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Bloch functions, periodic boundary condition

We want to describe the “bulk” properties of crystalline materials.
In non-interacting approximation:

Ne D
N p;
H= E <2—’ne + U(r,)>

1=

U(r) = U(r + R,) is lattice-periodic potential, R, lattice vector.



Bloch functions, periodic boundary condition

We want to describe the “bulk” properties of crystalline materials.
In non-interacting approximation:

Ne D
N p;
H= E <R + U(r,)>

1=
U(r) = U(r + R,) is lattice-periodic potential, R, lattice vector.
= Hamiltonian is a sum of single-particle Hamiltonians, the solution of

this N electron problem can be obtained using the solutions of the
Schrodinger equation
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Bloch functions, periodic boundary condition

In order to capture the translational invariance of the bulk, we use use
periodic boundary condition = the solutions satisfy (Bloch theorem)

\Uk(r + Rm) = eik'R’"\Uk(r)

wavevector k can take on discrete values in the Brillouin zone



Bloch functions, periodic boundary condition

In order to capture the translational invariance of the bulk, we use use
periodic boundary condition = the solutions satisfy (Bloch theorem)

\Uk(l‘ + Rm) = eik'R"‘\Uk(r)

wavevector k can take on discrete values in the Brillouin zone

Equivalent formulation: .
\Uk(l‘) = e’k'ruk(r)
where u(r + Ry,) = wk(r) lattice periodic and

(P + hk)?

2me + U(r) un,k(r) = En,kun,k(r)



Bloch functions, periodic boundary condition

For equivalent wavenumber vectors k' = k + G (G lattice vector of the

reciprocal lattice)

Vo= e up(r) = WOy (r) = ™ Uy (r)

where upe (r) = tperg(r) = e "CFup(r).

One can also show that E k16 = Enx-
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Wannier functions

Since

k+G)-r

wn,k—i—G(r) = ei( Upk+G = eik.run,k = wn,k(r)

for fixed r the Bloch function W, (r) is periodic in the reciprocal space.
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Wannier functions

Since

Vikig(r) =€ rChry nk+G = €U = Wo(r)

for fixed r the Bloch function W, (r) is periodic in the reciprocal space.

= it can be expanded into a Fourier series:

1 .
Vo(r) = —=) o,(r,R))e*R
()= g Z ok
R;: Lattice vectors in real space

Reverse transformation:

q)n(l’, Rj) =

Z Ik.ijn,k(r)

eBZ

ﬁ\



Wannier functions

®,(r,R;) is a function of r — R;:

\/_
_ Z —ik-(Rj+Rp) IkRnw ()
\F ey

e—lk-ijnk(r)
keBZ
n(l’, Rj)

®(r+R,LR+R,) = — Z —ikRi+R)Y | (r 4 R,)
€Bz

I
e é\H
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Wannier functions

®,(r,R;) is a function of r — R;:

¢,(r+R,, R +R,) =

For R, = —R;: ®,(r,R;) =

\/— Vok(r+Rp)

Z —ik-(Rj+Ry)
€Bz

Z —ik-(Rj+Rp) IkRnw ()
eBZ

\/_ Z —ik-Rjyy k(r
€BZ

n(r,R))

\/_

©

»(r —R;,0) it depends only on r — R;
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Wannier functions

®,(r,R;) is a function of r — R;:

¢,(r+R,, R +R,) =

For R, = —R;: ®,(r,R;) =
®o(r — R;,0) =

(See, e.g., Ref[5]).

W (r —

\/— Vok(r+Rp)

Z —ik-(Rj+Ry)
€Bz

Z —ik-(Rj+Rp) IkRnw ()
\F ey
—ik-R
_ Z Al k(r
\F ey
®,(r,R))

»(r —R;,0) it depends only on r — R;

R;) are Wannier functions
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Wannier functions

Orthonormality and completeness:
Bloch functions:
[ Va0 ste)de = i
D VrkOWak(r) = 5(r — )
n,k

Wannnier functions
/ W,;"(r — RJ')W,,/(I‘ — Rj/)dl’ = 5RJ,RJ-/5”7"’
> Wi(r = R)Wiy(r — Ry) = 6(r —v')
n,R;
(See, e.g., Ref[5]).
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Wannier centers

Define the Wannier center of W,(r — R;) as
i) = (Wa(r = Rl Wa(r — Ry))

In general, a non-trivial question if the the above expectation value is
finite in extended systems
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Wannier centers

Define the Wannier center of W,(r — R;) as
i) = (Wa(r = Rl Wa(r — Ry))

In general, a non-trivial question if the the above expectation value is
finite in extended systems = localization properties of Wannier functions

For explicit calculation of the Wannier functions in the SSH model, see
Phys. Rev. B 26, 4269 (2016).



Wannier centers in the Rice-Mele model

Consider the Rice-Mele model (N site long, periodic boundary condition)
Bloch functions: |W,(k)) = |k) ® |un(k))
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Wannier centers in the Rice-Mele model

Consider the Rice-Mele model (N site long, periodic boundary condition)
Bloch functions: |W,(k)) = |k) ® |un(k))

n=1,2 (conduction and valence band),

un(k): eigenstates of the momentum-space Hamiltonian H(k)

N
2 21 27
Z kXG{W,2W,...,NW}

3\

13 / 51



Wannier centers in the Rice-Mele model

Consider the Rice-Mele model (N site long, periodic boundary condition)
Bloch functions: |W,(k)) = |k) ® |un(k))

n=1,2 (conduction and valence band),

un(k): eigenstates of the momentum-space Hamiltonian H(k)

N
1 il 2m 27 2m
= =Yk koe{Z 2 L N
VNS el ey o Nyt

Position operator:

N
_Z (|m, AY(m, A| + |m, B)(m, B|)

m: unit cell index; A, B, site index in a unit cell
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Wannier centers in the Rice-Mele model

KWa(j) = ﬁﬁZe"'an(kx»
kx

N
1 .. 1 .

