Assuming that the conduction bands c and c� are close to

one another, and that the pulse is short enough so that the
energy width overlaps the two bands, the equation of motion
can be solved. Leaving the details of the derivation to Ap-
pendix A, the result for the off-diagonal component �cc�,
where c and c� are quasidegenerate conduction states, is

NASTOS et al. PHYSICAL REVIEW B 76, 205113 �2007�

205113-2



��cc�

�t
= − i��cc� − i�cc���cc� +

e2Ea���Eb*���
i�2

��
v
� rcv

a rvc�
b

� − �c�v − i	
−

rcv
a rvc�

b

� − �cv + i	
� . �11�

In this expression, 	 is a small positive number, and the sum
over v is limited to valence bands. The spin-injection rate
can now be found from

S = Tr��Ŝ� . �12�

Using the identity ��−�cv− i	�−1=P��−�cv�+ i����−�cv�,
where P indicates that the principal part should be used, we

find that Ṡ is still related to fields through Eq. �3�, but with
�abc��� now given by

�abc��� =
�e2

�2 �
c,c�,v

�� d3k

8�3Sc�c
a �k�rvc�

b �k�rcv
c �k�

�����cv�k� − �� + ���c�v�k� − ��� �13�

�cf. Eq. �4��. The prime on the summation indicates that the
sum is to be done over pairs of conduction bands c and c�
that are quasidegenerate. We classify bands separated by no
more than 30 meV to be quasidegenerate, where the defining
energy is chosen since it is approximately both a typical laser
pulse energy width and the room temperature energy. In the
case of degenerate bands, Eq. �13� reduces to the FGR result
�Eq. �4��.

Although �abc��� is useful for understanding the total spin
injected, a more physically transparent quantity useful for
characterizing the spin-injection is the degree of spin polar-
ization DSPa defined as the average electron spin along the
light propagation vector, or

DSPa =
Ṡa

��/2�ṅ
, �14�

where ṅ is the carrier injection rate. For ṅ, the multiple scale
analysis gives the same result as FGR, which can be written
as

ṅ = 
ab���Ea�− ��Eb��� , �15�

where the tensor 
ab��� is given by


ab��� =
2�e2

�2 � �
c,v

d3k

8�3rvc
a �k�rcv

b �k����cv�k� − �� .

�16�

It is related to the imaginary part of the linear optical re-
sponse tensor.17

III. COMPUTATIONAL DETAILS

We use both a density functional theory LDA pseudopo-
tential band structure and a k ·p band structure to obtain the
matrix elements required to calculate the spin-injection rates.
It is useful to compare our LDA results to those from a

different method, and we chose the k ·p method since it is
one of the more popular schemes, and because it is designed
to accurately replicate the experimental band structure,
around �, with a proper choice of parameters.

A. Matrix elements: local density approximation band
structures

The pseudopotential calculations are performed with the
freely available ABINIT code.18 We use the separable
Hartwigsen-Goedecker-Hutter �HGH� pseudopotentials19

within the LDA as parametrized by Goedecker et al.20 These
pseudopotentials are a common choice in ab initio studies
investigating materials where the spin-orbit contribution can-
not be neglected; see articles citing Hartwigsen et al.19 for a
collection of such studies. In our calculations, we exclude the
semi-core states, as is often done, though they can be in-
cluded with more computational effort. We use a cutoff of
40 hartree throughout. Once the Kohn-Sham potential is de-
termined, we find the wave functions for k points on a spe-
cially determined tetrahedral grid. The momentum matrix el-
ements are calculated as described by Mendoza et al.;21 the
spin matrix elements are calculated in a similar manner. The
contributions to the velocity matrix elements from the non-
local part of the pseudopotential and from the spin-orbit in-
teraction are excluded, as is usually done. They are not
readily available, and to our knowledge, no efficient scheme
to include them both simultaneously has been presented. Al-
though we know that the contributions are small for GaAs
and Si, the contributions in CdSe may be substantial.21–23

It is well known that the density functional theory gener-
ally underestimates the band gap of insulators.24,25 A usual
approach to overcome the LDA underestimation is to use the
so-called scissors correction, in which the conduction bands
are all rigidly shifted up in energy by an amount that corrects
the band gap. This is admittedly ad hoc, but the correction
can be treated consistently by including a self-energy term in
the Hamiltonian that adds an energy to the LDA conduction
states but leaves the valence bands unchanged.26,27 The result
from an analysis of the scissors-modified Hamiltonian is that
the matrix elements rmn

a �k� and Smn
a �k� are the same for both

the LDA and the scissors Hamiltonian.28,29 Since the ��c�k�
are shifted, the only significant consequence is in the � func-
tion of Eq. �13� and Eq. �16�, and so the spectra correspond-
ing to the scissored Hamiltonian are obtained by simply
translating in energy the spectra calculated from the LDA
Hamiltonian.

B. Matrix elements: k ·p band structures

For the zinc-blende III-V materials, 14-band k ·p models
are the most sophisticated models that have been used for
spin-injection calculations.3 We go beyond the 14-band
model and present results using a recent 30-band model
given by Richard et al.,8 which is based on an earlier model
by Cardona and Pollak.30

Unlike the 14-band version, which is limited in its validity
to just around the � point, the 30-band model gives energies
generally accurate over the entire Brillouin zone, in a win-
dow of 11 eV about the top of the valence band.
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Richard et al.8 varied 18 parameters in a fitting procedure
to satisfy average zero slope of the bands at zone edge, the
equivalence of the U and K points �which, unlike in the
pseudopotential method, is not automatically satisfied�, and
overall agreement to empirical effective mass data. Only 11
nonzero parameters were necessary for GaAs, and 10 for Si,
to give a satisfactory band structure. Among those param-
eters are the velocity matrix elements at the � point. The spin
matrix elements at � are known from the basis states. We can
expand the states at any k in terms of the zone center states,
and thus the 30-band k ·p model provides us with the re-
quired matrix elements over the entire Brillouin zone.

C. Brillouin zone integration

The tensor components we wish to calculate, �abc��� and

ab��� �Eq. �13� and �16��, are of the form

G��� = �
c,v

Gcv��� , �17�

with

Gcv��� =� d3k

8�3gcv�k���� − �cv�k�� . �18�

The � function effectively reduces the three-dimensional in-
tegral over the Brillouin zone volume to a surface integral
over the surface defined by �cv�k�=� inside the BZ. These
types of integrals are commonly referred to as “joint density
of states �JDOS�-type integrals.” Our goal is to accurately
calculate these expressions in a frequency range relevant to
optical frequencies, with �� typically between 0.5 and
4.0 eV. Higher energies are also of interest, but they are not
the focus of our study. For the crystals we study here, and at
the energies of interest, the constant energy surface that
needs to be integrated over can be too complicated for
straightforward sampling. A more efficient algorithm that is
commonly used to evaluate JDOS �and density of states�
integrals is the linearized analytic tetrahedron method
�LATM�.

To implement the LATM, the BZ needs to be divided into
tetrahedra. The integrand factor gcv�k� and energy eigenval-
ues ��m�k� are then evaluated at every tetrahedron vertex
and stored. Inside each tetrahedron, the energies are linearly
approximated. For a given frequency �, the constant energy
surface defined by the � function is then identified inside
each tetrahedron, and the surface integral is calculated ana-
lytically by also linearly interpolating the integrand over the
tetrahedron. Summing the contributions from each tetrahe-
dron gives the value of Gcv���.

There are various ways to generate a tetrahedral grid, but
the most efficient and widely implemented scheme is the one
introduced by Blöchl et al.7 We implement their scheme
here, but to converge the spectrum with respect to number of
k points, we use a refinement technique employing an adap-
tive mesh. Adaptive Brillouin zone integration schemes have
been presented before. For example, Wang et al.31 presented
a recursive tree method for three-dimensional BZ integra-
tion. Although their method includes features from finite el-

ement methods, it requires defining the irreducible wedge by
hand. Later, Henk32 demonstrated how adaptive mesh refine-
ment could be used to speed up two-dimensional BZ integra-
tions. Since the details required to produce our grid are not
needed to follow the remainder of the main text, we present
them in Appendix B.

