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1 Second quantization

1.1 Many-particle states

Single-particle states are represented by vectors |ψ〉, |φ〉 of a Hilbert space H.
Two-particle states are constructed in terms of the tensor product |φ〉 ⊗ |ψ〉, in
short |φ〉|ψ〉 with appropriate rules for addition, multiplication with a complex
number and scalar product (see course on Quantum Mechanics). This construc-
tion is readily extended to an arbitrary number of particles. We will be mostly
concerned with identical particles, for which the Hamiltonian is invariant under
any permutation. In order to define permutation operators we number the parti-
cles according to the positions within the tensor product. Thus in the two-particle
state

|Ψ〉 = |ψ〉|φ〉 (1.1)

the particle number 1 is in the state |ψ〉, particle number 2 in state |φ〉. If the
two single-particle states are different, the same holds for the states |Ψ〉 and

P12|Ψ〉 := |φ〉|ψ〉 . (1.2)

The permutation operator is both Hermitean and unitary, and therefore its eigen-
values are ±1, with eigenstates 1√

2
(|ψ〉|φ〉 ± |φ〉|ψ〉). The Hamiltonian H must

commute with P12 (see below), and therefore the eigenfunctions of H for two
identical particles are either symmetric or antisymmetric.

Consider now three single-particle states |α〉, |β〉, |γ〉, which we assume to be
orthonormal, 〈α|α〉 = 1, 〈α|β〉 = 0, and so on. The six permutation operators
P12, P23, P31, P123, (P123)

2 and P 2
ij = E (unity), where the cyclic permutation P123

acts as P123|α〉|β〉|γ〉 = |γ〉|α〉|β〉, are not mutually commutative, but there exist
four invariant subspaces, two one-dimensional and two two-dimensional spaces.
One one-dimensional subspace consists of the state

1√
6

(|α〉|β〉|γ〉+ |β〉|α〉|γ〉+ |α〉|γ〉|β〉+ |γ〉|β〉|α〉+ |γ〉|α〉|β〉+ |β〉|γ〉|α〉) ,

which is symmetric under all permutation operators, the other one consists of the
fully anti-symmetric state

1√
6

(|α〉|β〉|γ〉 − |β〉|α〉|γ〉 − |α〉|γ〉|β〉 − |γ〉|β〉|α〉+ |γ〉|α〉|β〉+ |β〉|γ〉|α〉) ,

which changes sign for the odd permutations P12, P23, P31 and is invariant under
the even permutations P123, (P123)

2. (A permutation is even if it is obtained by
an even number of pair interchanges, otherwise it is odd.) The two states

1√
12

(2|α〉|β〉|γ〉+ 2|β〉|α〉|γ〉 − |α〉|γ〉|β〉 − |γ〉|β〉|α〉 − |γ〉|α〉|β〉 − |β〉|γ〉|α〉) ,

1

2
(−|α〉|γ〉|β〉+ |γ〉|β〉|α〉+ |γ〉|α〉|β〉 − |β〉|γ〉|α〉) ,
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transform into a linear combination of each other under the action of the permu-
tation operators, and the same holds for the remaining two states

1

2
(−|α〉|γ〉|β〉 + |γ〉|β〉|α〉 − |γ〉|α〉|β〉+ |β〉|γ〉|α〉) ,

1√
12

(2|α〉|β〉|γ〉 − 2|β〉|α〉|γ〉+ |α〉|γ〉|β〉+ |γ〉|β〉|α〉 − |γ〉|α〉|β〉 − |β〉|γ〉|α〉) .

We apply the principle of indistinguishability (A. M. L. Messiah and O. W. Green-
berg, Phys. Rev. 136, B248 (1964)), according to which two states that differ only
by a permutation of identical particles cannot be distinguished by any observa-
tion. This means that

〈Ψ|A|Ψ〉 = 〈Ψ|PijAPij|Ψ〉 (1.3)

for an arbitrary observable A and an arbitrary state |Ψ〉. Therefore

[A,Pij] = 0 , (1.4)

i.e., any observable A commutes with any permutation operator.
The six permutation operators form a group, and their action on the states

given above can be used for constructing irreducible representations of this group.
There are two one-dimensional and one two-dimensional irreducible representa-
tions. Group theory is also useful for characterizing the eigenstates of any Hamil-
tonian which is invariant under permutations. It implies that matrix elements
vanish between states belonging to different irreducible representations. These
therefore can be used to label the energy eigenvalues, while their dimension is
equal to the degeneracy of eigenvalues (if there are no accidental degeneracies).

It is an empirical fact that only fully symmetric or antisymmetric states are
realized. Moreover, as proven in quantum field theory, particles with integer spin
have only symmetric states (these particles are called bosons), whereas particles
with half odd-integer spin have only antisymmetric states (these particles are
called fermions). Antisymmetric states vanish if two single-particle states are
identical. This is just the Pauli principle, according to which two fermions cannot
occupy the same single-particle state.

1.2 Fock space

Often there exists a natural basis of single-particles states, for instance the states
related to the energy levels of an atom or the Bloch states for a particle in
a periodic potential. Let {|φi〉} be an orthonormal basis of the single-particle
Hilbert space, 〈φi|φj〉 = δi,j . A basis for fully symmetric and anti-symmetric
N -particle states is then given by

|Ψ〉± = N±
∑

p

(
1

sign p

)

|χp1〉|χp2〉...|χpN
〉 , (1.5)

where χj ∈ {|φi〉} are (not necessarily distinct) single-particle states, N± is a nor-

malization factor, the sum runs over all N ! permutations p =

(
1 2 ... N
p1 p2 ... pN

)
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and sign p = +1 for permutations corresponding to an even number of transpo-
sitions and sign p = −1 otherwise. Instead of specifying the states (1.5) by all
the single-particle states it is more convenient to indicate the number of times
a single-particle state appears. Let us call ni the number of times the state |φi〉
appears in the product |χ1〉|χ2〉...|χN〉. This number ni is the occupation number

of the state |φi〉. Then the state (1.5) can be specified as

|Ψ〉± = |n1, n2, . . .〉± , (1.6)

where there are n1 particles in |φ1〉, n2 particles in |φ2〉 and so forth. For bosons
ni = 0, 1, 2, 3, . . ., and for fermions ni = 0, 1, according to the Pauli principle. For
an N -particle state we have the restriction

∑

i ni = N .
Two states |n1, n2, ...〉, |n′

1, n
′
2, ...〉 are orthogonal if they differ in at least one

occupation number, i.e. ni 6= n′
i for some number i. If all the occupation numbers

coincide, we find
〈Ψ±|Ψ±〉 = N2

± N ! n1! n2!... (1.7)

Thus the normalization factor is N± = 1/
√
N ! n1! n2! ..., and we get

〈n′
1, n

′
2, ...|n1, n2, ...〉 = δn1,n′

1
δn2,n′

2
... (1.8)

It is important to realize that the occupation number representation (1.6) depends
on the single-particle basis. In general one tries to make a judicious choice dic-
tated by the physical problem at hand. To keep the notation simple we drop the
subscript ± in (1.6). But one has to remember that the states in the occupation
number representation are symmetric for bosons and antisymmetric for fermions.

The states |n1, n2, ...〉 form an orthonormal basis of the N -particle Hilbert
space HN

± . Thus any state of HN
± can be written as a linear combination

|Ψ〉 =
∑

n1,n2,...
P

ni=N

c(n1, n2, . . .)|n1, n2, . . .〉 . (1.9)

If we remove the restriction
∑
ni = N we obtain a linear combination of states

where the number of particles is not specified,

|Ψ〉 =
∑

n1,n2,...

c(n1, n2, . . .)|n1, n2, . . .〉 . (1.10)

Two Hilbert spaces with different particle numbers have no state vector in com-
mon. Thus states of the form (1.9) belong to the Hilbert space formed by the
direct sum ∞⊕

N=0

HN
± = F± .

In this expression H0
± consists of the vacuum state |0, 0, 0, . . .〉. The space F± is

called Fock space. It consists of symmetric (bosons) resp. antisymmetric (fermions)
state vectors, the number of particles being unspecified. F± is the appropriate
Hilbert space for the formalism of second quantization.
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1.3 Creation and annihilation operators

“Second quantization” does not mean that we quantize the theory once more, it
merely provides an elegant formalism for dealing with many-fermion and many-
boson systems. Formally, as will be shown later, the transition from the quantum
theory for a single particle to a many-body theory can be made by replacing the
wave functions by field operators. For electromagnetic fields this procedure would
indeed correspond to a true quantization, but not in the present context.

a) Bosons

The creation operator a†i and annihilation operator ai of a boson in the state |φi〉
are defined by

a†i |n1, n2, . . . , ni, . . .〉 =
√
ni + 1 |n1, n2, . . . , ni + 1, . . .〉 ,

ai|n1, n2, . . . , ni, . . .〉 =
√
ni |n1, n2, . . . , ni − 1, . . .〉 . (1.11)

In addition to these two relations we require these operators to be linear. In this
way the creation and annihilation operators are completely specified. Relation
(1.8) implies that the only non zero matrix elements of ai are

〈n1, n2, . . . , ni − 1, . . . |ai|n1, n2, . . . , ni, . . .〉 =
√
ni . (1.12)

The only non zero matrix elements of a†i are

〈n1, n2, . . . , ni, . . . |a†i |n1, n2, . . . , ni − 1, . . .〉 = (ni − 1 + 1)
1
2 = (ni)

1
2 . (1.13)

Formulae (1.12) and (1.13) show that a†i is the adjoint of ai. Eq. (1.11) allows to
prove the algebraic relations

[ai, a
†
j] = aia

†
j − a†jai = δij ,

[ai, aj] = [a†i , a
†
j ] = 0 . (1.14)

For i = j the algebra is the same as that for the raising and lowering operators
of the harmonic oscillator. Operators for different single-particle states |φi〉 and
|φj〉 commute. To prove the first relation for i = j we act with the operators aia

†
i

and a†iai on a general state in Fock space,

aia
†
i |..., ni, ...〉 =

√
ni + 1 ai|..., ni + 1, ...〉 = (ni + 1)|..., ni, ...〉 ,

a†iai|..., ni, ...〉 =
√
ni a

†
i |..., ni − 1, ...〉 = ni|..., ni, ...〉 .

Substracting the two relations we find [ai, a
†
i ]|..., ni, ...〉 = |..., ni, ...〉 for an arbi-

trary basis state, which proves the first relation in (1.14) for i = j. The other
relations are demonstrated in the same way.

b) Fermions

The creation and annihilation operators, defined by

a†i |n1, n2, . . . , ni, . . .〉 = (1 − ni)(−1)ǫi|n1, n2, . . . , ni + 1, . . .〉 ,
ai|n1, n2, . . . , ni, . . .〉 = ni(−1)ǫi|n1, n2, . . . , ni − 1, . . .〉 , (1.15)
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take into account the fermionic sign through the number of transpositions in-
volved, ǫi =

∑i−1
s=1 ns. If state |φi〉 is already occupied (ni = 1), then we have

a†i |n1, n2, ..., 1, ...〉 = 0, in agreement with the Pauli principle. As in the bosonic
case one shows easily that a†i is the adjoint of ai. These operators satisfy the
algebra

{ai, a
†
j} := aia

†
j + a†jai = δij ,

{ai, aj} = {a†i , a†j} = 0 . (1.16)

In particular a2
i = (a†i)

2 = 0, which is again an expression of the Pauli principle.
The anticommutation relations for fermions (1.16) are proven in the same way as
the commutation relations (1.14) for bosons.

c) Number operator

Eqs. (1.11) (1.15) imply for both Bose and Fermi statistics

a†iai| . . . , ni, . . .〉 = ni| . . . , ni, . . .〉 . (1.17)

Thus the operator a†iai counts the number of particles in the state |φi〉, and the
total number of particles is measured by the operator

N =

∞∑

i=1

a†iai . (1.18)

We have

N |n1, n2, n3, . . .〉 =

∞∑

i=1

ni|n1, n2, n3, . . .〉 . (1.19)

d) Construction of states out of the vacuum

The vacuum state, corresponding to n1 = 0, n2 = 0, . . ., is denoted by |0〉. Acting
on |0〉 with products (or polynomials) of a†i and aj yields states in Fock space.

Using the definitions of a†i and aj one shows that

|n1, n2, . . . , ni, . . .〉 =
(a†1)

n1

√
n1!

(a†2)
n2

√
n2!

· · · (a
†
i )

ni

√
ni!

· · · |0〉 . (1.20)

The Fock space is spanned by the states |n1, n2, . . . , ni, . . .〉. Therefore an ar-
bitrary state can be obtained by acting on |0〉 by some polynomial of creation
operators a†i .

To illustrate the formalism, we consider a few simple examples.

(1) As a first example we consider an atom where the single-particle states
correspond to energy levels. With the operation (1.20), specified energy
levels are occupied, for instance in

a†1a
†
4|0〉 = |1, 0, 0, 1, 0, 0, . . .〉

the operator a†4 puts an electron into level 4, subsequently the operator a†1
puts a second electron into level 1.
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(2) The Fermi sea for free electrons can be written as

|F〉 =
∏

k, |k|<kF

σ=↑,↓

a†kσ|0〉 ,

where a†kσ creates an electron with momentum ~k and spin projection σ.

(3) The Bardeen-Cooper-Schrieffer state is given by

|BCS〉 =
∏

k

(uk + vka
†
k↑a

†
−k↓)|0〉, |uk|2 + |vk|2 = 1 ,

where a†k↑ a
†
−k↓ creates a Cooper pair. Notice that this state is not an

eigenstate of the particle number operator.

