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Motivations

SSH = Su-Schrieffer-Heeger
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> Polyacetylene molecule, staggered hopping
» Simplest 1D model presenting topological behaviour
» Introduction of many concepts of topological band theory



Defining Properties

» Finite 1D lattice:

2N sites
sublattices A and B

N unit cells — 2 sites / unit cell — {

bulk 4 edges
> no spin
> spin-polarized particles
» for real systems: take two copies of it

» fermions (half-filling)

» hopping with staggered amplitudes: v, w > 0 (in case,
redefine base states to cancel complex phases)

> no on-site potential



Hamiltonian

No interactions between particles = single particle hamiltonian:

N N-1
H=v> (ImA){m,B|+hc)+wd (Im+1,A)/(m B|+hc)
m=1 m=1

Separate internal and external d.o.f.: |m,a) = |m) ® |a),
m=1....N, a=AB:

+Wz<m+ m|®0xzmy+h.c.>



Bulk Hamiltonian

Connect the edges with periodic (Born-von Karman) boundary

conditions:
N
Hutc = »_ (v|m){m| @ o, + w|(m mod N) + 1)(m| ® oy + h.c.)
m=1

looking for the eigenstates: Hpyk|tn) = En|tn), n=1,...,2N.
We have translational symmetry in the cell index, m. Introduce
plane wave solutions:

N
1 : 2T
kKy=—= ¢e™|m), kel{525. . .,N6}, O6="
k) ﬁNmE_l |m) { } N

Total eigenstates: |¢n(k)) = |k) ® |un(k)), with:

un(k)) = an(k)|A) + ba(k)|B), n=1,2



Bulk Momentum-Space Hamiltonian

The vectors |up(k)) are the eigenstates of the bulk
momentum-space hamiltonian:

HOK) = (K Houid k). HOR) n(K)) = En(K)|un(K)
v W*ik
H(k)—( 0 vwe )

vV + we

Then H(k)? = |v + we |21 = E(k)?1, so:

E+(k) = +|v + we™| = £1/v2 + w2 + 2vw cos k
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Bulk Winding Number
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H(k) = do(k)oo + dx(k)ox + dy(k)o, + d.(k)o,

do(k) =0, dy(k) = v+ wcosk, dy,(k) = wsink,d,(k) =0
magnitude: |d(k)| = E(k)

direction of d(k) describes the internal structure of |u,(k))
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as k goes from 0 to 27, d(k) traces a circle of radius w

centered at (v,0)

» the bulk winding number v is defined by the number of times
this path goes around the origin (0, 0)

» for SSH, v =0ifv>w,v=1ifv<w



Edge States (I): Fully Dimerized

In the fully dimerized limits the eigenstates are restricted to one
dimer each.
» case v =1,w = 0 is in the trivial phase (v = 0):

H(‘m7A> + ‘mv B>) = i(|m7 A) £ |m7 B>)

moreover H(k) = o (k independent)
» case v =0,w = 1 is in the topological phase (v = 1):

H(lm, B) = |m—+1,A) =+ (jm, B) £ |m + 1, A)

moreover H(k) = o, cos k + o, sin k. In this case we also have
zero energy eigenstates:

H|1,A) = H|N,B) = 0

they have support only on one site and only at the edge



Edge State (Il): Simulation
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Chiral Symmetry (1)

» Crash course on symmetry and quantum mechanics:
» H (hermitian) has symmetry U (unitary) iff:

UHUT=H <« [H, U =0

> in case of symmetry, H and U can be diagonalized
simultaneously
» We talk about symmetry even when we have an operator I
such that:
THIM=—-H « {H,T}=0

this is called chiral symmetry.
» We require I to be:
» unitary and hermitian: TTT =2 =1

» Jocal: it acts only inside unit cell
» robust: TH({)I = —H, V¢ e =



Chiral Symmetry (I1): General Consequences

» Orthogonal sublattice projectors:

1 1
Pa=3(1+T) Pe=3(1-T) PatPs=1 PaPg=0

» THI = —H is equivalent to PAHP, = PgHPg =0

» the spectrum is symmetric:
Hlyp) = Ely) = HI|Y) = —TH|y) = —E[y)
> if E#0, [¢)) and T|¢) are orthogonal, then:
0= (¥[TY) = (¥|Palv) — (¥|Pglv)

» if E=0, |[¢) and T'y)) are in the same eigenspace, so zero
energy eigenstates may have support only on one sublattice:

HPasl¥) = H([¢) £T¢))/2 =0



Chiral Symmetry (111): Consequences for SSH

v

SSH hamiltonian is bipartite: it has no transitions in the same
sublattice

v

the projectors are then:

N N
Pa=> |mA(mA  Pg=>_|m B)(m,B|

m=1 m=1

v

the chiral symmetry operator is then:

N
[=Y.=Pa—Ps=Po:

m=1

» H contains terms proportional to |m, A)(m', B| or
|m, B)(m', A|, so X, is robust



Computing Winding Numbers

» Graphically:

» d(k) is a directed line with two sides (left and right)