IV. RESULTS

A. GaAs

The first material we consider is GaAs. The band structure
is well understood, and the spin-injection at the band edge is
known to be 50% spin polarized. As well, the 30-band k ·p
method band structure agrees relatively well with the
pseudopotential band structure, so calculating the spin-
injection allows for a direct comparison of the two methods.
The unit cell is chosen so that the Ga atom is at �0,0,0� and
that the As atom is at �a /4,a /4,a /4�, where a is the conven-
tional unit cell parameter. We have made two LDA calcula-
tions, one using the experimental �room temperature� lattice
constant �a=10.68a0� and the other using the theoretical
�ground state LDA energy minimizing� lattice constant �a
=10.45a0�. For the second calculation, we find a LDA band
gap of 1.01 eV. Our lattice constant and band gap agree with
those found by Wang and Ye,33 who also used the HGH
pseudopotentials. We use a scissor shift of 0.509 eV to adjust
the LDA band gap, so that we have agreement with the k ·p
method band gap. For the first calculation, we also shift the
band gap to 1.519 eV to aid in the comparison of the spectra,
despite the fact that the band gap of a room temperature
crystal is actually 1.42 eV. Using a different scissor shift, in
order to obtain a band gap of 1.42 eV, would keep the shape
of the spectrum the same and only rigidly shift it in energy.

We consider the absorption of left-circularly polarized
light propagating along the −ẑ direction, for which the elec-
tric field polarization is

E��� = E0�x̂ − iŷ�/2. �19�

With this polarization, the carrier injection rate is

ṅ = 
xx����E0�2, �20�

where we have used that for the face-centered-cubic �fcc�
crystals, the only nonzero components of 
ab��� are


xx��� = 
yy��� = 
zz��� . �21�

To calculate the spin-injection rate, we use that the only non-
zero components of �abc��� for fcc crystals are

�xyz��� = �yzx��� = �zxy��� = − �xzy��� = − �yxz��� = − �zyx��� .

�22�

With the same polarization, Eq. �19�, the spin-injection rate
is given by

Ṡz = Im��xyz�����E0�2. �23�

In Fig. 1, we present the 
xx��� spectrum for GaAs using
the k ·p method and the two calculations based on pseudo-
potential band structures.17 We plot these two LDA spectra to
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demonstrate that there is a significant difference in the spec-
tra calculated with the two different lattice constants. Since
the parameters of the k ·p method are chosen to fit the em-
pirical spectra below 2.0 eV, for purposes of comparison, we
consider this spectrum to be the closest to the experimental
data. However, we note that while the k ·p parameters given
by Richard et al.8 give the correct effective mass, the value
of the interband coupling matrix parameter EP=22.37 eV is
different than in other k ·p models.34,35

Even though the spectrum calculated with the LDA re-
laxed lattice constant is closer to the k ·p results at these
experimentally relevant energies, it is too high by about
20%. This difference can be accounted for by considering the
difference in effective masses. Related to the LDA underes-
timation of the band gap is the fact that the LDA effective
masses are smaller than the k ·p ones. Assuming that the
heavy-hole, light-hole, and lowest conduction bands are the
dominant contributions in the effective mass sum rule, at
these energies, the smaller effective mass from the LDA
leads to larger oscillator strengths than are realistic. In a
simple model, the spectrum is directly proportional to the
oscillator strength, and so it is not surprising that the LDA
spectrum is too large. The spectrum calculated using the ex-
perimental lattice constant is further from the k ·p one than
that using the LDA. The experimental lattice constant is
larger than the LDA one, and using it is analogous to con-
sidering a system with expansive strain.

It is common to see optical response studies based on ab
initio band structures using either the experimental36,37 or
theoretical38,39 lattice constant. The choice usually depends
on the exact property being calculated and the intentions of
the study. Pulci et al.40 have already noted that the calculated
band gap is very sensitive to the choice of lattice constant.
Our calculations show that the choice can have serious con-
sequences for the calculation of the properties near the band
edge as well. In the rest of this paper, we use the LDA
relaxed lattice constant for GaAs calculations, only because

it provides more realistic behavior near the band edge.
In Fig. 2, we show the spin-injection tensor component

�xyz��� calculated using the pseudopotential and k ·p meth-
ods. We see that at low energies, the LDA �xyz��� spectrum
is roughly 20% larger than the k ·p one. The origin of this
discrepancy between the LDA result and the k ·p result is the
same as in the 
xx��� difference discussed above; it is mainly
due to the larger oscillator strength of the LDA. At approxi-
mately 350 meV above the band edge, there is a dip in the
spectrum, which we discuss below. At higher energies,
around 3.1 eV, we see that �xyz��� is quite large. This is due
to transitions in the �-L valley region of the BZ, where there
is a large joint density of states. However, from the value of
�xyz��� alone, it is unclear whether one is injecting electrons
with a large degree of spin polarization, or just many elec-
trons with a small degree of spin polarization. For this rea-
son, we focus more on the degree of spin polarization �DSP�,
which is intuitively easier to understand than �xyz.

In Fig. 3, we plot the degree of spin polarization DSPz���.
Because of the relatively high symmetry of GaAs, the exact
crystal cut is unimportant; the injected spin density will al-
ways be aligned parallel or antiparallel to the laser beam. In
Fig. 3, we also plot the degree of spin without the coherence
terms. We see that the coherence terms account for more than
70% of the total spectrum in this calculation, and neglecting
them leads to unphysical results.

We see that the DSP��� calculated with the LDA is quan-
titatively the same as the spectrum calculated with the k ·p
method up to about 2.5 eV. The differences between the
methods, shown in the 
xx��� and �xyz��� spectra, tend to
cancel out. That is, the errors are relative and do not affect
the DSP���. This is somewhat fortuitous in GaAs, since the
participating conduction bands are well separated from other
bands and the injected spin polarization is thus highly depen-
dent on the crystal symmetry and less on the details of the
band structure.

The degree of spin polarization near the band edge is
50%. This result is easily understood by considering the en-
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FIG. 1. �Color online� A comparison of 
xx��� calculated with
the k ·p and LDA band structures �Ref. 17�. One LDA calculation
sets the lattice constant to the experimental value �dash-dotted black
line�, and the other uses the LDA relaxed lattice constant �solid
black line�. The LDA based calculations generally overestimate the
k ·p calculations �dashed red line�.
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FIG. 2. �Color online� Comparison of �xyz��� calculated with
the k ·p �dashed red line� and LDA �solid black line� band struc-
tures. At most photon energies, the LDA spectrum is larger. The
different peak positions between 2.9 and 3.4 eV are due to the dif-
ferent energy gap separations in the �-L region found by the two
methods.
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ergy level diagram of the GaAs states around the � point
shown in Fig. 4. We review this well-known model here to
emphasize its limitations and strengths when we use the
analogous model to understand the spin-injection rates in Si
and CdSe in the following sections. Assuming as usual that
the ẑ axis is the quantization direction, for the spin states, we
will use the shorthand ��� for spin up and ��� for spin down.
The six highest-energy valence band states of GaAs are
p-like, and in the absence of spin-orbit coupling, these six
states would be degenerate. The effect of spin-orbit coupling
is to split the p states into four degenerate j=3 /2 states,
which form the highest-energy valence states, and two j
=1 /2 states, whose energy is lowered by the split-off energy
amount. The orbital parts of the states are denoted by �11�,
�10�, and �11̄�. The two heavy-hole states take the form

�3

2
,
3

2
� = �11�� + � , �24�

�3

2
,−

3

2
� = �11̄��− � , �25�

and the two light-hole states take the form

�3

2
,
1

2
� =2

3
�10�� + � +1

3
�11��− � , �26�

�3

2
,−

1

2
� =1

3
�11̄�� + � +2

3
�10��− � . �27�

The conduction band states are s-like, and at the � point,
there are two degenerate j=1 /2 states, which, in an obvious
notation, take the form

�1

2
,
1

2
� = �00�� + � ,

�1

2
,−

1

2
� = �00��− � .

Band-edge absorption excites electrons from the four j
=3 /2 valence states to the two j=1 /2 conduction states. The
selection rules limit the allowed transitions for circularly po-
larized light. The absorption of left-circularly polarized �− if
propagating in the −ẑ direction� photons excites only from
valence states jz=3 /2 and jz=1 /2 to the conduction states, in
a 3:1 ratio, respectively, as depicted in Fig. 4. From Eq. �14�,
this leads to a degree of spin polarization from excitation of
− polarized light of

DSP =
Ṡ+1/2 + Ṡ−1/2

��/2��ṅ+1/2 + ṅ−1/2�
=

3��

2
� + 1�−

�

2
�

��/2��3 + 1�
=

1

2
,

�28�

a 50% net polarization of the conduction electrons. The split-
off states are two j=1 /2 states. Absorption of circularly po-
larized light, exciting electrons from these states to the low-
est conduction bands, gives 100% spin-polarized electrons in
the conduction band. The spin of these electrons is opposite
in direction to the net spin of the electrons excited by the
same polarization at the band edge.