(4) Finally, a Bose condensate for N free bosons corresponds to

(a†k=0)
N

√
N !

|0〉 .

1.4 Quantum fields

For many applications the coordinate representation turns out to be useful. We
introduce the family of operators Ψ†(r) through the relation

Ψ†(r)|0〉 := |r〉. (1.21)

Thus Ψ†(r) creates a particle at r. (Depending on the situation, one has also to
specify some other quantum numbers, for instance the spin of an electron; in this
case we will use the notation Ψ†

σ(r).) Using the completeness of single-particle
states |φi〉, we arrive at

Ψ†(r)|0〉 =
∑

i

〈φi|r〉|φi〉 =
∑

i

φ∗
i (r) a

†
i |0〉. (1.22)

Thus the operator Ψ†(r) and the adjoint operator Ψ(r) can also be defined with
respect to a given basis,

Ψ†(r) =
∑

i

φ∗
i (r) a

†
i ,

Ψ(r) =
∑

i

φi(r) ai . (1.23)

These operators are also called quantum fields. To obtain their properties, we will
use extensively the closure and orthonormality relations for the single-particle
wave functions

∑

i

φ∗
i (r)φi(r

′) = δ(r − r′) ,

∫

d3r φ∗
i (r)φj(r) = δij . (1.24)
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a) Spinless bosons

The commutation relations for the field operators of (spin zero) bosons are readily
found using the definition (1.23) together with the closure relation of Eq. (1.24),

[Ψ(r),Ψ†(r′)] = δ(r − r′) ,

[Ψ(r),Ψ(r′)] = [Ψ†(r),Ψ†(r′)] = 0 . (1.25)

The particle number operator (1.18) can be expressed by the field operators (1.23),
using the orthogonality relation of Eq. (1.24),

N =

∫

d3rΨ†(r)Ψ(r) . (1.26)

Thus Ψ†(r)Ψ(r) can be interpreted as the density of particles at r. This inter-
pretation reminds us of the probability density for a particle in state ψ(r) to be
at r, and it suggests that the transition from single-particle quantum mechanics
to many-body theory is accomplished be replacing the wave function ψ(r) by
the operator Ψ(r). The same rule will be found for other single-particle observ-
ables. From this point of view the expression “second quantization”, although
misleading, makes sense.

b) Fermions

For spin 1
2

fermions we have to include the spin degrees of freedom labeled by
σ =↑, ↓,

ai → aiσ, Ψ(r) → Ψσ(r) . (1.27)

Thus we treat the spin as an additional quantum number and do not write down
explicitly the two-dimensional column vectors representing the spin states. The
anticommutation relations (1.16) are replaced by

{aiσ, a
†
jσ′} = δijδσσ′ ,

{aiσ, ajσ′} = {a†iσ, a†jσ′} = 0 . (1.28)

Correspondingly, the field operators

Ψσ(r) :=
∑

i

φi(r) aiσ (1.29)

satisfy the anticommutation relations

{Ψσ(r),Ψ
†
σ′(r

′)} = δ(r− r′)δσσ′ ,

{Ψσ(r),Ψσ′(r′)} = {Ψ†
σ(r),Ψ

†
σ′(r

′)} = 0 . (1.30)

The number operator is given by

N =
∑

σ

∫

d3rΨ†
σ(r)Ψσ(r) . (1.31)

and therefore Ψ†
σ(r)Ψσ(r) is the density of particles with spin σ at r.
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To be specific we consider electrons in a cubic box of size V = L3 and apply
periodic boundary conditions. A natural basis is given by the plane waves

φk(r) = 〈r|k〉 =
eik·r

V
1
2

, (1.32)

where k = 2π
L
n, n = (nx, ny, nz) ∈ Z

3. The creation and annihilation operators

of an electron with wave vector k and spin σ ∈ {↑, ↓} are a†kσ and akσ. The field
operators of the electrons are therefore given by the Fourier transforms

Ψ†
σ(r) =

1

V
1
2

∑

k

e−ik·ra†kσ ,

Ψσ(r) =
1

V
1
2

∑

k

eik·rakσ . (1.33)

The density at point r is determined by the operator

n(r) = Ψ†
↑(r)Ψ↑(r) + Ψ†

↓(r)Ψ↓(r) (1.34)

and the total electron number operator is

N =
∑

σ=↑,↓

∫

V

d3rΨ†
σ(r)Ψσ(r) =

∑

k,σ

a†kσakσ . (1.35)

c) Many-particle wave functions

In the same way as many-particle states can be constructed by applying products
of creation operators a†i , defined with respect to a single-particle basis {|φi〉}, to
the vacuum state |0〉, we can generate states

|r1, r2, . . . , rN〉 := Ψ†(r1)Ψ
†(r2) . . .Ψ

†(rN)|0〉 , (1.36)

or, for particles with non-zero spin,

|r1σ1, r2σ2, . . . , rNσN〉 := Ψ†
σ1

(r1)Ψ
†
σ2

(r2) . . .Ψ
†
σN

(rN)|0〉 . (1.37)

These are states where the N particles sit at the sites r1, r2, . . . , rN (possibly with
spins σ1, σ2, . . . , σN ). They can be used for setting up a coordinate representation
for any N -particle state.

Consider for example the particular state of N spin 1
2

fermions

|1τ1, 2τ2, . . . , NτN 〉 := a†1τ1
a†2τ2

. . . a†NτN
|0〉 , (1.38)

where a†iτi
creates a particle in the state |φi〉 with spin τi = ↑ or ↓. The bra

corresponding to the ket (1.37) is

〈r1σ1, r2σ2, . . . , rNσN | = 〈0|ΨσN
(rN) · · ·Ψσ2(r2)Ψσ1(r1) . (1.39)

Therefore, using Eq. (1.29), we find the coordinate representation

〈r1σ1, r2σ2, . . . , rNσN |1τ1, 2τ2, . . . , NτN 〉
=

∑

i1,...,iN

φi1(r1) · · ·φiN (rN) 〈0|aiNσN
· · ·ai1σ1a

†
1τ1

· · ·a†NτN
|0〉 . (1.40)
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The matrix element 〈0|aiN σN
· · ·ai1σ1a

†
1τ1 · · ·a

†
NτN

|0〉 is non-zero only if the se-
quence (i1, i2, ..., iN) is a permutation p of (1, 2, ..., N). In this case one obtains
(Wick’s theorem, to be discussed later)

〈0|aiNσN
· · ·ai1σ1a

†
1τ1 · · ·a

†
NτN

|0〉 = sign p δσ1,τp1
· · · δσN ,τpN

. (1.41)

The many-body wave function representing the state |1τ1, 2τ2, . . . , NτN 〉 is there-
fore given by

〈r1σ1, ..., rNσN |1τ1, ..., NτN〉 =
∑

p

sign p φp1(r1)δσ1,τp1
· · ·φpN

(rN)δσN ,τpN
,

(1.42)
where the summation runs over all the permutations (p1, p2, . . . , pN). This ex-
pression can be recasted into the form of the so-called Slater determinant

〈r1σ1, ..., rNσN |1τ1, ..., NτN 〉 =

∣
∣
∣
∣
∣
∣

〈r1σ1|1τ1〉 · · · 〈r1σ1|NτN 〉
· · · · · · · · ·

〈rNσN |1τ1〉 · · · 〈rNσN |NτN 〉

∣
∣
∣
∣
∣
∣

, (1.43)

where we have used the relation 〈riσi|jτj〉 = φj(ri)δσi,τj
.

1.5 Representation of observables

We have already encountered the number operator which may be expressed in
terms of creation and annihilation operators (in the basis {|φi〉}), N =

∑

i a
†
iai.

Here we shall explain how to express general observables in terms of a†i and ai.
In order to keep the discussion concrete we concentrate on three special, but
important observables, the kinetic energy of N particles

T =
N∑

i=1

p2
i

2m
, (1.44)

the external potential

Vext =

N∑

i=1

U(ri) (1.45)

and the two-body interaction

V2 =
1

2

∑

i6=j

V (ri, rj) . (1.46)

The first and the second observables are one-body observables while the third one
is a two-body observable. The following discussion is valid both for bosons and
for fermions. For the sake of generality, the spin index (half-integer for fermions,
zero or a positive integer for bosons) is explicitly displayed.
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a) Kinetic energy

We start with the kinetic energy T which is diagonal in the basis of plane waves
|k, σ〉. Thus we have

T |k1σ1,k2σ2, ...,kNσN 〉 =

N∑

i=1

(
~

2k2
i

2m

)

|k1σ1,k2σ2, ...,kNσN〉 . (1.47)

In second-quantized form the N -particle state is written as

|k1σ1,k2σ2, ...,kNσN 〉 = a†k1σ1
a†k2σ2

...a†kN σN
|0〉 . (1.48)

The number of particles in the state |k, σ〉 is a†kσakσ, so we expect

T =
∑

k,σ

|~k|2
2m

a†kσakσ . (1.49)

In order to prove this statement we have to show that the application of this
operator onto any N -particle state (1.48) reproduces Eq. (1.47). The following
algebraic relation will be useful,

[

a†kσakσ, a
†
kiσi

]

= a†kiσi
δk,ki

δσ,σi
. (1.50)

It holds both for bosons and fermions. Applying this relation step by step, i.e.

a†kσakσa
†
k1σ1

a†k2σ2
...a†kN σN

|0〉 =
[

a†kσakσ, a
†
k1σ1

]

a†k2σ2
...a†kN σN

|0〉 + a†k1σ1
a†kσakσa

†
k2σ2

...a†kN σN
|0〉 , (1.51)

we find
a†kσakσa

†
k1σ1

a†k2σ2
...a†kN σN

|0〉 = nkσa
†
k1σ1

a†k2σ2
...a†kN σN

|0〉 , (1.52)

where nkσ is the number of times the quantum number kσ appears in the state
|k1σ1,k2σ2, ...,kNσN〉. It is now obvious that Eq. (1.47) is fulfilled and therefore
the kinetic energy is indeed given by Eq. (1.49).

Expression (1.49) is simple and intuitive because the underlying basis diago-
nalises the kinetic energy. It is useful to have T in coordinate basis. Inverting
(1.33),

a†kσ =
1

V
1
2

∫

V

d3r eik·rΨ†
σ(r) ,

akσ =
1

V
1
2

∫

V

d3r e−ik·rΨσ(r) , (1.53)

we obtain

k2a†kσakσ =
1

V

∫

V

d3rΨ†
σ(r)∇eik·r ·

∫

V

d3r′ Ψσ(r
′)∇′e−ik′·r′

=
1

V

∫

V

d3r eik·r∇Ψ†
σ(r) ·

∫

V

d3r′ e−ik′·r′∇′Ψσ(r′) , (1.54)
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where we have used partial integration together with periodic boundary condi-
tions (V = L3, kα = 2πνα/L, α = x, y, z). Using the relation 1

1

V

∑

k

eik·(r−r′) = δ(r − r′) (1.55)

we get

T =
~

2

2m

∑

σ

∫

V

d3r∇Ψ†
σ(r) · ∇Ψσ(r) , (1.56)

where the gradient operator acts only on the immediately following field operator.

b) External potential

The one-body potential Vext is diagonal in coordinate space,

Vext|r1σ1, ..., rN , σN〉 =

(
N∑

i=1

U(ri)

)

|r1σ1, ..., rNσN 〉 , (1.57)

where in the state |r1σ1, ..., rN , σN〉 one particle is at r1 with spin σ1, one at r2

with spin σ2, and so on, i.e.

|r1σ1, ..., rNσN〉 = Ψ†
σ1

(r1)...Ψ
†
σN

(rN)|0〉 . (1.58)

We claim now that the second-quantized representation of the external potential
is given by

Vext =
∑

σ

∫

d3rU(r)Ψ†
σ(r)Ψσ(r) =

∫

d3rU(r)n(r) . (1.59)

The proof proceeds as above for the kinetic energy. We notice that the commu-
tation relation

[
Ψ†

σ(r)Ψσ(r),Ψ
†
σi

(ri)
]

= δσ,σi
δ(r − ri)Ψ

†
σi

(ri) (1.60)

holds both for bosons and fermions. Applying the operator (1.59) to the right-
hand side of (1.58), we find indeed

(
∑

σ

∫

d3r U(r)Ψ†
σ(r)Ψσ(r)

)

Ψ†
σ1

(r1)...Ψ
†
σN

(rN)|0〉

=

(
N∑

i=1

U(ri)

)

Ψ†
σ1

(r1)...Ψ
†
σN

(rN)|0〉 . (1.61)

The momentum representation of the external potential is easily obtained using
Eq. (1.33),

Vext =
∑

σ

∫

d3r U(r)
1

V

∑

k,k′

e−i(k−k′)·ra†k,σak′,σ

=
1

V

∑

k,k′,σ

Ũ(k − k′)a†k,σak′,σ , (1.62)

1In the theory of generalized functions one shows the relation
∑

∞

n=−∞
δ(x − nL) =

1

L

∑
∞

ν=−∞
e2πiνx/L. If x is limited to an interval of length L only one term of the l.h.s. survives.
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k,s k'=k+q,s

U(q)^

Figure 1: Diagram illustrating the scattering by an external potential.

where Ũ(q) =
∫
d3r e−iq·rU(r) is the Fourier transform of the potential. This

result is illustrated by the diagram of Fig. 1. It can also be expressed in the
plane-wave basis (1.32),