> take a directed line £ from origin to infinite

» assign +1 every time d(k) encounters £ with the left side and

-1 when this happens with the right side

» winding number v is the sum of the assigned numbers.
when £ or d(k) are deformed continuously, intersections
between the two can only appear or disappear pairwise with
signatures +1 and -1, leaving v unchanged and topologically
invariant

> by integral:



Topological Invariants

> An insulating hamiltonian is adiabatically deformed if:
> its parameters are changed continuously
> the symmetries are preserved
» the bulk gap around E = 0 remains open
> two insulating hamiltonians are said to be adiabatically
connected or adiabatically equivalent if there is an adiabatic
deformation connecting them.
> an integer number characterizing an insulating hamiltonian
that does not change under adiabatic transformations is a
topological invariant

trivial v >w




Number of Edge States as Topological Invariant

» Consider eigenstates of a chiral symmetric 1D hamiltonian at
the left edge in the thermodynamic limit, with energies laying
in —e < E < ¢ in the bulk

» the number of zero energy state is finite: Ny on sublattice A
and Ng on sublattice B

» consider an adiabatic deformation controlled by parameter
p:0 — 1 and its effect on Ng — N (Epuik gap > 2¢, Vp)

» if a non-zero energy edge state is brought to zero energy, its
chiral partner does the same, so Ny — Np is unchanged

» opposite: if a zero energy edge state is brought to E > 0, it
must have a E < 0 chiral partner

» if non-zero energy eigenstates enter or exit the —e < E < ¢
window, this has no effect on Ny — N

> edge states with energies in the gap must decay exponentially,
so the deformation can extend the support of edge state but
only by a limited amount



Bulk-Boundary Correspondence for SSH

» The winding number v, a property of the bulk, is a
topological invariant and it is 0 when v > w, 1 when v < w.

» The net number of edge states at the left (or right) edge
Na — Npg, a property of the boundary, is also a topological
invariant and it has the same values of v for every choice of
v, W,



Bound States at Domain Walls

Edge states occurs at:
> edges of a chain

» walls between domains with different parameters

=g me6  m-T
In the fully dimerized case we have two possibilities:
> single isolated sites which host zero energy states

> trimers where odd superpositions of the two end sites have
Zero energy:
H(lm,a) — |m+n,a)) =0



Calculation of SSH Edge States (I)

N N-1
H= Z (Vin|m, A)(m, B| + h.c)+ > (Wm|m+1,A)(m, B| + h.c.)

= m=1
We are looking for a,, and b,,, m=1,..., N, for zero energy
eigenstates, such that:

N
H Y~ (amlm, A) + bp|m, B)) = 0
m=1

for these 2V equations we have the solutions:

m—1 Vi
am = —a m=2...,.N
L}
Jj=1
w Ny
—wy _v
bm=— [[ —Zb~v m=1,... N-1
M j=mt1

but also by = ay = 0, so no zero energy eigenstates.



Calculation of SSH Edge States (II)

We can find two approximate solutions for N — oo. Define v, w
such that:

L M-l L M-l
|0g\V’:N_121|0g\Vm’; |0g|W:N_121|Og\Wm;
m= m=

so by = ay = 0 become:
e~ (N-1)/¢ |by| = |by|e~(N-D/EN

lay| = |a1]
w1

with £ = 1/(log |w| — log|v|). Approximate zero energy solutions:

N N
L) = Zam]m,A>; |R) = me|m, B);
m=1 m=1

In case, v, and wy, are all real and equal: £ =1/ log(w/v)



Calculation of SSH Edge States (III)

Under H, states |L) and |R) overlap by an exponentially decaying
amount (being only approximate eigenstates) and then hybridize:

(RIH|L) = alvaNe_(N_l)/f‘ei¢, ¢ € [0,27)

L) £ e?|R).

01) = R

ELr =+ ‘alvaNe_(N_l)/s



Experimental Realization (I)

nature
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ARTICLES

Direct measurement of the Zak phase in
topological Bloch bands

Marcos Atala'", Monika Aidelsburger'’, Julio T. Barreiro"?, Dmitry Abanin®, Takuya Kitagawa>*
Eugene Demler® and Immanuel Bloch"2*

Geometric phases that characterize the topological properties of Bloch bands play a fundamental role in the band theory
of solids. Here we report on the measurement of the geometric phase acquired by cold atoms moving in one-dimensional
optical lattices. Using a combination of Bloch oscillations and Ramsey interferometry, we extract the Zak phase—the Berry
phase gained during the adiabatic motion of a particle across the Brillouin zone—which can be viewed as an invariant
charar.terlzmg the topological properties of the band. For a dimerized lattice, which models polyacetylene, we measure a
ifference of the Zak phase 3¢z, = 0.97(2)x for the two possible polyacetylene phases with different dimerization. The two
dimerized phases therefore belong tu different topological classes, such that for a filled band, domain walls have fractional

Our work a new general approach for probing the topological structure of Bloch bands in

optical lattices.

Zak phase: @zak = i [{uk|Ok|uk)dk



Experimental Realization (1)
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Experimental Realization (III)
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