One limitation of this atomiclike model �Fig. 4� arises
when we try to decompose the �xyz��� spectrum into contri-
butions from the different valence bands. For photon ener-
gies that move the absorption away from �, the heavy-hole
band is no longer degenerate with the light hole. So, from the
model in Fig. 4, one might expect the jz= ±3 /2 states to split
from the jz= ±1 /2 states and for the transitions from these
states to lead to opposite spin polarizations. In Fig. 5, we
identify the contributions to �xyz��� from the heavy-hole
�hh�, light-hole �lh� and split-off band �so� bands. Each line
in Fig. 5 includes a sum over the quasidegenerate states.
From the figure, it is clear that near the band edge, both the
heavy-hole and light-hole transitions contribute spins in the
same direction, as is well known.1 This can be understood
from the model by first noting that the identification of the
jz= ±3 /2 as heavy-hole states, and the jz= ±1 /2 as light-hole
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FIG. 3. �Color online� Comparison of the degree of spin polar-
ization injected calculated using LDA �solid black line� and k ·p
�dashed red line� band structures. The differences in the calculated
spectra for 
xx��� �Fig. 1� and �xyz��� spectra �Fig. 2� have canceled
to give very similar results for DSPz��� up to about 2.5 eV. The
dash-dotted line is the degree of spin polarization calculated using
Eq. �4� and shows that neglecting the coherences can lead to an
incorrect spectrum.
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FIG. 4. �Color online� Energy levels at the � point for bulk
GaAs. The highest six valence states �J=3 /2� and lowest two con-
duction states �J=1 /2� are shown. Underneath each state level line
is its corresponding jz. The six valence bands are classified into
heavy-hole �hh�, light-hole �lh�, and split-off �so� bands. The arrows
denote allowed transitions with − polarized light. The numbers
next to the arrows represent transition strengths relative to the other
transitions at that photon energy.

NASTOS et al. PHYSICAL REVIEW B 76, 205113 �2007�

205113-6



states, literally applies to states only along kz. Along an ar-

bitrary direction k̂, the Luttinger-Kohn Hamiltonian HLK can
be used to describe the highest valence bands in GaAs near
�. In the spherical approximation, which neglects the spin
splitting, it takes the form,

HLK =
�2k2

2m
��1 +

5

2
�2� −

�2

m
�2�k · J�2,

where �1 and �2 are material dependent parameters, and J is
the spin-3 /2 operator. It is then found that the jk̂= ±3 /2

states �denoted � 3
2 , ± 3

2 �k̂��� comprise the heavy-hole bands

and that the jk̂= ±1 /2 states �denoted � 3
2 , ± 1

2 �k̂��� comprise
the light-hole bands. At transition energies away from �,
averaging over the sphere of k that contributes to the injec-
tion, using

� dk̂

4�
�jm�k̂��
jm�k̂�� =

1

2j + 1�
m�

�jm��
jm�� ,

shows that the degrees of spin polarization along ẑ due to
absorption from the heavy-hole bands and the light-hole
bands are both 50%.

In Fig. 6, we show the degree of spin polarization for the
separate transitions �heavy hole, light hole, and split off�. We
have taken the spin-injection rate for each transition and di-
vided it by the injection rate for that transition. We see that
the electrons from the split-off transitions are, on average,
oppositely spin polarized from the electrons from the heavy-
hole transitions. However, although the electrons from the
split-off band are highly polarized, Fig. 5 shows that there
are so few of them compared to the number from the heavy-
hole and light-hole bands that they make a small contribution
to the overall DSP �see Fig. 3�.

At energies above the 350 meV split-off energy ���
�1.86 eV�, the injected spin density drops. One might think
the drop is caused by transitions from the split-off band, but
the drop in spin polarization is actually from the light-hole
band transitions. Even though near � the transitions from the
heavy-hole and light-hole bands contribute in a reinforcing
manner, this is not the case at energies where the split-off
band transitions are important. At these energies, the light-
hole band can no longer be approximated by its �-point state.
The inset of Fig. 5 shows that at energies where absorption
from the split-off band can occur, the transitions from the
light-hole band have a large effect in reducing the total spin-
injection.

The degree of spin polarization from optical orientation in
GaAs has been probed by various techniques. Photolumines-
cence experiments rely on the circular polarization of the
emitted light when spin-polarized electrons recombine with
holes.1,41 In Faraday rotation experiments, the rotation of the
polarization plane of a linear polarized beam transmitted
through the material is measured.42,43 Pump-probe experi-
ments, which excite with one circular polarization and probe
with both left and right polarizations, can also be used to
measure the spin densities.44 In these measurements of opti-
cal orientation, photons with energies just above the band
gap were used for practical reasons. Our calculations show
that at higher energies, well above the split-off energy, there
is another excitation regime where a strong degree of spin
polarization is induced. Figure 3 shows that at 3 eV, a
roughly 25% degree of spin polarization is expected. This
polarization comes from splitting of the heavy-hole and
light-hole bands in the �-L valley. We know of no experi-
ment on optical orientation that directly probes the spin of
electrons in the band at this energy. However, related to ex-
periments on optical orientation is a group of experiments on
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FIG. 5. �Color online� Contributions to the total electron spin-
injection for transitions from the heavy-hole �thin black line�, light-
hole �thick black line�, and split-off �dashed red line� bands calcu-
lated with the pseudopotential method. The inset shows the same
spectra multiplied by 5 and shifted up. The inset shares the same
energy axis as the larger frame. Note the sign change in the contri-
bution from the light-hole band.
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FIG. 6. �Color online� Degree of spin polarization associated
with different transitions calculated with the pseudopotential
method. The electrons excited into the lowest conduction band via
transitions from the heavy-hole �thin black line� and light-hole
�thick black line� bands are 50% spin polarized near the band edge,
but the electrons from the heavy-hole bands are significantly polar-
ized for a wide range of photon energies. The electrons excited from
the split-off �dashed red line� band are 100% spin polarized near the
band edge.
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spin-polarized photoionization in GaAs.45,46 In these experi-
ments, circularly polarized light is used to photoionize elec-
trons from a GaAs sample. As expected, the electrons excited
in these experiments are spin polarized, but the feature is that
the electrons keep a substantial amount of their spin polar-
ization even after photoionization. In these experiments,
where photons with energies between 1.5 and 4 eV were
used, it was found that in the region around 3 eV photon
energy, the ionized electrons had a spin polarization of up to
10%.45 Figures 6 and 8 of Pierce and Meier45 show the spin
polarization measured in their experiments as a function of
photon energy. Although these spectra show qualitative fea-
tures similar to our spin polarization spectra in Fig. 3, a
quantitative comparison would require a detailed analysis of
the ionization process to extract the degree of spin polariza-
tion optically injected.

B. Si

We now turn to spin-injection rates in bulk silicon. Both
theoretically and experimentally, this has been studied much
less than spin-injection in GaAs and other III-V semiconduc-
tors. We are unaware of any direct measurements of electron
spin optical orientation in bulk Si. However, measurements
of the nuclear spin polarization of 29Si, induced by the hy-
perfine interaction with the optically injected electron spins,
have indirectly probed the optical orientation. These studies
were first reported by Lampel10 and then extended by
Bagraev et al.47 Recently, Verhulst et al.48,49 have revisited
the study of electron spins in Si in the context of quantum
computing. The electron spin density created in these experi-
ments arises from indirect excitation with circularly polar-
ized light, where a phonon provides the necessary crystal
momentum for the absorption above the indirect band gap.
Even though the indirect absorption process has been thor-
oughly studied for linearly polarized light, spin-injection
arising from the indirect absorption of circularly polarized
light has not. The difficulty in directly measuring the electron
spins in the conduction band using photoluminescence arises
because the lifetime of the electrons in the side valleys is
larger than the spin lifetime;2 the spin has predominantly
decayed by the time the electrons and holes recombine, and
so the luminescence is unpolarized. Nonetheless, Roux et
al.50 have recently reported a measurement of 5% polariza-
tion of the photoluminescence from this recombination.

In the analysis of their experiments, these groups assumed
that the phonon transitions do not affect the spin properties
of the electron, so that the final states in the conduction band
near the X valleys have the same spin as the intermediate
virtual state at the � point. We will also not address the
indirect process here but instead focus on absorption across
the direct gap, which is a physically simpler process and
should dominate at high enough photon energies and low
enough temperatures. The direct band gap is large, roughly
3.4 eV, but it is still within the optical regime.