Vext =
∑

k,k′,σ

∫

d3r U(r)〈k|r〉〈r|k′〉a†k,σak′,σ

=
∑

k,k′,σ

〈k|U |k′〉a†k,σak′,σ , (1.63)

where we have used the completeness relation
∫
d3r |r〉〈r| = 1.

c) One-body operator with respect to an arbitrary single-particle basis

The general form of a one-body operator (in first-quantized form) is

O =

N∑

i=1

Oi , (1.64)

where Oi acts only on the i-th particle. This labeling disappears for identical
particles, and in second-quantized form the operator is written as

O =
∑

m,n

〈φm|O1|φn〉 a†man (1.65)

with respect to a given single-particle basis {|φn〉}, where O1 is the one-body
operator for a single particle. In order to prove the equivalence between the
representations (1.64) and (1.65), we first show that the form (1.65) is the same for
any single-particle basis. Let b†j , bj describe creation and annihilation operators
for a different single-particle basis {|ψj〉}, related to the original basis by the
unitary transformation

|φn〉 =
∑

j

〈ψj|φn〉 |ψj〉 . (1.66)

This corresponds to the following relation between creation operators

a†n =
∑

j

〈ψj|φn〉 b†j . (1.67)
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The relation (1.33) between field operators Ψ†
σ(r) and the creation operators a†k,σ

is a special example of such a transformation. Inserting Eqs. (1.66) and (1.67) into
the representation (1.65) and using the completeness relation

∑

n |φn〉〈φn| = 1,
we readily find

O =
∑

j,j′

〈ψj |O1|ψj′〉 b†jbj′ , (1.68)

i.e. indeed the same form as before. We can therefore choose any basis which is
convenient for demonstrating the equivalence between the representations (1.64)
and (1.65). The obvious choice is a basis consisting of eigenvectors |χl〉 of O1,
O1|χl〉 = ωl|χl〉. This yields the diagonal representation O =

∑

l ωlc
†
l cl in terms of

the corresponding creation and annihilation operators. The proof for the equiv-
alence between the representations (1.64) and (1.65) proceeds then in the same
way as in the case of the kinetic energy.

d) Two-body operators

We will concentrate on a spin-independent two-body interaction as in Eq. (1.46)
and proceed as in the case of Vext. The operator V2 is diagonal in coordinate
space,

V2|r1σ1, . . . , rNσN 〉 =

(

1

2

∑

i6=j

V2(ri, rj)

)

|r1σ1, . . . , rNσN〉 . (1.69)

It will be shown below that the second-quantized expression is

V2 =
1

2

∑

σ,σ′

∫

d3r

∫

d3r′ V2(r, r
′)Ψ†

σ(r)Ψ†
σ′(r

′)Ψσ′(r′)Ψσ(r) . (1.70)

Often this expression is rewritten in terms of the density n(r),

V2 =
1

2

∫

d3r

∫

d3r′ V2(r, r
′) : n(r)n(r′) : . (1.71)

This formula is quite familiar except that the operators are normal ordered. Nor-
mal order means that all the creation operators are put on the left of the anni-
hilation operators and that for fermions one has to take into account the sign of
the permutation involved in the rearrangement of the operators.

To show the equivalence of the first- and second-quantized representations, we
verify that the application of Eq. (1.70) to a state |r1σ1, . . . , rNσN〉 reproduces
Eq. (1.69). To this end we use the relation

[

Ψ†
σ(r)Ψ†

σ′(r′)Ψσ′(r′)Ψσ(r),Ψ
†
σi

(ri)
]

= Ψ†
σi

(ri)
(

δσ,σi
δr,ri

Ψ†
σ′(r′)Ψσ′(r′) + δσ′,σi

δr′,ri
Ψ†

σ(r)Ψσ(r)
)

, (1.72)

which is easily proven for both bosons and fermions. We use this relation to move
the field operators in Eq. (1.70) through the operators in the state (1.58)

Ψ†
σ(r)Ψ†

σ′(r
′)Ψσ′(r′)Ψσ(r)Ψ

†
σ1

(r1) · · ·Ψ†
σN

(rN)|0〉

=
N∑

i=1

Ψ†
σ1

(r1) · · ·
[

Ψ†
σ(r)Ψ

†
σ′(r

′)Ψσ′(r′)Ψσ(r),Ψ†
σi

(ri)
]

· · ·Ψ†
σN

(rN)|0〉. (1.73)
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This implies

1

2

∑

σ,σ′

∫

d3r

∫

d3r′ V2(r, r
′)Ψ†

σ(r)Ψ
†
σ′(r

′)Ψσ′(r′)Ψσ(r)|r1σ1, . . . , rNσN〉

=

N∑

i=1

Ψ†
σ1

(r1) · · ·Ψ†
σi

(ri)

∫

d3r V2(ri, r)n(r)Ψ†
σi+1

(ri+1) · · ·Ψ†
σN

(rN)|0〉 , (1.74)

where n(r) =
∑

σ Ψ†
σ(r)Ψσ(r), and we have used the symmetry V (r, r′) = V (r′, r).

We thus arrive at the problem of applying external potentials on many-particle
states, and we can use Eq. (1.61). This gives the desired result,

1

2

∑

σ,σ′

∫

d3r

∫

d3r′ V2(r, r
′)Ψ†

σ(r)Ψ
†
σ′(r

′)Ψσ′(r′)Ψσ(r)|r1σ1, . . . , rNσN〉

=
∑

i,j
i>j

V2(ri, rj)|r1σ1, . . . , rNσN 〉 . (1.75)

The momentum space representation for the two-body interaction (1.70) is ob-
tained by inserting the relation (1.33) for the quantum fields. One finds

V2 =
1

2

∑

σ,σ′

∑

k1,k2,k3,k4

〈k1,k2|V2|k4,k3〉 a†k1,σa
†
k2,σ′ak3,σ′ak4,σ (1.76)

with matrix elements

〈k1,k2|V2|k4,k3〉 =
1

V 2

∫

d3r

∫

d3r′ e−i(k1−k4)·re−i(k2−k3)·r′V2(r, r
′) . (1.77)

For a homogeneous system the interaction depends only on the difference r − r′,
V2(r, r

′) = V2(r−r′). Moreover, assuming periodic boundary conditions for V2(r),
we have the Fourier series

V2(r) =
1

V

∑

q

eiq·r Ṽ2(q) (1.78)

with q = 2π
L

(ν1, ν2, ν3), νi ∈ Z. The matrix elements are then simplified as
follows,

〈k1,k2|V2|k4,k3〉 =
1

V
Ṽ2(q) δq,k1−k4 δq,−k2+k3 . (1.79)

With k1 = k, k2 = k′, k3 = k′ + q and k4 = k − q, the two-particle interaction
becomes

V2 =
1

2V

∑

k,k′,q
σ,σ′

Ṽ2(q) a†k,σa
†
k′,σ′ak′+q,σ′ak−q,σ . (1.80)

It can be viewed as a scattering process, where two particles with initial momenta
~k and ~k′ interact and go out with final momenta ~(k − q) and ~(k′ + q) as
illustrated in Fig. 2. Thereby the total momentum is conserved.
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k',s' k'-q,s'

q

k,s k+q,s

Figure 2: Diagram illustrating the two-particle interaction.

For an arbitrary single-particle basis {|φn〉} a two-body operator is written as

V2 =
1

2

∑

m,m′,n,n′

Vm,m′;n,n′ a†ma
†
m′an′an, (1.81)

where Vm,m′;n,n′ := 〈m,m′|V2|n, n′〉 is the matrix element between two-particle
states |m,m′〉 = |φm〉 ⊗ |φm′〉 and |n, n′〉 = |φn〉 ⊗ |φn′〉. Note that the order of
the last two operators in Eq. (1.81) is reversed relative to the order of indices in
the matrix elements.

1.6 Wick’s theorem

The solution of a typical problem in many-body theory often requires the cal-
culation of expectation values of operator products with respect to the vacuum
state |0〉. This step is greatly facilitated by Wick’s theorem. Before formulating
the theorem we introduce two definitions. Let each of the operators A1, A2, ..., An

be either a creation or annihilation operator. The normal-ordered product (al-
ready mentioned previously) : A1A2...An : is the product reordered in such a way
that all creation operators are to the left and all annihilation operators to the
right, multiplied in the case of fermions by the sign of the permutation needed to
produce the normal order. Thus

: a1a
†
2 : =

{
a†2a1 for bosons,

−a†2a1 for fermions
(1.82)

: a†1a2a
†
3a4 : = a†1a

†
3a4a2. (1.83)

The contraction 〈A1A2〉 of a pair of operators is the vacuum expectation value,

〈A1A2〉 := 〈0|A1A2|0〉 . (1.84)

The following contraction is non-zero,

〈ama
†
m〉 = 1 = [am, a

†
m]±, (1.85)

where the upper sign (the anticommutator) applies to fermions, while the lower
sign (the commutator) is for bosons. All other contractions vanish,

〈amam′〉 = 〈a†ma†m′〉 = 〈a†mam′〉 = 0 for arbitrary m,m′,

〈ama
†
m′〉 = 0 for m 6= m′. (1.86)
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We can now state Wick’s theorem:

An ordinary product of any finite number of creation and annihilation oper-
ators is equal to the sum of normal products from which 0,1,2,... contractions
have been removed in all possible ways.

For n = 2 this means:

A1A2 = : A1A2 : +〈A1A2〉. (1.87)

This is clearly true if both operators are creation operators or if both are annihila-
tion operators. It also applies if A1 is a creation operator and A2 an annihilation
operator. In the remaining case where A1 = a1 and A2 = a†2 we can write the
product as

a1a
†
2 = ∓a†2a1 + [a1, a

†
2]±. (1.88)

In view of Eqs. (1.82) and (1.85) this is identical to Eq. (1.87). Wick’s theorem
is therefore proven for n = 2. For n = 4 it asserts

A1A2A3A4 = : A1A2A3A4 :

+ : A1A2 : 〈A3A4〉 ∓ : A1A3 : 〈A2A4〉+ : A2A3 : 〈A1A4〉
+ : A1A4 : 〈A2A3〉 ∓ : A2A4 : 〈A1A3〉+ : A3A4 : 〈A1A2〉
+ 〈A1A2〉〈A3A4〉 ∓ 〈A1A3〉〈A2A4〉 + 〈A1A4〉〈A2A3〉 , (1.89)

where the upper sign refers to fermions, the lower to bosons.
The following relation is very useful for proving Wick’s theorem:

: A1 · · ·An : B =

n∑

m=1

(∓)s〈AmB〉 : A1A2 · · ·Am−1Am+1 · · ·An :

+ : A1 · · ·AnB : , (1.90)

where s counts the number of pairwise permutations that are necessary to realize
the indicated sequence of operators. This relation is trivially fulfilled if B is an
annihilation operator. If B is a creation operator, the contraction 〈AmB〉 vanishes
if Am is also a creation operator, and therefore we can limit ourselves to the case
where all Ai, i = 1 . . . n, are annihilation operators, i.e. we have to prove the
relation

A1 · · ·AnB =
n∑

m=1

(∓)s〈AmB〉A1A2 · · ·Am−1Am+1 · · ·An

+ (∓1)nBA1 · · ·An . (1.91)

We do this by induction. For n = 1 the relation simply corresponds to Eq. (1.87)
with A2 = B. Suppose now Eq. (1.91) is proven for a certain n. Multiplying from
the left by the annihilation operator A0 and using Eq. (1.87) for A0B we get

A0A1 · · ·AnB =
n∑

m=1

(∓1)s〈AmB〉A0A1 · · ·Am−1Am+1 · · ·An

+ (∓1)n(〈A0B〉 ∓ BA0)A1 · · ·An . (1.92)
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This expression can readily be casted into the form (1.91) with n replaced by
n + 1. Therefore the relation (1.90) is proven.

To prove Wick’s theorem, we again proceed by induction. We have already
verified the theorem for n = 2. We assume it to be true for a certain n, i.e.

A1A2 · · ·An = : A1A2 · · ·An :

+
∑

1≤m1<m2≤n

(∓)s〈Am1Am2〉 : A1 · · ·Am1−1Am1+1 · · ·Am2−1Am2+1 · · ·An :

+ . . . . (1.93)

Multiplying from the right by An+1 and applying the relation (1.90) to the first
term, we have

: A1 · · ·An : An+1 =
n∑

m=1

(∓)s〈AmAn+1〉 : A1A2 · · ·Am−1Am+1 · · ·An :

+ : A1 · · ·AnAn+1 : . (1.94)

Doing the same for the second term, we arrive at

∑

1≤m1<m2≤n

(∓)s〈Am1Am2〉 : A1 · · ·Am1−1Am1+1 · · ·Am2−1Am2+1 · · ·An : An+1

=
∑

1≤m1<m2≤n

(∓)s〈Am1Am2〉 : A1 · · ·Am1−1Am1+1 · · ·Am2−1Am2+1 · · ·AnAn+1 :

+
∑

1≤m1<m2≤n

m6=m1,m2

(∓)s〈Am1Am2〉〈AmAn+1〉 : A1 · · · · · ·An : , (1.95)

where in the last normal-ordered product the operators Am1 , Am2 , Am, An+1 are
omitted. We see that in this way we reproduce the first two terms in the Wick
decomposition of A1A2 · · ·An+1. Continuing in the same way one generates the
full decomposition. This completes the proof of Wick’s theorem.