Unlike GaAs, Si is centrosymmetric. Because of this,
there is no spin splitting in the band structure and every k
state is doubly degenerate, so there are no coherences ex-
cited. However, the spin-orbit interaction does complicate

the band structure at the zone center. Although our calcula-
tions apply to the entire Brillouin zone, the region around the
� point will be our focus. Before we discuss the spin-
injection rate away from the � point, we will revisit the
problem of excitation directly at �. The zone center bands
are depicted in Fig. 7. Silicon belongs to the Oh point group.
Without spin-orbit coupling, the lowest conduction bands at
� belong to the �15 representation �with basis functions that
transform like �x ,y ,z� under the point group operations�, and
the highest valence states belong to the irreducible represen-
tation �25� �with basis functions that transform as �xy ,yz ,zx�,
which we label as �Z ,X ,Y��. With spin-orbit coupling, both
the valence bands and conduction bands exhibit spin-orbit
splitting. The valence band split-off energy has been thor-
oughly studied and is well known to be 44 meV. However,
the splitting in the conduction bands �soc is a little smaller,
and not much attention has been focused on it; these conduc-
tion states do not participate in typical Si experiments, which
focus on electrons in the X valleys. In our LDA calculations,
we find that this splitting is 32 meV. In the double group
notation, the heavy- and light-valence states belong to �8

+ and
are given by

��8
+;

3

2
� = −

1
2

�X + iY�� + � , �29�

��8
+;

1

2
� =2

3
�Z�� + � −

1
6

�X + iY��− � , �30�

��8
+;−

1

2
� =

1
6

�X − iY�� + � +2

3
�Z��− � , �31�

��8
+;−

3

2
� =

1
2

�X − iY��− � . �32�

The split-off valence band belongs to �7
+. Transitions from it

are very weak, and so this band will not play an important
role in this discussion. Turning to the conduction bands, the
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FIG. 7. �Color online� On the left hand side, we sketch the
bands around � for bulk Si. On the right hand side, we indicate the
energy levels at the � point along with the notation used in the text.
The arrows indicate the allowed transitions at the band edge that we
consider in the text, and the numbers adjacent each arrow give the
relative strength of that transition.
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split-off conduction bands are lower in energy and belong to
�6

−. We can write these states as

��6
−; +

1

2
� =

1
3

�z�� + � +
1
3

�x + iy��− � , �33�

��6
−;−

1

2
� =

1
3

�x − iy�� + � −
1
3

�z��− � . �34�

The four other bands belong to �8
−. They are given by

��8
−; +

3

2
� = −

1
2

�x + iy�� + � , �35�

��8
−; +

1

2
� =2

3
�z�� + � −1

6
�x + iy��− � , �36�

��8
−;−

1

2
� =1

6
�x − iy�� + � +2

3
�z��− � . �37�

��8
−;−

3

2
� =

1
2

�x − iy��− � , �38�

These bands are degenerate along the high symmetry lines �
and � not shown in Fig. 7.

In the right hand side of the Fig. 7, we show the allowed
transitions near the � point for − circular polarization. The
states are labeled by jz in the conduction band and by 
jz� in
the valence band. Unlike GaAs, the valence states are not
eigenstates of jz. For photon energies just crossing the band
gap �Eg�, only transitions from the 
jz�= +1 /2 and 
jz�=
−3 /2 states are allowed. In the context of the 30-band model,
a single parameter Q describes the relevant matrix elements
for these transitions: 
x�py�Z�= 
y�pz�X�= 
z�px�Y�= 
y�px�Z�
= 
z�py�X�= 
x�pz�Y�= imQ /�. For matrix elements connecting
the valence states to the lowest conduction states, we have,
for example,

��6
−;−

1

2
�p��8

+;−
3

2
� =

1
3

mQ

�

�x̂ + iŷ�
2

�39�

and

��6
−; +

1

2
�p��8

+; +
1

2
� =

mQ

�

�x̂ + iŷ�
2

, �40�

which connect to − light. These are the only nonzero tran-
sitions, for excitation just at the band edge, and these are
excited in a 3:1 ratio. The expectations of spin in the ��6

− ;
− 1

2 � and ��6
− ; + 1

2 � states are 1
3

�
2 and − 1

3
�
2 , respectively. This

gives a net DSP of

DSP =
Ṡ�6

−;1/2 + Ṡ�6
−;−1/2

��/2��ṅ�6
−;1/2 + ṅ�6

−;−1/2�
=

3�−
�

6
� + 1��

6
�

��/2��3 + 1�
= −

1

6
.

�41�

If the spin-orbit splitting in the conduction band were ne-
glected, the six conduction states would be degenerate. We

could choose them to be �I��± �, where I=x ,y ,z. For − light,
this gives a DSP of −25%. We note that this is in disagree-
ment with the result of Lampel, who found instead that ex-
citation with + polarized light gives a DSP of −25%.48,51

Note that the matrix elements sketched in Fig. 7 seem
counterintuitive, at least by the kind of argument often made
for the matrix elements sketched in Fig. 4 for GaAs. As an
example, consider the stronger transition in that simpler
GaAs diagram. One can envision a − photon with angular
momentum −�ẑ being absorbed as it creates a hole with
angular momentum − 3

2�ẑ and an electron with angular mo-
mentum 1

2�ẑ, thus conserving angular momentum in analogy
with the corresponding transitions in atomic physics. In Fig.
7, however, the transitions seem to go “in the wrong way,”
and this simple kind of picture fails. However, it is important
to realize that the �8

+ states in Si, together with the �7
+ states,

form six states that are split by the crystal field from another
four states. Together, these ten states, in the absence of either
crystal field or spin-orbit splitting, would have orbital com-
ponents that would transform under �proper and improper�
rotations as would atomic d states. The strong crystal-field
splitting involves the lattice as a possible source or sink of
angular momentum in any transition, and the kind of atomic
picture based on conservation of angular momentum so use-
ful as a heuristic to understand Fig. 4 is simply not relevant
for transitions we have just discussed in Si.

At higher energies, there is mixing of the states, and so we
cannot analytically determine the spin-injection rate, either
with or without the spin-orbit coupling in the conduction
bands. For − polarized excitation, the carrier injection and
spin-injection rates take the forms given by given by Eqs.
�20� and �23�, respectively, as they are for GaAs. To help
appreciate the differences between a k ·p and a LDA band
structure calculation, we again compare the spin-injection
rate and DSP calculated from these two methods. In the LDA
calculations, we find a theoretical lattice constant of 10.17a0
and that the lowest direct energy transitions occur at the �
point as expected. However, in the k ·p calculations, we find
that the minimum direct energy transition occurs away from
the � point, in a direction 15° off X toward W, about 20% of
the distance to the BZ edge. The band gap at this point is
about 45 meV lower then the energy gap at �. To correct the
LDA band gap, we use a scissor shift that sets the LDA
�-point energy gap to the k ·p �-point energy gap �3.40 eV�.
We make this choice to help compare the two methods: the
transitions at the � point will then have the same transition
energies as well as the same spin. As in our other LDA
calculations, where a different scissor shift is used, perhaps
to set the indirect band gap energy instead of the direct gap
energy, the only difference to the LDA spectra would be an
overall shift in energy.

In Fig. 8, we plot �xyz��� for bulk Si, calculated with both
LDA and k ·p band structures. We see that the LDA and k ·p
results are not as similar as they were for GaAs; indeed, for
Si, they are qualitatively different. We plot the DSP in Fig. 9,
again for − polarized light. Unlike for GaAs, where the
differences in the LDA and k ·p calculations of �xyz��� and

xx��� largely cancel out to give very similar results for
DSP���, for Si, the two methods give dissimilar results.
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There are two reasons for the disagreement between the
k ·p and LDA result, and they are both associated with the
k ·p treatment of the conduction split-off band. First, in the
k ·p model of Richard et al.,8 the split-off energy of the
conduction states is set to zero. This decreases the energy
width of the states participating in the absorption and nar-
rows its spectral range. If we add into the model this split-off
energy, by hand, we find that the k ·p spectrum moves closer
to the LDA spectrum. However, there are still significant
differences, due to a second reason.

The LDA bands, which exhibit a direct gap at � and in-
clude the conduction band spin-orbit splitting there, lead to a
maximum degree of spin polarization near the onset of ab-
sorption of roughly −30%. In the k ·p calculation, where the
direct gap is not at the � point, it is the off-zone-center states
that contribute near the onset of absorption. These states do
not exhibit the high symmetry of � and this leads to a degree
of spin polarization closer to −5%.

To see the contribution of the � point in our k ·p calcula-
tion of direct absorption, one has to move up to a photon
energy of 3.40 eV, which can connect the top of the valence
band at � with the conduction bands there. At that energy,
the k ·p calculation predicts a spin polarization of roughly
−20%. It would give −25% if only the region around the �
point were contributing, but because this is not the minimum
transition energy in this calculation, there are transitions oc-
curring at other points in the BZ. These extra transitions
mask the high symmetry �-point transitions, and so one does
not see a “pure” signal.

Returning to the LDA calculation, with its direct gap at �
where conduction spin-orbit splitting is present, careful in-
spection of the LDA curve in Fig. 9 reveals that at the onset
of absorption �3.40 eV�, the spin-injection rate is actually
−16.7% spin polarized, in agreement with the analysis lead-
ing up to Eq. �41�. From there it then increases to roughly
−30% for photon energies of 3.45 eV. We expect that the
LDA gives a better approximation to reality than the k ·p
model, at least with the parameters we have used here, since
the latter neglects spin-orbit coupling in the conduction band
and incorrectly reproduces the location of the minimum di-
rect energy gap.

The spin-injection rate from the different transitions in
our LDA calculation can be seen more clearly in Fig. 10,
where we show the DSP from the individual transitions. We
only show the transitions that have the most effect on the net
spin-injection rate; the transitions from the split-off band are
very weak so they are excluded. The transitions from �8

+ to
�6

− show the −1 /6 polarization more clearly. At slightly
higher energy, the transitions from �8

+ to �7
− kick in, with a

polarization of +1 /3, which gradually diminishes at higher
photon energies. The +1 /3 spin polarization at the band edge
can be analytically verified by considering the states in Eqs.
�29�–�32� and �35�–�38�.

At photon energies above 3.7 eV, there is no significant
spin injection. The small energy window is because of the
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FIG. 8. �Color online� A comparison of the spin-injection tensor
component �xyz for bulk Si calculated with the k ·p �dashed red line�
and LDA �solid black line� band structures. Note that here, they are
significantly different, where as in GaAs, they are qualitatively the
same.
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FIG. 9. �Color online� The degree of spin polarization injected
into bulk Si with circularly polarized light, calculated with both the
LDA �solid black line� and a k ·p �dashed red line� method. The
maximum spin polarization predicted by the LDA is roughly −30%,
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weak spin-orbit interaction. Thus, any experimental investi-
gation into the spin properties of the direct optical transitions
must be done with a precisely tuned laser. However, indirect
absorption involves the excitation of virtual conduction
states, and so the spin-injection into these states can still be
significant.

C. CdSe

Finally, we consider the optical spin-injection rate in bulk
wurtzite CdSe. The wurtzite semiconductors are direct gap,
noncentrosymmetric binary compounds, as are the zinc-
blende semiconductors, but wurtzite belongs to the hexago-
nal crystal system; it is less symmetric than zinc blende and
has a more complicated primitive cell. In particular, its
primitive cell consists of four atoms instead of two. The
orientation of the crystal is important in understanding the
response. We use the coordinate system and basis convention
as laid out in Grosso and Parravacini.52 The primitive lattice
vectors are t1=a�1 /2,3 /2,0�, t2=a�−1 /2,3 /2,0�, and t3

=c�0,0 ,1�. The direction of t3 is called the c axis and is
typically the growth axis. We use the empirical values a
=8.126a0 and c=13.24a0. The Cd atoms are set at �0, 0, 0�
and �0,a /3,c /2�, and the Se atoms are at �0,0 ,uc� and
�0,a /3,uc+c /2�. For the internal parameter u, we use the
ideal value u=3 /8. We use the HGH pseudopotentials and
treat the cation Cd semicore 4d states as core electrons. This
is sufficient if we are interested in only the states near the
band edges. To accurately study the higher-energy excita-
tions, one would need to use a pseudopotential that treats the
semicore states as valence states, or an all-electron method.
The LDA band gap is found to be 0.765 eV, and we use a
scissors correction to raise it to the experimental value of
1.75 eV.

The hexagonal structure of CdSe leads to a crystal-field
splitting which splits the heavy-hole and light-hole bands at
the zone center. Another consequence of the crystal-field
splitting is that the energy of the split-off band is further
lowered.53 The complexity of the electronic structure in
wurtzite materials leads to complicated k ·p methods. Unlike
for Si and GaAs, we know of no full-band structure k ·p
method for CdSe or any other wurtzite material. There are
well understood models available for near the � point,53–55

but for brevity, we do not reproduce them here, since our
emphasis is on full-zone calculations.

For the hexagonal structure, the absorption tensor 
ab���
is diagonal in the frame used to identify the ti above, but the
low symmetry leads to 
xx���=
yy����
zz���. For the spin-
injection rate, the only nonzero components are �xyz��� and
components associated with all the permutations of x, y, and
z. However, now we have �zxy�����xyz���, etc. The lack of
symmetry indicates that the spin-injection process can be
quite different for different orientations of the crystal.

We will consider two crystal orientations and consider
excitation by circularly polarized light. In the first orienta-
tion, the light propagates in the −ẑ direction. Here, the laser
electric field is polarized in the xy plane �Eq. �19��, and only
the components �zxy���=−�zyx��� are accessed for spin-
injection. The spin-injection rate in this case is given by

Ṡz = Im��zxy�����E0�2. �42�

In the second orientation, the c axis is perpendicular to the
direction of light propagation, which is along −ŷ so that the
field polarization is given by E���=E0�ẑ− ix̂� /2. The spin-
injection rate is given by

Ṡy = Im��yzx�����E0�2. �43�

Here, it is the components �yzx���=�xyz���=−�yxz���=
−�xzy��� that are accessed; as long as we are interested in
bulk spins and not surface effects, the same DSP results for
any orientation of the crystal where the c axis is perpendicu-
lar to the direction of light propagation. In Fig. 11, we plot
the degree of spin polarization of optically injected electrons
in CdSe for these two crystal orientations. The spectrum for
the first �“parallel”� orientation is represented by the solid
line, and the second �“perpendicular”� orientation is repre-
sented by the dashed line.

The two spectra in Fig. 11 are quite different for energies
just above the band edge, up to around 2.2 eV. In the parallel
orientation, we see that almost 100% polarized spin-injection
is achieved for photon energies just at the band gap. This is a
consequence of the crystal-field splitting. The heavy-hole
and light-hole bands are split, and excitation from only the
heavy-hole band occurs at the band edge. Unlike in bulk
GaAs, averaging over a small sphere around � does not re-
sult in spin-injection from the heavy-hole band that is 50%
polarized, since the crystal-field splitting causes the heavy-
hole states to be jz= ±3 /2 states, and the light-hole states to
be jz= ±1 /2 states. For photons with energy just above the
crystal-field splitting energy �39 meV in this calculation�, the
spectrum drops to roughly 50%. At these energies, the exci-
tation occurs from the heavy-hole and light-hole states.
Moreover, there is strong mixing of the �-point states, and so

2 3 4 5
photon energy (eV)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D
S
P

(ω
)

spherical average
parallel (DSP

z
)

perpendicular (DSP
y
)

FIG. 11. �Color online� Degree of optically injected spin polar-
ization in CdSe for two different crystal orientations. The solid
black line is the spectrum for the orientation with the crystal c axis
aligned parallel to the direction of light propagation, and the dashed
red line is for the crystal c axis aligned perpendicular to direction of
light propagation. The dash-dotted red line is the degree of spin
polarization for an ensemble of randomly oriented crystals, as de-
scribed in the text.
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the excitation is analogous to that of GaAs at the band edge.
For the perpendicular orientation, the degree of spin polar-
ization starts at zero at the band edge and, as the energy is
increased, rises to 50%. Here, the absorption of circularly
polarized light is forbidden just above the band edge, but at
slightly higher energies, the valence states are combinations
of zone center heavy-hole and light-hole states, and circu-
larly polarized light can be absorbed. Since the states are j
=3 /2 combinations of p states, there is a maximum degree of
spin polarization of 50%, again analogous to GaAs. For pho-
ton energies at and just above 2.2 eV, the valence states con-
tain mixing from the zone center split-off states and, yet
again as in GaAs, the DSP drops off rapidly for both orien-
tations. For photon energies between 2.5 and 4.0 eV, the
degree of spin polarization is very low and nearly equal in
both cases. However, at energies right above this range, the
degree of spin polarization is quite different for the two ori-
entations. At around 4.1 eV, a 30% polarization is found in
the parallel orientation, and at 4.8 eV, a 20% polarization in
the perpendicular orientation. This excitation occurs near
zone boundaries in the BZ. Even though the energies re-
quired to probe these interesting transitions are too high for
usual optical methods, we include them to show how asym-
metric these two orientations are at these energies.