We consider as a simple application the vacuum expectation value of an ar-
bitrary product of operators A1A2 · · ·An. The expectation value of any normal-
ordered product with respect to the vacuum state |0〉 vanishes. Therefore the
only contribution comes from the fully contracted terms,

〈0|A1A2 · · ·An|0〉 =
∑

m1<m2
n1<n2

···
r1<r2

m1<n1<···<r1

(∓1)s〈Am1Am2〉〈An1An2〉 · · · 〈Ar1Ar2〉 . (1.96)

This expression is non-zero only if half of the operators Ai are creation operators
and the other half annihilation operators.
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2 Many-boson systems

In 1938 superfluidity was discovered by Peter Kapitza in liquid 4He below 2.18K.
Soon after these experiments, Bose-Einstein condensation was advocated for ex-
plaining the transition to the superfluid phase. For several decades superfluid
helium represented the canonical many-boson system. Unfortunately, helium
atoms interact strongly and therefore a completely satisfactory microscopic the-
ory, especially concerning the connection between superfluidity and Bose-Einstein
condensation, is still missing. Thus it came as a relief when with the trapping of
atomic gases at ultralow temperatures a new system became available where the
interaction effects are much smaller. In 1995 bosonic alkali atoms were found to
show Bose-Einstein condensation around 1µK. Subsequently the field of trapped
atomic gases has become extremely active and many new results are still expected
to come. For instance, in a similar way as in helium where the fermionic counter-
part 3He has first to pair up before becoming superfluid (below 3mK, as observed
first in 1972), fermionic gases also have first to bind as composite bosons before
they can make a transition to a superfluid state (evidence for such a transition
has been provided in 2006 in gases of 6Li isotopes at about 100nK).

2.1 Bose-Einstein condensation in a trap

In an ideal Bose gas with N particles in a cubic box of volume V = L3 the one-

particle states have energies ǫk = ~2|k|2
2m

. Quantum effects of Bose statistics are

important when the thermal de Broglie wavelength ΛT = (2π~
2/mkBT )

1
2 , i.e. the

typical wavelength of an atom in an ideal gas at temperature T , is larger than
the interparticle distance n− 1

3 , where n = N/V . The condition ΛT ≈ n− 1
3 gives

an estimate of the critical temperature for Bose-Einstein condensation, in good
agreement with the exact result (obtained in the thermodynamic limit)

Tc = 3.313
~

2

kBm
n

2
3 . (2.1)

For 4He with m ≈ 6.646×10−24g and n ≈ 2.186×1022cm−3 this formula predicts
Tc ≈ 3.13K, in surprisingly good agreement with the so-called λ-temperature
where superfluidity sets in. For T < Tc the uniform ideal Bose gas has a macro-
scopic number of particles occupying the lowest one-particle energy-level ǫk=0,
and for T → 0 all particles condense into the state with k = 0.

In the recent experiments with atomic gases an external potential is used to
confine the atoms, and as a consequence the Bose gas has a non-uniform density.
We have to deal with an inhomogeneous system with typically 104 to 107 atoms.
We consider a harmonic external potential for the trap,

Vtr(r) =
1

2
mω2

0|r|2. (2.2)

In this potential an atom of mass m has a Gaussian ground state

ψ0(r) =
1

π
3
4d

3
2
0

exp

(

−1

2

|r|2
d2

o

)

, d0 =

(
~

mω0

) 1
2

. (2.3)
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In the absence of interactions the ground state of N atoms in the trap is obtained
by putting all particles into this state (we consider spin zero particles),

|Ψ0〉 =

(

a†0

)N

√
N !

|0〉 (2.4)

and in coordinate representation we have the normalized, totally symmetric N -
particle wave function

Ψ(r1, r2, . . . , rN) = ψ0(r1)ψ0(r2) · · ·ψ0(rN). (2.5)

The density profile of the condensate in the ground state is given by

∫

dr1 . . .

∫

drN

(
N∑

i=1

δ(r − ri)

)

|ψ0(r1)ψ0(r2) · · ·ψ0(rN)|2

= N |ψ0(r)|2 =
N

π
3
2d3

0

exp

(

−|r|2
d2

0

)

. (2.6)

This defines an effective volume d3
0 for the condensate at T = 0. The velocity

distribution of the condensate can be found from the Fourier transform

ψ̃0(k) ∼ exp

(

−d
2
0

2
|k|2
)

(2.7)

and is of the form N exp(−d2
0k

2). For anisotropic traps one has anisotropic pro-
files for the density and velocity distributions. In actual experiments, spherical,
cigar shaped and disk shaped condensates have been realized. Both the density
profile and the velocity profile have been observed. They depend strongly on tem-
perature. A clear experimental signature of the transition to a condensed state
is an abrupt change of the velocity distribution at a well defined temperature Tc.
Above Tc, we have an isotropic rather broad Maxwellian distribution of width√
mkBT/~. Below Tc, a sharp peak develops and has a width of the order of

1/d0.
In order to estimate Tc we take a typical set-up with N = 106 sodium atoms

and a condensate size of d0 = 10−3 cm, i.e. a density n ≈ Nd−3
0 ≈ 1015cm−3.

With a mass m ≈ 3.8×10−23 g for sodium, Eq. (2.1) yields a critical temperature
Tc ≈ 7µK, as typically observed for such parameter values.

2.2 The weakly interacting Bose gas

The interactions in atomic gases are usually very weak, but nevertheless they
can have important effects. For instance superfluidity does not occur in an ideal
Bose gas, but it exists in the weakly interacting Bose system. To simplify the
analysis we consider a homogeneous case, i.e. N spinless bosons in a cubic volume
V = L3, in the absence of an external potential, and we assume periodic boundary
conditions. With respect to the plane-wave basis the Hamiltonian reads

H =
∑

k

εka
†
kak +

1

2V

∑

k,k′,q

Ṽ (q)a†ka
†
k′ak′+qak−q, (2.8)
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where

εk =
(~|k|)2

2m
. (2.9)

For neutral atoms we can assume the two-body potential to be short-ranged and
repulsive. For a dilute system most of the particles occupy the zero-momentum
state at zero temperature and only collisions with small momentum transfer are
important. In this case we can replace Ṽ (q) by g := Ṽ (0). In the absence of
interactions only the k = 0 single-particle state would be occupied, i.e. nk = 0 for
k 6= 0 and n0 = N . For weak interactions we expect this to remain approximately
true and |N − n0| ≪ N . This implies that the commutator [a0, a

†
0] = 1 can be

neglected as compared to a†0a0 = n0. Therefore we approximate the operators
a0, a

†
0 as numbers,

a0 ≈ a†0 ≈
√
n0 (2.10)

and keep only the interaction terms of highest order in n0,

H ≈
∑

k

εka
†
kak +

g

2V

{

n2
0 + n0

∑

k 6=0

(

4a†kak + a−kak + a†ka
†
−k

)
}

. (2.11)

Using the same argument we may replace n2
0 by

[N − (N − n0)]
2 ≈ N2 − 2N(N − n0) = N2 − 2N

∑

k 6=0

a†kak (2.12)

as well as n0 by N in the terms that are linear in n0. Therefore we get

H ≈ N
ng

2
+
∑

k 6=0

{

(εk + ng)a†kak +
ng

2
(a−kak + a†ka

†
−k)
}

, (2.13)

where n = N/V is the particle density. This is a quadratic form in the operators
ak, a

†
k and can be diagonalized by a so-called Bogoliubov transformation

αk = ukak − vka
†
−k, (2.14)

where uk, vk are real coefficients. This transformation is canonical if the new
operators satisfy the commutation relations

[αk, αk′] =
[

α†
k, α

†
k′

]

= 0,
[

αk, α
†
k′

]

= δk,k′. (2.15)

This is achieved if the coefficients satisfy the relation

u2
k − v2

k = 1. (2.16)

With the choice uk = u−k, vk = v−k we have

α†
−k = uka

†
−k − vkak, (2.17)

which together with Eq. (2.14) yields the inverse transformation

ak = ukαk + vkα
†
−k. (2.18)
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We insert now this transformation into the Hamiltonian (2.13) and find

H ≈ N
ng

2
+
∑

k 6=0

[
(εk + ng)v2

k + ngukvk
]

+
∑

k 6=0

[
(εk + ng)(u2

k + v2
k) + 2ngukvk

]
α†

kαk

+
∑

k 6=0

[

(εk + ng)ukvk +
ng

2
(u2

k + v2
k)
] (

α−kαk + α†
kα

†
−k

)

. (2.19)

This expression can be brought into the form of an uncoupled collection of bosons
if the last term vanishes. This can be achieved by choosing the coefficients such
that

(εk + ng)ukvk +
ng

2
(u2

k + v2
k) = 0. (2.20)

The solution is

u2
k + v2

k =
εk + ng

Ek

2ukvk = −ng

Ek

, (2.21)

where
Ek =

√

εk(εk + 2ng). (2.22)

The final form of the Hamiltonian is

H ≈ E0 +
∑

k 6=0

Ekα
†
kαk, (2.23)

where the zero-point energy E0 is given by

E0 = N
ng

2
+

1

2

∑

k 6=0

(Ek − εk − ng). (2.24)

In the long-wavelength limit the spectrum is that of a sound wave,

Ek ∼ ~s|k| for |k| → 0, s =

√
ng

m
, (2.25)

as actually observed in superfluid helium. This linear relation can also be derived
within the so-called two-fluid hydrodynamics. It plays a crucial role in Landau’s
argument for superfluidity, which should be distinguished from Bose-Einstein
condensation.

The number of particles in the condensate at zero temperature is given by the
equation

n0 = N −
∑

k 6=0

〈Ψ0|a†kak|Ψ0〉, (2.26)

where the ground state |Ψ0〉 is defined by αk|Ψ0〉 = 0. It is the vacuum of quasi-
particles. The momentum distribution function for k 6= 0 is then easily obtained
using Eqs. (2.16),(2.18) and (2.21),

〈Ψ0|a†kak|Ψ0〉 = v2
k =

1

2

(
εk + ng

Ek

− 1

)

. (2.27)
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Replacing the sum over k by an integral in the usual way and introducing the
integration variable ε = (~2k2)/(2m), we get

∑

k 6=0

〈Ψ0|a†kak|Ψ0〉 =
V

2(2π)3

∫

d3k

(
εk + ng

Ek

− 1

)

=
V

4π2

√
2
(m

~2

)3/2
∫ ∞

0

dε

(
ε+ ng√
ε+ 2ng

−
√
ε

)

=
V

4π2

√
2
(m

~2

)3/2 1

3
(2ng)3/2 . (2.28)

For our contact potential V (r) = gδ(r) the total scattering cross section for the
elastic collision between two particles in Born approximation is given by

σ = 4π
( mg

4π~2

)2

. (2.29)

Identifying this expression with σ = 4πa2, where a is the scattering length, we
get

mg

4π~2
= a . (2.30)

Inserting this relation into Eq. (2.28), we obtain a very simple result for the
number of particles in the condensate, Eq. (2.26),

n0 = N

(

1 − 8

3
√
π

(na3)1/2

)

. (2.31)

This shows that the interaction between the bosons reduces the condensate frac-
tion in the ground state, as compared to the ideal gas. Consistency with the
initial assumption (n0 ≈ N) requires na3 ≪ 1, i.e. the system has to be both
dilute (small density n) and weakly interacting (small coupling constant g).

2.3 The Gross-Pitaevskii equation

For a system of cold bosonic atoms in a trap one has to take into account both
the trap potential (2.2) and the two-particle interaction V (r), which we take as
a contact potential

V (r) = gδ(r) , (2.32)

corresponding to Ṽ (q) = g, as in the previous section. In second quantization
the Hamiltonian for spinless bosons takes the form

H =

∫

dr

{

Ψ†(r)

(

− ~
2

2m
∇2 + Vtr(r)

)

Ψ(r) +
g

2

(
Ψ†(r)

)2
(Ψ(r))2

}

. (2.33)

The field operators for bosons satisfy the commutation relations (1.25). For
the homogeneous case, treated in the previous section (Vtr = 0), Bogoliubov’s
prescription corresponds to the decomposition

Ψ(r) =

√
n0

V
+

1√
V

∑

k 6=0

eik·rak

︸ ︷︷ ︸

χ(r)

(2.34)
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into a “classical contribution”
√

n0/V and a quantum part χ(r) which is a field
operator. The field χ(r) is small in the sense that

∫

drχ†(r)χ(r) = N − n0 ≪ N . (2.35)

For the inhomogeneous case one generalizes Bogoliubov’s prescription as

Ψ(r) = Φ(r) + χ(r) , (2.36)

where Φ(r) is a classical field and χ(r) is a quantum field. The classical field is
interpreted as the macroscopic wave function of the condensate, |Φ(r)|2 being its
density profile. The quantum part χ(r) is treated as a perturbation of the classical
part. We limit ourselves on the ground state in mean-field approximation, where
the energy is just that of the condensate. Replacing Ψ(r) in the Hamiltonian
(2.33) by the classical field Φ(r), we obtain the Gross-Pitaevskii functional

E[Φ] =

∫

d3r

{

Φ∗(r)

(

− ~
2

2m
∇2 + Vtr(r)

)

Φ(r) +
g

2
|Φ(r)|4

}

. (2.37)

The macroscopic wave function of the condensate is adjusted such as to minimize
this energy functional under the constraint

∫

d3r Φ∗(r)Φ(r) = N . (2.38)

Thus we introduce the chemical potential µ and search for a field Φ(r) satisfying
the relation

δ

δΦ∗(r)

{

E[Φ] − µ

∫

d3r Φ∗(r)Φ(r)

}

= 0 . (2.39)

This yields the (time-independent) Gross-Pitaevskii equation

(

− ~
2

2m
∇2 + Vtr(r) − µ

)

Φ(r) + g|Φ(r)|2Φ(r) = 0 . (2.40)

Its solution gives both the wave function Φ(r) and the density profile |Φ(r)|2 of
the condensate.