We are unaware of any experimental study measuring the
spin polarization of optically injected electrons in bulk CdSe,
or any bulk wurtzite crystal. However, studies of exciton
spin-injection in various wurtzite nanocrystals have been
reported.56–59 Most optical experiments in bulk wurtzite, in-
cluding those probing effects not relying on spin-orbit cou-
pling, are done with the sample oriented such that the sixfold
symmetric axis �the c axis� is parallel to the laser beam
propagation. This orientation is chosen because the selection
rules allow for transitions from the heavy-hole band at the
zone center, and because the surface in this orientation is
typically cleaner than in the perpendicular orientation. In
many experiments involving nanocrystals, however, the
nanocrystals are randomly oriented throughout a solution. If
the nanocrystals are large enough that the bulk wurtzite sym-
metries hold, the effective spin-injection rate tensor �eff���
and carrier injection rate tensor �eff��� for such an ensemble
can be found by averaging the bulk tensors ���� and ����
over all orientations. This gives 
eff

xx ���= �
zz���+2
xx���� /3
and �eff

zxy���= ��zxy���+2�yzx���� /3. The other tensor compo-
nents 
eff

ab��� and �eff
abc��� satisfy the cubic symmetries in Eqs.

�21� and �22�. The resulting average degree of spin polariza-
tion for such an ensemble of randomly oriented crystals is
given by the dash-dotted red line in Fig. 11. Band-edge ex-
citation in this case gives 50% spin polarization, as in the
cubic crystals.

V. CONCLUSIONS

We have presented a study of optical spin-injection rates
in semiconductors GaAs, Si and CdSe using ab initio
pseudopotential band structures. These allow �i� us to go
beyond models applicable for only the band edge to investi-
gate the spin-injection at higher energies and �ii� the poten-
tial to study more complicated materials for which a simple

band model may not exist. The injected degree of spin po-
larization has been calculated for photon energies up to 4 eV.
For GaAs and Si, we have compared the results with those
from a 30-band k ·p model. For GaAs, we have found good
agreement between the ab initio and the k ·p results. Espe-
cially for the degree of spin polarization, this is partly due to
a fortuitous cancellation of errors. Both models predict a
large degree of spin polarization at high photon energies near
3.2 eV. Although this spin-injection has not been directly
measured with the usual techniques for measuring optical
orientation, indirect experimental evidence for this exists in
spin-polarized photoemission experiments. For Si, we find
that within a small energy window above the direct gap, a
spin polarization of up to 30% can be injected. We also
found that the spin-injection predicted from different models
agreed less than for GaAs. This is because the spin- injection
is due to a small region of the Brillouin zone and is sensitive
to the details there. For the band-edge absorption, both
pseudopotential and k ·p calculations disagree with a simple
atomic picture which predicts a band-edge spin polarization
of −25%.48,51 The pseudopotential band structure calculation
predicts a degree of spin polarization of −16%. The differ-
ences can be traced back to two factors: the spin-orbit split-
ting in the conduction band and the position of the direct
band gap minimum. Both the k ·p model and the simple
atomic model exclude the small spin-orbit splitting in the
lowest conduction states. With this splitting included, the
symmetry of the states are altered such as to cause the band-
edge degree of spin polarization to change from −25% �as-
suming no splitting� to −16%. Additionally, in the 30-band
k ·p model we find that the lowest-energy direct transitions
in Si occur away from the � point. This further complicates
the band-edge structure and changes the degree of spin po-
larization away from −25%. As a more complicated example,
we calculate the spin-injection rate in CdSe. We verify the
known result that nearly 100% spin polarization can be in-
jected for orientations with the c axis parallel to the light
beam propagation. For orientations where the c axis is or-
thogonal to the light beam propagation, we find that up to
50% spin polarization can be injected. For both orientations,
we show that significant spin polarization is expected at
higher photon energies.

To efficiently calculate the spectra, we have developed an
adaptive Brillouin zone integration method. The scheme lets
us refine the k grid where necessary to converge the spec-
trum. This greatly reduces the computational time and stor-
age required when dealing with band structures that vary
rapidly in some regions of the Brillouin zone and slowly in
other regions and shall prove useful in other calculations
involving Brillouin zone integrations.
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APPENDIX A: DETAILS OF THE MULTIPLE SCALE
APPROACH

In this appendix, we outline a multiple scales approach to
the density matrix dynamics response to pulsed excitation
�Eq. �8��. The multiple scales approach allows a separation
of the different time scales: the pulse time, the carrier cycle,
and the dephasing and loss times.

The electric field is written as

E�t� = Eenv�t�e−i�t + Eenv
* �t�ei�t,

where Eenv�t� is a slowly varying amplitude.
For the multiple scales treatment, we now put

� = �t

and introduce new functions for E�t�, �mn�t�, and so on that
are given in terms of �, and we then relabel these new func-
tions as the old functions. We find

d�mn���
d�

= − i
�̂mn

�
�k��mn��� −

i

��
��Hext���,������mn

�A1�

from Eq. �8�, with Hext���=−eraEa���, and

E��� = Eenv���e−i� + Eenv
* ���ei�,

which we take as our basic equations. For the processes we
consider, the intraband components12 of rmn

a make no contri-
bution to the results, so for simplicity, we neglect them from
the start. For convenience, we leave the k dependence of
�mn��� implicit �cf. Eq. �8��.

We now introduce

�0 = � ,

�1 = �� ,

where ��1, and introduce different time scales into the
problem by allowing our functions to formally depend on the
variables �0 and �1, varying significantly only as each ranges
over unity. Our “slowly varying envelope function” is thus so
defined by writing

E��� = Eenv��1�e−i�0 + Eenv
* ��1�ei�0.

Now, we seek a solution of the form

�mn��� = �
u=−�

�

e−iu�0�mn;u��� , �A2�

where the u are integers. We assume that the �mn;u��� have no
�0 dependence, and we specify the precise form we assume
for them below.

Inserting Eq. �A2� into Eq. �A1�, dimensionless terms
such as ermp

a Ea��1� /�� appear. We assume that they are of
order � and write

ermp
a Ea��1�

��
= �mp��1� ,

ermp
a Ea*��1�

��
= �̄mp��1� ,

etc., where the  terms are of order unity or less. We then
find

d�mn;u���
d�

= − i� �̂mn

�
− u��mn;u��� + i��mp��1��pn;�u−1����

+ ̄mp��1��pn;�u+1���� − �mp;�u−1����pn��1�

− �mp;�u+1����̄pn��1�� . �A3�

We now look for solutions of the form

�mn;u��� = �mn;u
�0� ��1� + ��mn;u

�1� ��1� + �2�mn;u
�2� ��1� + ¯ ,

where the �mn;u��1� are all assumed of the same order.
Putting

Cmn;u 	 � �̂mn

�
− u� , �A4�

we assume we have

Cmn;u = Cmn;u
�0� + �Cmn;u

�1� ,

and that for a given �mnu� either Cmn;u
�0� survives or not; if it

does survive, we include any purported Cmn;u
�1� within it. So,

for a given �mnu�, not both of Cmn;u
�0� and Cmn;u

�1� will survive.
However, because of the damping, we assume that both will
not be nonzero, and thus precisely one of Cmn;u

�0� and Cmn;u
�1�

will survive for a given �mnu�.
Writing

�

��
=

�

��0
+ �

�

��1
+ ¯ ,

we can now construct from Eq. �A3� a set of equations, one
for each power of �. All our time dependence is now at the
�1 level, so we write it simply as �. We also leave off the
explicit indication of time dependence. We can write the �0

equation as

0 = Cmn;u
�0� �mn;u

�0� , �A5�

and the �i+1 equation as

��mn;u
�i�

��
= − iCmn;u

�0� �mn;u
�i+1� − iCmn;u

�1� �mn;u
�i� + iDmn;u

�i� , �A6�

with

Dmn;u
�i� = �

p

�mp�pn;�u−1�
�i� + ̄mp�pn;�u+1�

�i� �

− �
p

��mp;�u−1�
�i� pn + �mp;�u+1�

�i� ̄pn� , �A7�

where all quantities except the Cmn;u
�0� and Cmn;u

�1� depend on �
and the sum in Eq. �A7� is over the intermediate levels p.

We now separate the terms for which Cmn;u
�0� =0 �“allowed”

terms� from those for which Cmn;u
�0� �0 �“forbidden” terms�.

We put
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�mn;u
�i� = ��mn;u

�i� if Cmn;u
�0� = 0

�mn;u
�i� if Cmn;u

�0� � 0.
� �A8�

Then, from Eq. �A5�, we find

�mn;u
�0� = 0.

That is, the only components �mn;u
�0� that survive are the al-

lowed terms.
From the i=0 level of Eq. �A6�, we then find

��mn;u
�0�

��
= − iCmn;u

�1� �mn;u
�0� + iamnuAmn;u

�0� , �A9�

�mn;u
�1� =

bmnuAmn;u
�0�

Cmn;u
�0� , �A10�

where

Amn;u
�i� = �

p

�mp�pn;�u−1�
�i� + ̄mp�pn;�u+1�

�i� � − �
p

��mp;�u−1�
�i� pn

+ �mp;�u+1�
�i� ̄pn�

and

amnu = 1 and bmnu = 0 if Cmn;u
�0� = 0,

amnu = 0 and bmnu = 1 if Cmn;u
�0� � 0.

That is, the �mn;u
�0� must be dynamically solved together, while

the �mn;u
�1� are “slaved” to these solutions. At the i=0 level of

Eq. �A6�, we have solved, in principle, for the �mn;u
�0� and

�mn;u
�1� . For i�0, we find that at the ith level of Eq. �A6�, the

known �mn;u
�i−1� and �mn;u

�i� can be used to solve for the �mn;u
�i� and

�mn;u
�i+1�. We do not explicitly give the straightforward but te-

dious calculation that confirms this.
We now look at our problem of interest, where we have

two sets of levels. One set, corresponding to the conduction
bands, we label by indices c ,c�, etc. The other set, corre-
sponding to valence bands, we label by v ,v�, etc. Recalling
Eqs. �A9� and �A10�, we take C

cc�;0
�0� =0 and Cvv�;0

�0� =0, since
the conduction bands are supposed to be close to each other,
and the valence bands close to each other. Further, since we
consider one-photon processes, we take Ccv;1

�0� =0 and Cvc;−1
�0�

=0. All other Cmn;u
�0� we take to be nonzero. Thus the only

nonzero �mn;u
�0� are �cv;1

�0� , �vc;−1
�0� , �

cc�;0
�0� , and �vv�;0

�0� . Collecting
the terms that appear in the Eq. �A9� and dropping the su-
perscript �0�, we have

i
��cv;1

��
= Ccv;1

�1� �cv;1 − �
v�

cv��v�v;0 + �
c�

�cc�;0c�v,

i
��vc;−1

��
= Cvc;−1

�1� �vc;−1 − �
v�

�̄vc�cc�;0 − �vv�;0̄v�c� ,

i
��cc�;0

��
= Ccc�;0

�1� �cc�;0 − �
v

�cv�vc�;−1 − �cv;1̄vc�� ,

i
��vv�;0

��
= Cvv�;0

�1� �vv�;0 − �
c

�̄vc�cv�;1 − �vc;−1cv�� .

�A11�

These equations are capable of deriving full excitation and
saturation of the upper levels. No perturbation theory ap-
proximations have yet been made about where the popula-
tion initially lies and by how much the initial population is
depleted. If the field is long enough, full cycling can, in
principle, occur. The only approximations have to do with
the slowness of the variation in the envelope function, the
weakness of the external perturbation, and the weakness of
the dephasing and damping.

We can now go to a perturbative result by putting �vv�;0
��vv� throughout the time of integration and solving ap-
proximately for the other terms. Assuming that the field is
turned on after �=0, we can solve for �cv;1��� and �vc;−1���.
We insert these into the third equation of Eq. �A11�, and we
evaluate the resulting integrals in the limit that the envelope
function is essentially constant once it is turned on. Then, for
times � much longer than damping and dephasing times we
have, for example,

�
0

�

d��e−iCvc;−1
�1� ��̄vc =

e−iCvc;−1
�1� � − 1

�− iCvc;−1
�1� �

̄vc, =
̄vc

iCvc;−1
�1� ,

for ̄vc essentially constant and � long enough. Similarly,

�
0

�

d��e−iCcv;1
�1� ��cv �

cv

iCcv;1
�1� .

This then yields

��cc�;0

��
= − iCcc�;0

�1� �cc�;0 +
1

i
�
v
�cv̄vc�

Cvc�;−1
�1� +

cv̄vc�

Ccv;1
�1� � .

Dropping the ��s and reintroducing the time t, we have

��cc�;0

�t
= − i��cc� − i�cc���cc�;0 +

e2EaEb*

i�2

��
v
� rcv

a rvc�
b

� − �c�v − i�vc�
−

rcv
a rvc�

b

� − �cv + i�cv
�

If we take the �vc� and �cv to be small, we recover Eq. �11�.

APPENDIX B: DETAILS ON THE NUMERICAL
BRILLOUIN ZONE INTEGRATION

Integrations over the BZ are typically simplified by using
only k points in an irreducible “wedge” of the BZ. At any k
point outside a specified irreducible wedge, the matrix ele-
ments rmn�k� can be determined from the matrix elements at
an equivalent point inside the irreducible wedge via the point
group operation relating the two k points. We denote the
number of point group operations in the BZ by Nsym. This
will include the inversion operator even if the crystal is not
centrosymmetric, as long as the Hamiltonian exhibits time
reversal symmetry. The BZ can be divided into Nsym symme-

NASTOS et al. PHYSICAL REVIEW B 76, 205113 �2007�

205113-14



try related, nonoverlapping irreducible wedges of equal vol-
ume. Starting with the set of k points, making one wedge and
applying each point group operation produce Nsym symmetry
related wedges.

For each point group symmetry operation, characterized
by a 3�3 matrix �, the velocity matrix elements �see Eq.
�6�� satisfy the relation

vmn
a ��k� = �abvmn

b �k� , �B1�

the spin matrix elements satisfy

Smn
a ��k� = det����abSmn

b �k� , �B2�

and the energy eigenvalues satisfy

�m��k� = �m�k� . �B3�

The determinant det��� is +1 for proper rotations and −1 for
improper ones.

Since there is still an inversion symmetry in the BZ even
if the crystal has no center of inversion, this symmetry can
be used to further reduce the k points. In particular, the states
can always be chosen so that

�m�− k� = �m�k� , �B4�

vmn
a �− k� = − vnm

a �k� , �B5�

and

Smn
a �− k� = Snm

a �k� . �B6�

For the noncentrosymmetric crystals, Nsym is then effectively
twice the number of point group operations.

When calculating a scalar quantity, such as the electron
density or total energy, the contribution to the integral from
each irreducible wedge is equivalent. In those cases, the in-
tegral over the full BZ can be found simply by integrating
over an irreducible wedge and multiplying the result by Nsym.
In the case of scalars, from the general form Eq. �18�, we
have

Gcv��� = NsymGw�cv��� = Nsym�
w

d3k

8�3gcv�k���� − �cv�k�� ,

�B7�

where the subscript w on the integral symbol indicates that
the integral should be done over an irreducible wedge. For
the tensor quantities in which we are interested, this protocol
would be incorrect, since the contribution from one irreduc-
ible wedge is generally different than that from another
wedge. One way to proceed, which we adopt in this work, is
to use an equivalent scalar representation of the desired ten-
sor component. The integrand for this expression transforms
throughout reciprocal space as a scalar, and so the integral
over any irreducible wedge gives the same result. Each ten-
sor component is invariant under the point group symmetry
operations, and so for a specific component 
ij���, the
equivalent scalar representation is


ij��� =
1

Nsym
�
s=1

Nsym

�s
ia�s

jb
ab��� , �B8�

where s indexes the symmetry operations. From Eq. �16�,
this gives


ij��� =
2e2�

�2Nsym
�

w

d3k

8�3�
c,v

�
s=1

Nsym

�s
ia�s

jbrcv
a �k�rvc

b �k����

− �cv�k�� , �B9�

which more accurately reflects how we compute 
ab���. The
spin-injection rate is described by a third rank pseudotensor,
and so for a particular component �hij���, we have

�hij��� =
1

Nsym
�
s=1

Nsym

det��s��s
ha�s

ib�s
jc�abc��� . �B10�

From Eq. �13� this gives

�hij��� =
�e2

�2Nsym
�

w

d3k

8�3

� �
c,c�,v

� �
s=1

Nsym

det��s��s
ha�s

ib�s
jcSc�c

a rvc�
a rcv

b ����cv�k�

− �� + ���c�v�k� − ��� . �B11�

Evaluating the s sum over the symmetries determines
which tensor and pseudotensor components are nonzero. For
the zinc-blende and diamond crystals, the only nonzero com-
ponents of 
ab are 
xx=
yy =
zz. For the spin-injection tensor,
the only nonunique component is �xyz. The other nonzero
components are related to it by Eq. �22�. Note that the rank-3
tensors for bulk silicon that describe typical second-order
nonlinear optical effects are all zero because of inversion
symmetry. However, the pseudotensor describing the spin-
injection rate is nonzero for the same components, as in the
zinc-blende crystals.