The theory is readily extended to take into account quantum fluctuations to
lowest order, in a similar way as we did in the case of the homogeneous system.
This yields, on the one hand, a quantum correction to the ground state energy.
On the other hand, one also obtains equations for the energy eigenvalues and
eigenfunctions of elementary excitations, which depend both on the trap potential
Vtr(r) and on the condensate density |Φ(r)|2.

An alternative route to obtain an approximate wave function for the ground
state uses Eq. (2.5) as a variational ansatz, i.e. we write the trial ground state as

Ψ(r1, . . . , rN) =

N∏

i=1

ϕ(ri) (2.41)
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without a priori specifying the single-particle wave function, except that it has
to be normalized, ∫

V

d3r |ϕ(r)|2 = 1 . (2.42)

The expectation value of the Hamiltonian (2.33) is

E[ϕ] = N

∫

d3r ϕ∗(r)

(

− ~
2

2m
∇2 + Vtr(r)

)

ϕ(r)

+
N(N − 1)

2
g

∫

d3r |ϕ(r)|4 . (2.43)

In the thermodynamic limit (N → ∞, V → ∞, n = N/V = constant) Eqs. (2.43)
and (2.42) are the same as Eqs. (2.37) and (2.38) if we make the identification

Φ(r) =
√
N ϕ(r) . (2.44)

Applying the variational principle using the ansatz (2.41) therefore leads again
to the Gross-Pitaevskii equation (2.40).
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3 Many-electron systems

A wealth of phenomena in solids results from an interplay between (Fermi) statis-
tics and electron-electron interactions. Superconductivity, magnetic order, the
(Mott) metal-insulator transition, charge- and spin-density waves or the fractional
quantum Hall effect are prominent examples. But also the physics of nuclei or
of neutron stars can only be understood as (strongly) interacting many-fermion
systems. In this short chapter we can get at most a glimpse of this still rapidly
evolving field.

3.1 The jellium model

Electric charge has a natural tendency of spreading in such a way that the system
is both neutral and homogeneous. Consider a (classical) charge density ρ(r) with
Coulomb energy

E =
1

2

∫

V

d3r

∫

V

d3r′ ρ(r)
1

4πε0|r − r′|ρ(r
′). (3.1)

or, in Fourier space,

E =
1

2V

∑

q

1

ε0|q|2
|ρ̃(q|2. (3.2)

Clearly this energy is a minimum if ρ̃(q) vanishes, i.e. if the system is both neutral
(ρ̃(0) = 0) and homogeneous (ρ̃(q) = 0 for q 6= 0). In an actual solid, consisting
of positively charged ions and negatively charged (delocalized) electrons, charge
neutrality is achieved if ions and electrons are equal in number, whereas homo-
geneity is reached on a length scale exceeding the distance between ions. The
specific nature and geometric arrangement of ions gives rise to complicated elec-
tronic energy bands, which is the cause for the electronic diversity of the different
materials. In the jellium model these complications are avoided by smearing out
uniformly the ionic charge. The Coulomb energy is therefore given by

E =
1

2

∫

d3r

∫

d3r′ n(r)V (r − r′)n(r′), (3.3)

where

V (r) =
e2

4πε0|r|
(3.4)

and n(r) = ne(r) − ni is the difference between the electronic density ne(r) and
the ionic density ni. The Fourier transform of n(r) is given by

ñ(q) =

∫

V

d3r e−iq·r (ne(r) − ni) =

{
ñe(q), q 6= 0,
Ne − niV, q = 0.

(3.5)

For a neutral system (Ne = niV ) the Coulomb energy can therefore be written
as

E =
1

2V

∑

q 6=0

Ṽ (q)|ñe(q)|2 (3.6)
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with Ṽ (q) = e2/(ε0|q|2). In second quantization the electronic Hamiltonian is
then given by

H =
∑

k,σ

|~k|2
2m

a†kσakσ +
1

2V

∑

σ,σ′

∑

k,k′,q 6=0

Ṽ (q) a†k,σa
†
k′,σ′ak′+q,σ′ak−q,σ . (3.7)

3.2 Hartree-Fock approximation

Despite the rather drastic simplification of the jellium model it is hopeless to try
to find the eigenstates of the Hamiltonian (3.7) without further approximations.
A very widely used method consists in replacing the many-body Hamiltonian by
an effective single-particle Hamiltonian. This is the Hartree-Fock approximation.
It is based on the idea that each electron moves in a mean-field produced both
by the external potential and by the interaction with all the other electrons. The
effective potential is determined in such a way that the expectation value of the
full many-body Hamiltonian with respect to the ground state of the effective
single-particle Hamiltonian (a single Slater determinant in coordinate represen-
tation) is a minimum. For the jellium model, where the external potential (due
to the ions) has been eliminated, we can hope that an ansatz without an effective
single-particle potential will be acceptable, i.e. the Hartree-Fock ground state is
simply the filled Fermi sea,

|Ψ0〉 =
∏

k,|k|<kF

σ=↑,↓

a†kσ|0〉. (3.8)

The expectation value of the kinetic part of the Hamiltonian is readily obtained,

∑

k,σ

|~k|2
2m

〈Ψ0|a†kσakσ|Ψ0〉 =
∑

k,|k|<kF

σ=↑,↓

|~k|2
2m

. (3.9)

The expectation value of the interaction term can be calculated by adapting
Wick’s theorem to the present case,

〈Ψ0| a†k,σa
†
k′,σ′ak′+q,σ′ak−q,σ|Ψ0〉

= 〈Ψ0| a†k,σak−q,σ|Ψ0〉〈Ψ0|a†k′,σ′ak′+q,σ′|Ψ0〉
−〈Ψ0| a†k,σak′+q,σ′ |Ψ0〉〈Ψ0|a†k′,σ′ak−q,σ|Ψ0〉
= nk,σnk′,σ′δq,0 − nk,σnk′,σ′δk′,k−qδσ,σ′ , (3.10)

where

nk,σ = 〈Ψ0| a†k,σak,σ|Ψ0〉 =

{
1, k < kF ,
0, k > kF .

(3.11)

The first term in (3.10), the so-called Hartree term, does not contribute to the
potential energy and therefore the only contribution is the so-called Fock or ex-
change term. The expectation value of the Hamiltonian is therefore

E = 2
∑

k,|k|<kF

|~k|2
2m

− 1

V

∑

k,k′,k 6=k′

|k|<kF ,|k′|<kF

Ṽ (k − k′). (3.12)
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In the thermodynamic limit, where 1
V

∑

k is replaced by
∫
d3k/(2π)3, the inte-

gration can be carried out, and one finds

E = N

(
3

5

~
2k2

F

2m
− 3e2kF

16π2ε0

)

. (3.13)

Here the Fermi wave vector kF is related to the electron density through

N

V
=

1

V

∑

k,|k|<kF ,σ

→ k3
F

3π2
(3.14)

in the thermodynamic limit. The standard parametrization proceeds in terms of
the dimensionless parameter rs defined through the volume per particle,

V

N
=:

4π

3
(rsa0)

3, (3.15)

where a0 = 4πε0~
2/(me2) is the Bohr radius. Together with the Rydberg as

characteristic energy scale, Ry = e2/(8πε0a0), we can write the Hartree-Fock
energy per particle as

E

N
= Ry

[
2.2099

r2
s

− 0.91633

rs

]

. (3.16)

It consists of a positive kinetic energy and a negative exchange energy. Considered
as a function of rs, the total energy has a minimum at rs ≈ 4.823. This value is in
surprisingly good agreement with alkali metals where the density of conduction
electrons can be identified with the ionic density with values rs between 3.3 and
5.6. The Hartree-Fock approximation thus gives an appealing picture for the
metallic cohesion originating from the exchange energy of conduction electrons.

The Hartree-Fock approximation is not only a variational ansatz, but also
the lowest-order term in a perturbation expansion of the ground state energy in
powers of the Coulomb coupling strength. To find higher-order corrections one
has to develop the machinery of many-body perturbation theory. Here we confine
ourselves to give the leading terms,

E

N
= Ry

[
2.2099

r2
s

− 0.91633

rs
− 0.094 + 0.0622 log rs + . . .

]

. (3.17)

The first two terms are just the Hartree-Fock energy, while terms beyond Hartree-
Fock are referred to as correlation energy. Eq. (3.17) indicates that the expansion
parameter is rs. Therefore perturbation theory is expected to be valid for large
densities (small rs). Unfortunately, even for simple metals this expansion is of
doubtful validity because rs is rather large.

3.3 The Wigner crystal

In the small-density limit the Coulomb energy becomes dominant and therefore
it is more appropriate to start from the ground state of the interaction term than
from that of the kinetic energy. We are then faced with a purely classical problem,

28



namely to calculate the lowest energy configuration of charged particles immersed
into a homogeneous background of opposite charge. This problem was addressed
by Wigner already in 1934 as that of an “inverted alkali metal”, and he argued
that at low enough densities the electrons would form a crystal. A consistent
theory has of course to take into account the kinetic energy, which leads to zero-
point fluctuations of the electrons around their equilibrium positions. As the
lattice constant decreases, these fluctuations become more and more important
until the Wigner crystal melts. Numerical simulations indicate that this happens
for rs ≈ 100.

A two-dimensional Wigner crystal with a triangular structure has actually
been observed for a very low-density electron system (rs ≈ 104) dispersed over
the surface of liquid helium.

3.4 The Hubbard model

The jellium model is expected to be applicable if effects due to the periodic lat-
tice are negligible, i.e. if the electron energy bands close to the Fermi energy are
nearly-free-electron-like and if the Fermi surface is off the Brillouin zone borders.
Clearly there are materials where this assumption is not valid, for instance tran-
sition metal compounds where the region close to the Fermi energy is dominated
by narrow bands. For simplicity we assume that we have only to take into ac-
count a single energy band. The many-electron Hamiltonian consisting of kinetic
energy, periodic potential and two-body interaction can then be related to a basis
of Bloch functions ψk(r), where k belongs to the first Brillouin zone and the band
index has been dropped. The Hamiltonian is

H =
∑

k,σ

εka
†
k,σak,σ +

1

2

∑

k1,···,k4

σ,σ′

〈k1,k2|V2|k4,k3〉 a†k1,σa
†
k2,σ′ak3,σ′ak4,σ , (3.18)

where the k sums are restricted to the first Brillouin zone and

εk = 〈k| p
2

2m
+ U(r)|k〉 (3.19)

is the single-particle spectrum of the Bloch band. An equivalent representation
can be given in terms of Wannier orbitals

ϕ(r −Ri) :=
1√
Nc

∑

k

e−ik·Riψk(r), (3.20)

where the Ri are the vectors of the Bravais lattice and Nc is the number of unit
cells in the volume V (Nc is also the number of wave vectors k in the first Brillouin
zone). Correspondingly, we introduce the operator

a†i,σ =
1√
Nc

∑

k

e−ik·Ria†k,σ, (3.21)
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which creates an electron in the Wannier orbital i with spin σ. The following
relations will be useful,

1

Nc

∑

i

ei(k−k′)·Ri = δk,k′ ,

1

Nc

∑

k

eik·(Ri−Rj) = δi,j , (3.22)

for instance for establishing the anticommutation relations,

{ai,σ, aj,σ′} =
{

a†i,σ, a
†
j,σ′

}

= 0,
{

ai,σ, a
†
j,σ′

}

= δi,jδσ,σ′ , (3.23)

or for proving the inverse transformation

a†k,σ =
1√
Nc

∑

i

eik·Ria†i,σ. (3.24)

The Hamiltonian in Wannier representation is then found to be

H =
∑

i,j,σ

〈i| p
2

2m
+ U(r)|j〉 a†i,σaj,σ +

1

2

∑

i,j,i′,j′

σ,σ′

〈i, j|V2|i′, j′〉 a†i,σa†j,σ′aj′,σ′ai′,σ , (3.25)

as expected. This representation has no advantages with respect to the Bloch rep-
resentation (3.18) except if certain simplifying assumptions are made for the ma-
trix elements. This can be done if the Wannier functions resemble well localized
atomic wave functions. In this tight-binding limit we may use the parametrization

〈i| p
2

2m
+ U(r)|j〉 =







ε, i = j,
−t, i, j nearest-neighbor sites,
0, otherwise.

(3.26)

Since the diagonal term gives simply a constant energy shift Nε, we may discard
it by choosing the zero of energy accordingly. The most drastic simplification
of the two-body term consists in neglecting all matrix elements but the fully
diagonal one,

〈i, j|V2|i′, j′〉 =

{
U, i = j = i′ = j′,
0, otherwise.

(3.27)

With these simplifications we arrive at the Hubbard Hamiltonian

H = −t
∑

〈i,j〉,σ

(

a†i,σaj,σ + a†j,σai,σ

)

+ U
∑

i

ni↑ni↓, (3.28)

where
∑

〈i,j〉 means summation over all links (bonds) between nearest-neighbor

sites and niσ := a†i,σai,σ. These severe approximations are usually justified by the
small overlap between (well-localized) Wannier functions attached to different
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sites. However, one has to keep in mind that this argument is of no use for the
matrix elements

〈i, j|V2|i, j〉 =

∫

d3r

∫

d3r′ |ϕ(r− Ri)|2 V (r, r′) |ϕ(r′ − Rj)|2. (3.29)

If V (r, r′) is taken as the bare Coulomb interaction, this matrix element decreases
as |Ri − Rj|−1, i.e. much slower than those involving overlap between different
Wannier functions, such as

〈i, i|V2|j, j〉 =

∫

d3r

∫

d3r′ϕ∗(r −Ri)ϕ(r −Rj)V (r, r′)ϕ∗(r′ −Ri)ϕ(r′ − Rj).

(3.30)
Therefore one needs an additional argument for discarding the terms 〈i, j|V2|i, j〉,
such as screening due to mobile charges, which leads to an effective interaction
potential of the Yukawa type, V (r, r′) ∼ |r − r′|−1 exp(−κ0|r− r′|). These mobile
charges are not available in insulators, where the applicability of the Hubbard
model must be questioned.

Despite of these reservations, the Hubbard model is very often advocated
as describing the essential physics of strongly correlated electron systems. The
model is in fact widely used for describing quantum antiferromagnets, the metal-
insulator transition induced by strong correlations and even (high-temperature)
superconductivity. More recently it has also been applied to atoms in optical
lattices. Clearly the Hubbard Hamiltonian represents a fascinating many-body
problem, and therefore it is not surprising that a huge literature exists on ana-
lytical and numerical studies of this model. Unfortunately, an exact solution has
been found so far only in one dimension (in terms of the Bethe ansatz).

With the transformation (3.21) the Hubbard Hamiltonian can be readily ex-
pressed in terms of the Bloch basis. To be specific, we consider a simple cubic
lattice with lattice constant a, where the 6 neighboring lattice vectors of Ri are
given by Rj = Ri±aeα, eα being the unit vectors parallel to the x, y and z axes.
We get

∑

〈i,j〉

(

a†i,σaj,σ + a†j,σai,σ

)

=
∑

k,k′



a†k,σak′,σ
1

Nc

∑

〈i,j〉
ei(k·Ri−k′·Rj) + h.c.





=
∑

k,k′

[

a†k,σak′,σ
1

Nc

∑

i

ei(k−k′)·Ri

3∑

α=1

eiak′·eα + h.c.

]

= 2
∑

k

a†k,σak,σ(cos kxa+ cos kya + cos kza) . (3.31)

The Hubbard Hamiltonian then reads

H =
∑

k,σ

εka
†
k,σak,σ +

U

Nc

∑

k,k′,q

a†k↑ak−q↑a
†
k′↓ak′+q↓ , (3.32)

with the tight-binding spectrum

εk = −2t(cos kxa+ cos kya+ cos kza) . (3.33)
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Figure 3: Occupied states of the half-filled tight-binding band for the square
lattice.

This result is very similar to the Hamiltonian of the jellium model, Eq. (3.7),
except that here the wave vectors are restricted to the first Brillouin zone, −π/a <
kα ≤ π/a, α = x, y, z, the spectrum has a different form and the coupling does
not depend on q. Moreover, the interaction involves only electrons with different
spins, due to the fact that niσniσ is in reality a single-particle term for fermions,
niσniσ = a†iσaiσa

†
iσaiσ = a†iσ{aiσ, a

†
iσ}aiσ = niσ . This does not remain true if

interactions between nearest-neighbor sites are included, proportional to ninj.
In this case, referred to as extended Hubbard model, the coupling becomes q-
dependent and electrons with the same spin interact.

We consider as an example the so-called half-filled band case, where the num-
ber of electrons N is equal to the number of sites (or the number of cells Nc).
For small values of U we may use the Hartree-Fock approximation (3.8), which is
handled as in the case of the jellium model. For simplicity we choose a square lat-
tice with a tight-binding spectrum, εk = −2t(cos kxa+cos kya). At half filling the
Fermi surface is a square with corners at (±π/a, 0) and (0,±π/a), as illustrated
in Fig. 3. One easily verifies the relation

〈Ψ0|ni↑ni↓|Ψ0〉 = 〈Ψ0|ni↑|Ψ0〉 〈Ψ0|ni↓|Ψ0〉 =
1

4
. (3.34)

It can be interpreted as the probability of a site being doubly occupied. The
probability of a site being unoccupied is also 1/4, as is the probability of having a
single electron with spin up (or one with spin down). We obtain the Hartree-Fock
energy

〈Ψ0|H|Ψ0〉 = 2
∑

k,εk<0

εk +
1

4
NU = N

(

−16t

π2
+
U

4

)

. (3.35)

In the opposite limit of large U , where it costs a lot of energy to put two
electrons onto the same site, it is more appropriate to start from the “dual”
ansatz, i.e. the Hartree-Fock state made up of Wannier orbitals,

|Ψ∞〉 =
∏

i

a†i,σi
|0〉, (3.36)

where (σ1, σ2, . . . , σN) is an arbitrary spin configuration. It is easy to see that
the expectation values both of the hopping term (the single-particle term) and of
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the two-body interaction vanish, and therefore we get

〈Ψ∞|H|Ψ∞〉 = 0. (3.37)

Comparing the two variational results we conclude that the Bloch point of view
leads to a lower energy for U < Uc := 64t/π2, while for U > Uc the Wannier
picture prevails. One can show that |Ψ0〉 is a metallic state, while |Ψ∞〉 is in-
sulating. Therefore our simple variational procedure predicts a metal-insulator
transition as a function of U at a critical value Uc of the order of the bandwidth
(8t). This is referred to as the Mott metal-insulator transition. That |Ψ0〉 is a
metallic state is clear since this is simply the ground state of a partially filled
band of non-interacting electrons. That |Ψ∞〉 is an insulating state appears also
to be obvious if one imagines to move a particle from its site to a neighboring
site. This leads to double occupancy of the new site and requires an energy U . It
reminds us of conduction in an intrinsic semiconductor, which can only be pro-
duced by promoting an electron from the valence to the conduction band, i.e. by
providing the energy difference between the bottom of the conduction band and
the top of the valence band. The main difference is that in the present case the
energy gap U results from the occupation of neighboring sites by other electrons
– it is a correlation gap – while a semiconductor has a band gap, generated by the
periodic potential.
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4 Magnetism

The field of magnetism covers a wide range of important topics, such as the nature
of magnetic moments in crystals, Pauli paramagnetism and Landau diamagnetism
of conduction electrons, magnetic ordering at low temperatures, the nature of
domains and domain walls, complex magnetic structures (spin-density waves,
spiral phases, ferrimagnetism). Magnetic impurities play an intricate role both in
metals (Kondo effect) and in superconductors (breaking of Cooper pairs). Spin
glasses are formed in dilute alloys (such as Cu:Mn) as a result of a competition
between disorder and frustration. Subtle phenomena occur in low-dimensional
systems where strong fluctuations may prevent ordering at finite temperatures.

Magnetic moments are generated both by the orbital motion of charged parti-
cles and by the spin (of electrons, protons and neutrons). In solids the electronic
contribution is by far the largest, and in many cases the spin dominates, for
instance in transition metals where the orbital moment of d electrons can be
quenched by crystal-field effects. Therefore we will concentrate our attention on
the Heisenberg model, which consists of spins coupled by the exchange interac-
tion. It is worth mentioning that the spin, introduced ad hoc in non-relaticistic
quantum mechanics to deal both with the anomalous Zeeman effect and with
the Stern-Gerlach experiment, arises naturally in Dirac’s relativistic quantum
mechanics.

4.1 Exchange

Magnetic order (in insulators) occurs because of the interaction between magnetic
moments. The most obvious coupling is purely electromagnetic. A magnetic
moment µ1 generates a magnetic field which acts on a second moment µ2 a
distance r apart. The result is the dipole-dipole interaction

Hint =
µ0

4πr3

(

µ1 · µ2 −
r · µ1 r · µ2

r2

)

. (4.1)

This coupling is too weak to explain the ordering in magnetic materials. Never-
theless, due to its long-range nature, the dipole-dipole interaction plays an impor-
tant role in ferromagnets, where it is responsible for the appearance of magnetic
domains.

The origin of magnetic order is exchange, a cooperative effect of Coulomb
interaction and Fermi statistics. We consider two electrons for two different situ-
ations. In the first case, the two electrons can occupy two different degenerate d
orbitals of a single atom, in the second case they can hop between two Wannier
states associated with two neighboring sites of a lattice. We number the two
single-particle states by the index i = 1, 2 in both cases. We use the parameter
U for the on-site Coulomb interaction, as in Eq. (3.27), together with

V = 〈i, j|V2|i, j〉, J = 〈i, j|V2|j, i〉 (4.2)

for i 6= j. We neglect the other terms, therefore the Coulomb interaction of Eq.
(3.25) is reduced to

Hint = U(n1↑n1↓ + n2↑n2↓) + V n1n2 − J
∑

σ,σ′

a†1σa1σ′a†2σ′a2σ , (4.3)
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where niσ = a†iσaiσ, ni = ni↑+ni↓. Introducing the (dimensionless) spin operators

Si+ = a†i↑ai↓ ,

Si− = a†i↓ai↑ ,

Siz =
1

2
(ni↑ − ni↓) , (4.4)

we can rewrite the last term in Eq. (4.3) as −J(1
2
n1n2 + 2S1 · S2). We set the

diagonal contribution of the single-particle term (3.26) equal to zero, by choosing
the zero of energy accordingly, and therefore are left with the Hamiltonian

H = −t
∑

σ

(a†1σa2σ+a†2σa1σ)+U(n1↑n1↓+n2↑n2↓)+(V −J
2

)n1n2−2J S1·S2 , (4.5)

where t = 0 for the case of two d orbitals on a single atom and t 6= 0 for the
two-site problem.

To calculate the eigenstates of the Hamiltonian (4.5), we use the fact that H
commutes with both Sz and S2, where

S = S1 + S2 (4.6)

is the total spin. There are three singlet states (S = 0)

|0, 0〉1 = a†1↑a
†
1↓|0〉, |0, 0〉2 = a†2↑a

†
2↓|0〉, |0, 0〉3 =

1√
2
(a†1↑a

†
2↓ − a†1↓a

†
2↑)|0〉, (4.7)

and three triplet states (S = 1)

|1, 1〉 = a†1↑a
†
2↑|0〉, |1,−1〉 = a†1↓a

†
2↓|0〉, |1, 0〉 =

1√
2
(a†1↑a

†
2↓ + a†1↓a

†
2↑)|0〉 . (4.8)

The triplet states are eigenstates of the Hamiltonian (4.5),

H|1, m〉 = (V − J)|1, m〉 . (4.9)

In the singlet subspace the Hamiltonian is represented by the 3 × 3 matrix

H →





U 0 −
√

2t

0 U −
√

2t

−
√

2t −
√

2t V + 3
2
J



 . (4.10)

It is readily diagonalized, giving the three eigenvalues

Es =

{
U
1
2

(

U + V + 3
2
J ±

√

(U − V − 3
2
J)2 + 16t2

)

.
(4.11)

We consider first the case of two electrons on the same atom (t = 0). The
largest parameter is usually the term U , in this case the Coulomb energy for two
electrons with the same wave function. Then the lowest singlet energy, V + 3

2
J ,

is higher than the triplet energy, V − J . Thus the direct exchange, the last term
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in Eq. (4.3), is responsible for Hund’s first rule, according to which the total spin
of electrons in a partially filled shell has its maximum possible value.

For the two-site problem we have to take into account the hopping between
sites. The on-site Coulomb term U is again much larger than the other param-
eters, including t, at least for typical transition metals. Therefore the lowest
singlet energy is well approximated by

Es,min ≈ V +
3

2
J − 4t2

U
. (4.12)

The eigenstate is essentially |0, 0〉3, with a small admixture of the states |0, 0〉1
and |0, 0〉2 (of the order of t/U). Restricting ourselves to this lowest singlet state
and to the three triplet states, we arrive at four states which are to a good
approximation the eigenstates of the Heisenberg Hamiltonian

H = E0 − Jeff S1 · S2 , (4.13)

where E0 is a constant and

Jeff =
5

2
J − 4t2

U
. (4.14)

Thus the hopping produces a kinetic exchange −4t2/U , which counteracts the
direct exchange 5

2
J . In fact, while the direct exchange tends to align the spins

in a triplet state, the kinetic exchange favors a singlet state. In order to get a
rough idea of the orders of magnitude of the two competing terms, we use the
parameters estimated by Hubbard for transition metals: U ≈ 10 eV, J ≈ 0.025
eV. With t of the order of 1 eV we find that the kinetic exchange, 4t2/U ≈ 0.4
eV, exceeds by far the direct exchange 5

2
J . Therefore we expect a strong tendency

towards antiferromagnetic ordering among neighboring transition metal ions.
The kinetic exchange can also be obtained from the Hubbard model (where

the direct exchange has been neglected), for U ≫ t and for an average density
of one electron per site. In the limit (t/U) → 0 there are 2N different spin
configurations (for N electrons on N sites) all of which have energy zero. For
small values of (t/U) one uses degenerate perturbation theory to calculate the
energy splitting due to the hopping term. One again arrives at the Heisenberg
Hamiltonian with exchange constant J = −4t2/U .