To obtain a tetrahedral grid throughout the BZ, we use the
improved tetrahedron method introduced by BJA.7 The pro-
cedure works for any crystal class and allows us to avoid any
tedious by-hand chopping procedure. However, even with
this scheme, tens of thousands inequivalent k points can be
required if the function being integrated is complicated
enough, as can arise even for the simplest semiconductors.
Although this is not really a difficulty for the k ·p method,
since calculating the states for each k point at most requires
diagonalizing a 30�30 matrix, it can be problematic in an
ab initio code where the calculation time per k point can be
substantial.

Following BJA, we divide the three reciprocal lattice vec-
tors into n1, n2, and n3 divisions, producing n1�n2�n3 par-
allelepipeds. The number of divisions along each axis should
be chosen to respect the crystal symmetry, so that the mesh
transforms onto itself under the symmetry operations. We
then find the set of irreducible k points and tetrahedra as
described by BJA: Each k point is represented by the integer
vector �i , j ,m� along the divided reciprocal lattice vectors,
where i runs from 0 to M −1, j runs from 0 to N−1, and m

FULL BAND STRUCTURE LDA AND k ·p… PHYSICAL REVIEW B 76, 205113 �2007�

205113-15



runs from 0 to P−1. We create a pointer array where each k
point is identified by the an integer index �i+ j�� �M +m�
�N�M running from 0 to M �N� P. We cycle over the k
points, beginning at the k point with index 1. We apply each
symmetry matrix �s to the k point, and if the transformed k
point has a lower index, then the pointer index for the current
k point is replaced by the lower index of the transformed
point. This is done for each k point in sequence, until we
have exhausted the list, and our pointer-list points every k
point to an equivalent irreducible k point.

Each parallelepiped is then divided into six equal volume
tetrahedra as specified by BJA. The first division is along the
shortest diagonal into two triangular prisms, and then each
prism is divided into three tetrahedra �see Fig. 1 in BJA7 for
a schematic on how to divide the parallelepiped�. Each tet-
rahedron is identified by the four integer indices of the cor-
ner k points. The corners of one tetrahedron can be symmetry
related to the corners of many others. All these equivalent
tetrahedra can be replaced by a single tetrahedron and a mul-
tiplicity factor. If the k points have been reduced as specified
above, then the symmetry-equivalent tetrahedra will have the
same set of four indices, and so the equivalent tetrahedra can
be easily identified by sorting the tetrahedra with respect to
their indices.

The contributions from each tetrahedron are summed to
give the total spectrum. The LATM formula we use linearly
interpolates the energies in the � function and linearly inter-
polates the integrand using the values at the tetrahedron cor-
ners. The spectrum is then calculated again with a finer grid
throughout the BZ. This spectrum is compared to the previ-
ous spectrum, and the frequency ranges where the spectrum
has not converged are identified. To improve the spectrum,
one can simply, and inefficiently, increase the density of the
grid uniformly throughout the BZ. However, this refines the
grid even in volumes where refining is unnecessary. To focus
on the BZ regions that need refining, we first loop over the
submesh units �parallelepipeds� that make up the full BZ and
identify the ones that need to be refined. For each submesh
unit, we find the frequency range specified by the minimum
to maximum values of �cv�k�. If the spectrum is to be refined
at a frequency within this range, then the submesh unit is
labeled as one to be refined. Once we have labeled all the
desired submesh units, they are divided into eight smaller
submesh units. At the next level of refinement, we double the
indices n1, n2, and n3, without creating a new uniform grid,
and relabel all the k points from the previous iteration with
respect to the new doubled indices. When we divide a sub-
mesh unit, we divide it into eight similar units and introduce
19 new k points to our list of k points: one at the center of
each face, one at the midpoint of each edge, and one at the
center of the submesh unit as sketched out in Fig. 12. Each
of the eight smaller submesh units is then divided into six
equal volume tetrahedra using the same idea as BJA.

Instead of dividing the submesh units as we do, one could
directly divide the more primitive tetrahedral microzones.
However, part of the ease and efficiency of the BJA scheme
in finding the irreducible k points is based on the integer
representation of the k points, and we wish to maintain this
integer representation in our subdivisions. Of the multitude
of ways to divide a tetrahedron into smaller tetrahedra, the

simplest possible way to keep an integer representation of
the k points would be to divide the tetrahedron edges at their
midpoints. This would produce eight smaller tetrahedra, but
not of all equal volume. By using our slightly more compli-
cated scheme, we produce equal volume tetrahedra at each
iteration of refinement, and it is easy to keep track of the
tetrahedra volumes without keeping track of each individual
tetrahedron. We find that the region of the BZ that needs to
be divided is usually larger than a single tetrahedron anyway,
so we would not gain much by adding the option to divide
the tetrahedra individually.

When a submesh unit is found that is to be divided, the 19
new k points are temporarily stored. These are appended to
the current list of k points. However, before this is done, we
check that each new k point does not already exist in the list
of k points. If an adjacent submesh unit was previously re-
fined, then the newly introduced k points on the shared face
will already exist, so we do not need to include these points
again. Once we have the new complete list of k points, which
consists of the list of reduced k points from the previous
iteration and the unreduced k points just found, we then iden-
tify the irreducible points by again using the algorithm of
BJA. One might expect that the set of newly determined k
points can be reduced within itself, so that none of the newly
found k points are symmetry related to a k point from an
older set. Although this is generally true, there are a few
special cases where a new k point along the edge of a sub-
mesh unit can be reduced to an irreducible k point from the
original grid. One can neglect this detail and just treat the k
points as unique, but we have decided to fully reduce the set
of k points after the refinement. The new submesh units are
then divided into tetrahedra, and the symmetry related tetra-
hedra of this subset are found and reduced, as was done for
the initial grid. With the tetrahedra determined, we then cal-
culate the matrix elements at the new points and calculate the
spectrum as before for this nonuniform grid. The resulting
spectrum can be compared to the one from the previous it-
eration, and if further refinement is required, the same pro-
cess can be repeated until the desired accuracy is achieved.

To illustrate the method and emphasize the efficiency
gained with this adaptive scheme, we use the pseudopotential
calculation of 
xx��� for GaAs as an example. We use the
theoretical lattice constant, since it reproduces well the band-
edge features, as detailed in Sec. IV of the main text. In Fig.

b1

b2

b3

FIG. 12. Dividing a submesh unit into eight smaller similar,
units. The black points represent points from the previous iteration,
and the solid lines represent the submesh edges from the previous
iteration. The gray points are the new points in the adaptive routine,
and the dashed lines represent the edges of the new submesh units.
Including the points that are on the back faces of the parallelepiped,
there are 19 new points.
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13, we show the spectrum at different levels of grid refine-
ment up to 1 eV above the absorption edge. The dash-dotted
spectrum was produced using a uniform tetrahedral grid pro-
duced from dividing each reciprocal lattice vector into 20
divisions. After this grid is symmetry reduced as instructed
by BJA, the number of inequivalent k points is reduced to
only 256. A grid this coarse is clearly not useful for explor-
ing properties near the band edge: the expected square-root
turn on is missing, as is any indication of a split-off energy at
0.35 eV above the band edge, where the split-off band is
excited. Other examples of the difficulty in converging the
spectrum in this region for GaAs exist. For example, see the
low-energy part of the 	2��� spectrum in Fig. 2 of Mo-
nachesi et al.60 To produce a better spectrum, we search
through the BZ and find which submesh units contribute to
the spectrum below 3 eV. New k points are introduced to
divide these submesh units into smaller units as discussed
above. This gives us a grid which, in the relevant region, is
the same as a grid obtained by dividing the axes into 40
divisions. Symmetry reducing this grid reduces it to 373 k
points, or only 117 new k points to be evaluated. The result-
ing spectrum is shown in Fig. 13 by the thin dashed line. The
change from the original spectrum suggests that the calcula-
tion is not yet converged, so we refine the grid again. This

gives 584 new k points, and the resulting spectrum given
by the thick dashed lines begins to show the features we
expect. Finally, to satisfy ourselves that this is converged,
we refine the grid once more. This requires 3112 new k
points but is effectively the same as starting with a 160
�160�160 divisions, or 4�106 k points. It should be
noted that the uniform grid throughout the full BZ would
end up requiring 90 241 k points in the irreducible zone,
or 22 times more k point evaluations than our adaptive
scheme to arrive at the same accuracy in the spectrum. Our
final converged spectrum is given by the unbroken line in
Fig. 13.

In Fig. 14 we show the convergence of the degree of
spin polarization with increasing grid resolution. It is clear
that the sharp turn in the spectrum at roughly 1.9 eV,
corresponding to the split-off energy, is smeared out for
lower resolutions. However, the degree of spin polarization
near the band edge �50%� is reproduced with our coarsest
grid.
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