4.2 Magnetic order in the Heisenberg model

The Heisenberg Hamiltonian

H = −J
∑

〈i,j〉
Si · Sj (4.15)

plays an important role for magnetic insulators, both ferromagnetic (J > 0)
and antiferromagnetic (J < 0). We have seen above how to arrive at such an
expression with spin 1

2
operators. Other values of localized spins occur in many

materials, due to Hund’s first rule. Thus the ion Ni2+ has S = 1, while Cr3+ has
S = 3

2
. An important example is the ion Cu2+, which does have a spin 1

2
. It occurs
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Figure 4: Ferromagnetic and Néel states on a square lattice.

for instance in the layered compound La2CuO4, which is very well described by
the (quasi-two-dimensional) Heisenberg model with antiferromagnetic exchange
(and spin 1

2
).

The Hamiltonian (4.15) has also been extensively studied for classical vectors
Si, especially for discussing thermodynamic properties, for instance the transition
from a paramagnetic to a ferromagnetic phase as a function of temperature. It is
worthwhile to mention that neither the one-dimensional nor the two-dimensional
Heisenberg Hamiltonians admit long-range magnetic order at any finite temper-
ature, due to large statistical fluctuations associated with low-energy spin wave
excitations (Mermin-Wagner theorem). Therefore the observed antiferromagnetic
order below a Néel temperature of the order of 300 K in the layered (undoped)
cuprates is due to a (very small, but finite) exchange coupling between the layers.

A negative value of J leads to antiparallel ordering of neighboring spins in
the ground state. Hovewer, in contrast to the fully saturated ferromagnetic state
which is an eigenstate of the Heisenberg Hamiltonian (4.15), the Néel state, where
the spins are ↑ on half of the lattice sites and ↓ on the other sites, as illustrated
in Fig. 4, is not an eigenstate. Nevertheless, the ground state for J < 0 is anti-
ferromagnetic in the sense that there is a preference for spins ↑ on one sublattice
and for spins ↓ on the other (except in one dimension where there is no broken
symmetry, even at zero temperature).

The low-lying excitations are spin waves or magnons, which correspond to
small deviations from the ground state configuration, characterized by a wave
vector q and an excitation spectrum ωq. For ferromagnets one finds ωq ∼ |q|2,
while one obtains a linear law, ωq ∼ |q|, for antiferromagnets. Inelastic neutron
scattering experiments confirm these predictions.
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5 Electrons and phonons

Until now, whenever we used the word crystal, we assumed the atoms to sit on
a perfectly periodic lattice. In reality, atoms oscillate around their equilibrium
positions, even at zero temperature. The quantum of vibration is a phonon.
Phonons contribute to the specific heat of crystals, to the thermal expansion
and to the melting of a crystal (through anharmonicities), and they give rise
to the electrical resistance via the electron-phonon interaction. Last but not
least, the exchange of phonons between two electrons may provide an effective
attraction and lead to superconductivity. In this short chapter, we limit ourselves
to three topics, the phonons in a harmonic crystal, the origin of the electron-
phonon interaction and the effective electron-electron attraction resulting from
phonon exchange.

5.1 The harmonic crystal

The theory of lattice dynamics is based on the assumption that the atomic dis-
placements are small. In the harmonic approximation, the expansion of the po-
tential energy in powers of the displacements is carried out up to the second
order. For simplicity, we consider the case of one atom per unit cell. The atomic
positions are given by R + u(R), where the vectors R span a three-dimensional
Bravais lattice and the vectors u(R) are the atomic displacements away from
equilibrium. Every atom has three degrees of freedom described by the three
components of the displacement vector uα(R), α = x, y, z . In the harmonic ap-
proximation the Hamiltonian is given by

H =
1

2M

∑

R,α

p2
α(R) +

1

2

∑

R,R′

α,β

Dα,β(R −R′)uα(R)uβ(R
′) , (5.1)

where pα(R) are the components of the atomic momentum at R andD(R− R′) is
the dynamical matrix, the second derivative of the potential energy with respect
to the atomic displacements at R and R′ . There is no linear term since we
assume to start from equilibrium, where there is no force acting on the atoms.
The transformation

u(R) =
1√
NM

∑

k,λ

qk,λ ek,λ e
ik·R ,

p(R) =

√

M

N

∑

k,λ

pk,λ ek,λ e
ik·R , (5.2)

where N is the number of unit cells, ekλ (λ = 1, 2, 3) are the three orthonor-
mal eigenvectors of the Fourier transform D̃(k) of the dynamical matrix with
eigenvalues Mω2

k,λ, leads to

H =
1

2

∑

k,λ

(
pk,λp−k,λ + ω2

k,λ qk,λq−k,λ

)
. (5.3)

39



To quantize the theory, we replace the canonical variables u(R) and p(R) by
operators satisfying the commutation relations

[uα(R), uβ(R
′)] = [pα(R), pβ(R

′)] = 0,

[uα(R), pβ(R′)] = i~ δR,R′ δα,β . (5.4)

This leads to

[qk,λ, qk′,λ′] = [pk,λ, pk′,λ′] = 0,

[qk,λ, pk′,λ′] = i~ δλ,λ′ δk,−k′ . (5.5)

Finally, introducing phonon creation and annihilation operators b†k,λ and bk,λ ,
respectively,

qk,λ =

√

~

2ωk,λ

(

bk,λ + b†−k,λ

)

pk,λ = −i
√

~ωk,λ

2

(

bk,λ − b†−k,λ

)

, (5.6)

with commutation relations

[bk,λ, bk′,λ′ ] =
[

b†k,λ, b
†
k′,λ′

]

= 0 ,
[

bk,λ, b
†
k′,λ′

]

= δk′,kδλ,λ′ , (5.7)

we obtain the familiar Hamiltonian of a collection of independent bosons

H =
∑

k,λ

~ωk,λ

(

b†k,λbk,λ +
1

2

)

. (5.8)

The dynamical matrix has both inversion symmetry,

Dαβ(R −R′) = Dαβ(R′ − R) (5.9)

and continuous translational symmetry,
∑

R

Dαβ(R) = 0 . (5.10)

Its Fourier transform D̃(k) can therefore be rewritten as

D̃(k) =
1

2

∑

R

(
e−ik·R + eik·R − 2

)
D(R) = −2

∑

R

sin2 k ·R
2

D(R) . (5.11)

It follows that D̃(k) ∼ k2 for k → 0 (provided that D(R) decreases sufficiently
fast for R → ∞). Therefore the eigenvalues of D̃(k) have dispersion relations

ω2
k,λ ∼ c2λk

2 for k → 0, λ = 1, 2, 3 , (5.12)

corresponding to acoustic phonons, two “transverse” modes and one “longitudi-
nal” mode, with sound velocities cλ .
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5.2 Electron-phonon interaction

To describe the coupling between an electron and the acoustic phonons, we use
a simple “rigid ion” model. Each ion represents for the electron a potential Va,
which depends on the distance between the position r of the electron and the
ionic position R + u(R). Assuming these contributions to add up, we obtain the
potential V (r) acting on the electron

V (r) =
∑

R

Va(r − R − u(R)) ≈
∑

R

Va(r −R)−
∑

R

∇Va(r −R) ·u(R) . (5.13)

The first term of the Taylor expansion is a periodic potential leading to Bloch
eigenstates for the electron, the second term represents the electron-phonon in-
teraction

Vep(r) := −
∑

R

∇Va(r − R) · u(R) . (5.14)

In order to treat a many-electron system (the partially filled conduction band of a
metal), we write Vep(r) in second-quantized representation, using the Bloch states
as single-particle basis. For simplicity, we restrict ourselves to a single band with
(Bloch) wave function

ψk(r) = eik·ruk(r) , (5.15)

where k is a vector of the first Brillouin zone and uk(r) = uk(r + R). Using the
Fourier transform,

Va(r) =
1

V

∑

q

Ṽa(q) eiq·r (5.16)

together with Eqs. (5.2) and (5.6), we get

〈k|Vep|k′〉 = − 1
V

∑

q,q′,λ Ṽa(q)
√

~

2NMωq′λ
iq · eq′λ

∑

R e
−i(q−q′)·R(bq′λ + b†−q′λ)

∫

V
d3r e−i(k−k′−q)·r u∗k(r) uk′(r) . (5.17)

We use the relation ∑

R

e−i(q−q′)·R = N∆(q − q′) , (5.18)

where

∆(q) =

{
1, if q is a reciprocal lattice vector
0, otherwise.

(5.19)

Similarly, the matrix elements
∫

V
d3r e−i(k−k′−q)·r u∗k(r) uk′(r) are only non-zero

if k − k′ − q is a reciprocal lattice vector. We neglect Umklapp processes which
involve finite reciprocal lattice vectors. Moreover, the acoustic modes consist
(approximately) of one longitudinal and two transverse modes, among which
only the longitudinal mode contributes, with q · eq = |q|, ωq = sq. With these
simplifications we obtain (k′ = k − q)

〈k|Vep|k − q〉 = gk,q(bq + b†−q) , (5.20)

where the electron-phonon coupling constant is

gk,q = − i

V
Ṽa(q)

√

~Nq

2Ms

∫

V

d3r u∗k(r) uk−q(r) . (5.21)
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Figure 5: Electron-phonon scattering process.

The second-quantized representation of the electron-phonon interaction is then
given by

Hep =
∑

k,q,σ

gk,q(bq + b†−q)a†kσak−qσ , (5.22)

where a†kσ and akσ are, respectively, creation and annihilation operators of elec-
trons with wavevector k and spin σ. Hep corresponds to the scattering process
depicted in Fig. 5.

5.3 Phonon-induced attraction

The fundamental interactions in metals are the Coulomb interaction between
electrons and the electron-phonon interaction. A thorough treatment of both
interactions would require advanced techniques, such as the Green function for-
malism. These techniques are able to show that the Coulomb interaction, which
decays very slowly in an insulator, not only is screened in a metal and thus
becomes short ranged, but it even may be “overscreened” due to the electron-
phonon interaction and change sign. Here we use a plausibility argument for the
origin of an effective attraction, as proposed by H. Fröhlich several years before
the BCS theory. We consider the Hamiltonian of (conduction) electrons coupled
to (longitudinal acoustic) phonons,

H =
∑

kσ

εka
†
kσakσ +

∑

q

~ωqb
†
qbq +

∑

k,q,σ

gk,q(bq + b†−q)a
†
kσak−qσ . (5.23)

We use stationary state perturbation theory in powers of the electron-phonon
coupling, starting from the bare ground state,

|Ψ0〉 =
∏

k,σ
εk<εF

a†kσ|0〉e ⊗ |0〉p , (5.24)

where the electronic levels are filled up to the Fermi level and there is no phonon.
The first order contribution to the energy vanishes. The second order contribution
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can be written as

∆E = 2
∑

k,k′

(1 − fk)fk′

|gk,k−k′|2
εk′ − εk − ~ωk−k′

, (5.25)

where fk is the Fermi-Dirac function at zero temperature,

fk =

{
1, εk < εF

0, εk > εF .
(5.26)

The symmetry |gk,k−k′|2 = |gk′,k′−k|2 allows us to rewrite Eq. (5.25) as

∆E = 2
∑

k

fk
∑

k′

|gk,k−k′|2
εk − εk′ − ~ωk′−k

+ 2
∑

k,k′

fkfk′

|gk,k−k′|2~ωk−k′

(~ωk−k′)2 − (εk − εk′)2
. (5.27)

This expression can be interpreted as arising from a purely electronic Hamiltonian

H =
∑

kσ

(εk + ∆εk)a
†
kσakσ +

1

2V

∑

k,k′,q
σ,σ′

∆v(k,k′,q) a†kσa
†
k′σ′ak′+qσ′ak−qσ , (5.28)

where the single particle spectrum has been renormalized, εk → εk + ∆εk with

∆εk =
∑

k′

|gk,k−k′|2
εk − εk′ − ~ωk′−k

, (5.29)

and an effective electron-electron interaction has been induced by phonon ex-
change, with coupling

∆v(k,k′,q) = 2V
|gk,q|2~ωq

(εk − εk′)2 − (~ωq)2
. (5.30)

In fact, first order perturbation theory with respect to ∆ε and ∆v gives

∆E = 2
∑

k

fk∆εk

+
1

V

∑

k,k′

fkfk′ [2∆v(k,k′, 0) − ∆v(k,k′,k − k′)] . (5.31)

The Hartree term with momentum transfer zero vanishes since g(k,q = 0) = 0.
Therefore we recover indeed Eq. (5.27). The crucial point is that the effective
coupling function (5.30) is attractive for |εk − εk′| < ~ωk−k′. A more elaborate
treatment using the technique of Green functions confirms that close to the Fermi
surface the electron-phonon interaction leads to an effective attraction.
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6 Superconductivity: BCS theory

The aim of this chapter is to present the BCS theory, the probably most successful
microscopic description of a collective quantum phenomenon. Another important
theory, the Ginzburg-Landau theory, does not depend on microscopic details
but rather establishes a general phenomenological framework for the transition
from the normal to the superconducting phase. We will limit ourselves to the
microscopic BCS theory.

6.1 Cooper pairs

From now on it will be assumed that the electron-phonon interaction (or possibly
also the exchange of another type of boson, for instance a magnon) can produce
an effective attraction beween electrons. If the attractive interaction is strong
enough, two electrons may form a bound state or composite boson. In such a
case it is tempting to develop a model for superconductivity in terms of a Bose-
Einstein condensation of electron pairs. However, for ordinary superconductors
the attraction is not strong enough to produce a two-electron bound state (except
in one and two dimensions). The reason is that in three dimensions the single-
particle density of states

N(ε) =
1

V

∑

k

δ(ε− εk) (6.1)

tends to zero for ε → 0 (in the case of a parabolic spectrum). Cooper realized
that the situation is different if we add two electrons to the filled Fermi sea (and
not to the vacuum).

For simplicity, we limit ourselves on that part of the Hamiltonian which is
relevant for both the Cooper problem and the BCS theory, the so-called reduced
Hamiltonian

Hred =
∑

k,σ

εka
+
kσakσ +

1

V

∑

k,k′

ṽ(k,k′) a+
k↑a

+
−k↓a−k′↓ak′↑ . (6.2)

For the Cooper problem we assume ṽ(k,k′) to be attractive in a finite strip above
the Fermi energy,

ṽ(k,k′) =

{
−g , εF < εk, εk′ < εF + ~ωD ,
0 , otherwise,

(6.3)

where the Debye frequency ωD is the characteristic scale of acoustic phonons. An
added pair with total momentum zero and Sz = 0 is described by the state

|Ψ〉 =
∑

k

ϕ(k)a+
k↑a

+
−k↓|F〉 . (6.4)

We look for an eigenstate of energy E. Applying the reduced Hamiltonian on the
pair state we get

Hred|Ψ〉 =
∑

k

ϕ(k)(E0 +2εk)a
+
k↑a

+
−k↓|F〉+

1

V

∑

k,k′

ϕ(k)ṽ(k′,k)a+
k′↑a

+
−k′↓|F〉 , (6.5)
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where E0 is the energy of the filled Fermi sea. Multiplying from the left by
〈F|a−k′↓ak′↑, we obtain the eigenvalue equation

ϕ(k′)(E0 + 2εk′ − E) +
1

V

∑

k

ϕ(k)ṽ(k′,k) = 0. (6.6)

Using Eq. (6.3) and summing over k′ we arrive at the relation

1 =
g

V

∑

k′

′ 1

E0 + 2εk′ −E
, (6.7)

where the sum is restricted to the energy strip defined above. In the absence of
interactions the lowest possible energy for a filled Fermi sea plus two additional
electrons is E = E0 +2εF . Therefore the quantity εb := E−E0 − 2εF defines the
binding energy due to the attractive coupling. With the density of states (6.1)
Eq. (6.7) can be rewritten as

1 = g

∫ εF +~ωD

εF

N(ε)

2(ε− εF ) − εb

≈ gN(εF )

∫ εF +~ωD

εF

1

2(ε− εF ) − εb

, (6.8)

where we have assumed that N(ε) does not change appreciably on the scale
~ωD ≪ εF . The integration is elementary and we obtain the interesting relation
for the binding energy

εb ≈ 2~ωDe
− 2

gN(εF ) . (6.9)

This is a non-analytic function, which cannot be obtained by a finite-order per-
turbation expansion.

6.2 BCS ground state

For a very low density of electrons and strong attraction we expect the system
to consist of bound (bosonic) pairs, which may undergo a Bose-Einstein conden-
sation at low temperatures. Eq. (6.4) is then a good starting point and we can
consider the operator

b+q=0 :=
∑

k

ϕ(k)a+
k↑a

+
−k↓ (6.10)

approximately as a bosonic creation operator with momentum zero. Neglecting
the residual interaction between the pairs we can write down the ground state of
N
2

pairs as a Bose condensate

|BEC〉 =
1

√

(N/2)!

(
b+q=0

)N
2 |0〉 . (6.11)

In the weak coupling limit (high density and weak attraction) the BCS state,
which describes the instability of the Fermi surface with respect to a coherent
pairing, is more appropriate. It is defined as

|BCS〉 =
∏

k

(

uk + vka
†
k↑a

†
−k↓

)

|0〉 , (6.12)
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where the coefficients uk, vk are variational parameters. The BCS state is nor-
malized if

u2
k + v2

k = 1. (6.13)

In this state the number of particles is not fixed, but this is not a problem in
the thermodynamic limit (as in statistical mechanics, where the grand canonical
ensemble produces the same thermodynamics as the canonical ensemble). We
can obtain the projection of the BCS state onto the subspace with a fixed (even)
number N of electrons as follows. We observe that (a†k↑a

†
−k↓)

n vanishes for n ≥ 2.
Therefore we can write

uk + vka
†
k↑a

†
−k↓ = uk

(

1 +
vk
uk

a+
k↑a

+
−k↓

)

= uk exp

(
vk
uk

a+
k↑a

+
−k↓

)

. (6.14)

The BCS state then reads

|BCS〉 = const exp

(
∑

k

vk
uk

a+
k↑a

+
−k↓

)

|0〉 . (6.15)

Its projection onto the subspace with N electrons,

|BCS〉N = const’

(
∑

k

vk
uk

a+
k↑a

+
−k↓

)N
2

|0〉 , (6.16)

is equal to Eq. (6.11) except that the wave function ϕ(k) has been replaced by
vk
uk

. The calculations are much simpler for the full BCS state (6.12) than for the
projected state.

We have to minimize the expectation value of the reduced Hamiltonian (6.2),
〈BCS|Hred|BCS〉, for a given average number of electrons

N̄ = 〈BCS|N |BCS〉, where N =
∑

k,σ

a+
kσakσ . (6.17)

This is carried out by introducing the chemical potential µ as a Lagrange multi-
plier. Thus we have to minimize first the expression

W := 〈BCS|Hred − µN |BCS〉 (6.18)

and at the end fix µ by solving Eq. (6.17).
We use a similar model for the attraction as in the Cooper problem and restrict

the coupling to a strip of width 2~ωD around the chemical potential µ (which is
approximately equal to the Fermi energy εF in the weak-coupling limit).

ṽ(k,k′) =

{
−g, µ− ~ωD < εk, εk′ < µ+ ~ωD ,
0, otherwise.

(6.19)

The single-particle states outside this strip are not affected and we have

uk =

{
0, εk < µ− ~ωD ,
1, εk > µ+ ~ωD .

vk =

{
1, εk < µ− ~ωD ,
0, εk > µ+ ~ωD .

(6.20)
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With the parametrization

uk = cosϑk , vk = sinϑk (6.21)

the relation (6.13) is automatically satisfied.
It is straightforward to calculate the expectation value (6.18). One finds

W = 2
∑

k

ξkv
2
k −

g

V

∑

k,k′

ukvkuk′vk′

=
∑

k

ξk(1 − cos 2ϑk) − g

4V

(
∑

k

sin 2ϑk

)2

, (6.22)

where ξk := εk − µ. (The diagonal term of the interaction energy, k = k′ , is not
correct, but this error is negligible in the thermodynamic limit.) The signs have
to be chosen such as to render this expression as small as possible. The sign of
sin 2ϑk is arbitrary (we choose sin 2ϑk > 0), but not that of cos 2ϑk which has to
fulfill

sign(cos 2ϑk) = sign(ξk) (6.23)

because W is required to be a minimum. Moreover, the equation ∂W/∂ϑk = 0
leads to

ξk tan 2ϑk =
g

2V

∑

k′

sin 2ϑk′ , (6.24)

where both k and k′ are in the region of k-space defined above. Introducing the
(positive) gap parameter

∆k := ξk tan 2ϑk , (6.25)

we can write Eq. (6.24) as

∆k =
g

2V

∑

k′

∆k′

Ek′

, (6.26)

where

Ek :=
√

ξ2
k + ∆2

k . (6.27)

With

∆k =

{
∆0 , |ξk| < ~ωD ,
0 , otherwise ,

(6.28)

and the replacement

1

V

∑

k

f(ξk′) → N(εF )

∫
~ωD

−~ωD

dξ f(ξ) (6.29)

the gap equation (6.26) becomes

1 =
g

2
N(εF )

∫
~ωD

−~ωD

dξ
1

√

ξ2 + ∆2
0

. (6.30)

This equation is readily solved, we get

∆0 = ~ωD
1

sinh 1
gN(εF )

≈ 2~ωDe
− 1

N(εF )g , (6.31)
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where the approximate expression is valid in the weak-coupling limit, gN(εF ) ≪
1. This result resembles the binding energy of a Cooper pair, Eq. (6.9), it is again
a non-analytic function of the coupling strength.

In the strong-coupling limit one can show that the gap equation (6.26) is
nothing but the eigenvalue equation (6.6) “in disguise” (A. J. Leggett, Proc.
16th Karpacz Winter School, Lecture Notes in Physics 115, Springer 1980, p.
13). The BCS state describes in fact a smooth crossover from a coherent many-
electron bound state (with “pair size” larger than the interpair distance and a
chemical potential µ ≈ εF ) for weak coupling to a Bose condensate of bound pairs
(with µ < 0) for strong coupling.

The physical meaning of Ek can be understood by calculating the energy
required for adding an electron with momentum ~k to the system. This quasi-

particle energy is just equal to Ek (see J. R. Schrieffer, Theory of Superconduc-

tivity, Section 2.5).

6.3 Thermodynamics

It is straightforward to generalize the BCS theory to finite temperatures T , using
a self-consistent field method. Here we simply quote the main results and use
them to calculate the specific heat.

For T > 0 the gap parameter becomes temperature dependent. Eq. (6.26) is
replaced by (β = 1

kBT
)

∆k =
g

2V

∑

k′

∆k′

Ek′

tanh
βEk′

2
, (6.32)

which goes over into Eq. (6.26) for T → 0. Proceeding as above we obtain the
finite temperature gap equation

1 =
g

2
N(εF )

∫
~ωD

−~ωD

dξ
1

√

ξ2 + ∆2
tanh

(
β

2

√

ξ2 + ∆2

)

. (6.33)

The r.h.s. is a decreasing function of both T and ∆. It follows that the solution
of Eq. (6.33), ∆(T ), decreases with increasing temperature until it vanishes at
a critical temperature Tc. For weak coupling (kBTc ≪ ~ωD) the function ∆(T ),
depicted in Fig. 6, is universal. For T = 0 the solution of the gap equation is
given by Eq. (6.31). For T = Tc partial integration gives

1 = gN(εF )

∫ βc~ωD

0

dy
1

y
tanh

y

2

= gN(εF )

[

log(βc~ωD) tanh
βc~ωD

2
− 1

2

∫ βc~ωD

0

dy log y sech2 y

2

]

.

In the last term we can replace βc~ωD by ∞ (in the weak coupling limit) and use

−1

2

∫ ∞

0

dy log y sech2y

2
= log

(
2γ

π

)

,
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Figure 6: Temperature dependence of the gap parameter (after Schrieffer).

where γ is Euler’s constant, i.e. 2γ
π
≈ 1.13. Thus we get

kBTc ≈ 1.13~ωD e
− 1

gN(εF ) . (6.34)

Comparing Eqs. (6.31) and (6.34) we obtain an interesting relation between the
energy gap at T = 0, Eg = 2∆(0), and the critical temperature

Eg

kBTc

≈ 3.53 . (6.35)

This relation, often used to check whether a superconducting material is BCS-like,
is well satisfied in elemental superconductors:

Al Cd Ga Hg In La Nb Pb Sn Ta Tl V Zn
3.53 3.44 3.5 3.95 3.65 3.72 3.65 3.95 3.6 3.63 3.63 3.50 3.44

(after R. Meservey and B. B. Schwartz, in the book of Parks).
With ∆(T ) given, the excitation energies

Ek(T ) =
√

ξ2
k + ∆2(T ) (6.36)

are fixed and determine the quasi-particle occupation numbers

fk =
1

eβEk + 1
. (6.37)

One can show that the electronic entropy is simply given by that of a free fermion
gas with spin 1

2
and with the excitation spectrum (6.36), namely

S = −2kB

∑

k

[(1 − fk) log(1 − fk) + fk log fk] . (6.38)
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The presence of the gap implies that in the superconducting phase the entropy is
lower than it would be for ∆ = 0 (see Fig. 7). The superconducting phase has a
higher degree of order than the normal phase. The specific heat per unit volume
is given by

CV

V
=

T

V

∂S

∂T
=

2

V

∑

k

Ek

∂fk
∂Ek

(
∆

Ek

d∆

dT
− Ek

T

)

≈ 2N(εF )

∫ ∞

−∞
dξ

(
1

2

d∆2

dT
− E2

T

)
∂f

∂E
, (6.39)

where E =
√

ξ2 + ∆2. Close to Tc, where

∆(T )

∆(0)
∼ 1.74

(
Tc − T

Tc

) 1
2

, (6.40)

the derivative d∆2

dT
is finite when approaching Tc from below and it vanishes for

T > Tc, where the specific heat is given by the usual expression

C
(n)
V

V
= γT =

2π2

3
N(εF )k2

BT .

It follows that there is a step at Tc

C
(s)
V − C

(n)
V

C
(n)
V

≈ 1.43 , (6.41)

in quite good agreement with experiments on elemental superconductors:

Al Cd Ga Hg In La Nb Pb Sn Ta Tl V Zn
1.4 1.4 1.4 2.37 1.73 1.5 1.9 2.71 1.60 1.59 1.50 1.49 1.3

(after R. Meservey and B. B. Schwartz, in the book of Parks). The BCS prediction
for the specific heat is illustrated in Fig. 7.

We did not discuss the most striking phenomena of superconductivity, such
as persistent currents, Meissner effect, flux quantization or Josephson tunneling.
This would require to extend BCS theory by adding the coupling to an electro-
magnetic field. We do not present this extension here, but simply mention that
this coupling can be readily obtained in BCS theory in terms of the standard
replacement (see, for instance, Chapter 8 of Schrieffer’s book)

p → p + eA, i~
∂

∂t
→ i~

∂

∂t
− eΦ. (6.42)
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Figure 7: Entropy and specific heat according to BCS (from Tinkham).
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