= e Y ) @ (k)
N - N :

1 —ij i
= % Z e Uk Z me ™| m) @ |un(ky))
ke m

14 / 51



Wannier centers in the Rice-Mele model

For N — oo k, continous, use partial integration:

1 27

SWali) = 5 | ke 3 me™ | m) @ Jun(ks))
m

27 . .
e[ e

1 ifkx
+ o ), dkxje ij Z|m®|un(k)>

2

i
+ o i dks Z|m |u,, )
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Wannier centers in the Rice-Mele model

This can be simplified:

2

AWL() = <2__7; Zei(m—j)kx‘m> ® |Un(kx)>>

0
: 27
J

—ijkx
+ 5 A dk, e Zn:\m>®\u,,(kx)>

i 27

+ 5 i deZn:|m>®8kX|u,,(kX)>

16 / 51



Wannier centers in the Rice-Mele model

27

XWh(j) = <2_—7; Z ei(’"—j)kx|m> ® |u,,(kx)>) — 0 (periodic function)
m 0

: 2

L dke S m) @ [un(h)) = - Walj)

2T 0
i 27

+ o5 i dkx;|m>®akx‘un(kx»
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Wannier centers in the Rice-Mele model

27

XWh(j) = <2_—7; Z ei(’"—j)kx|m> ® |u,,(kx)>) — 0 (periodic function)
m 0

: 2

L dke S m) @ [un(h)) = - Walj)

2T 0
i 27

+ o5 i dkx;|m>®akx‘un(kx»

One finds:

i 2T
WhDIRIWA0) = 5= [ delun(hlOn on()) +
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Wannier centers in the Rice-Mele model

27

— 0 (periodic function)
0

RW,(j) = (;—;Ze"‘m—”wm@|un(kx)>)

: 2T
+ o5 e D Im) @ unlh)) = - Wa()
i 2

+ o5 i dkx;|m>®akx‘un(kx»

One finds:

i

WoDRIWa)) = 5= [ i) O unll)) +

= can be expressed in terms of Berry-phase (Zak's phase)
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Wannier centers in the Rice-Mele model

27

— 0 (periodic function)
0

RW,(j) = (;—;Ze"‘m—”wm@|un(kx)>)

: 2T
+ o5 e D Im) @ unlh)) = - Wa()

i 27

+ o5 i dkx;|m>®akx‘un(kx»

One finds:

i

WoDRIWa)) = 5= [ i) O unll)) +

= can be expressed in terms of Berry-phase (Zak's phase)
= Wannier centers are equally spaced

17 / 51
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Maximally localized Warnier function

PHYSICAL REVIEW B VOLUME 56, NUMBER 20 15 NOVEMBER 1997-I1

Maximally localized generalized Wannier functions for composite energy bands

Nicola Marzari and David Vanderbilt
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849
(Received 10 July 1997)

‘We discuss a method for determining the optimally localized set of generalized Wannier functions associ-
ated with a set of Bloch bands in a crystalline solid. By ‘‘generalized Wannier functions’” we mean a set of
localized orth 1 orbitals ing the same space as the speclﬁed set of Bloch bands. Although we

a ional that the total spread =, (r2), — (r) of the Wannier functions in real space, our
method proceeds directly ﬁ‘om the Bloch functions as represented on a mesh of k points, and carries out the
minimization in a space of unitary matrices D,,,,, describing the rotation among the Bloch bands at each k point.
The method is thus suitable for use in c with ional el ic-structure codes. The procedure
also returns the total electric polarization as well as the location of each Wannier center. Sample results for Si,
GaAs, molecular C,H,. and LiCl will be presented. [S0163-1829(97)02944-5]

Figure: Phys Rev B 56, 12847 (1997).




Maximally localized Warnier functions

Gauge freedom in choosing the Bloch orbitals: W, (r) — e (W, (r)
[Unk(r) — €@y, (r)] describes the same electron density
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Maximally localized Warnier functions

Gauge freedom in choosing the Bloch orbitals: W, (r) — e (W, (r)
[Unk(r) — €@y, (r)] describes the same electron density
= Wannier functions are not unique!

If there are band degeneracies for some k (symmetries, e.g., time reversal):
— not sufficient to consider isolated bands — consider a set of J bands
(composite bands)

A more general U(J) gauge freedom:

Uni(r) = > USS upi(r)

p



Maximally localized Warnier functions (MLWF)

Define for the Wannier functions at the origin R; = 0 the following:

© Wannier center ¥, = (W, (r)|r|Wy(r))
@ second moment (r2), = (W,(r)|r?|W,(r))
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A measure of the spread (delocalization) of the Wannier functions:
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One can then try to minimize Q with respect to the unitary

transformations U,(,',(,) = Maximally localized Wannier functions (MLWF)



Maximally localized Warnier functions (MLWF)

Define for the Wannier functions at the origin R; = 0 the following:

© Wannier center ¥, = (W, (r)|r|Wy(r))
@ second moment (r2), = (W,(r)|r?|W,(r))

A measure of the spread (delocalization) of the Wannier functions:
Q= Z[<r2>n — ¥
n

One can then try to minimize Q with respect to the unitary

transformations U,(,',(,) = Maximally localized Wannier functions (MLWF)

This approach can be used to obtain MLWFs from DFT calculations in
plane-wave basis.



Maximally localized Warnier functions (MLWF)

One can decompose Q = Q1 + Q», where

Q=3 [<r2>n -3 <Rmr0n>2]
R,m

n

Q=" |(Rmirjon)?

n Rm#0n



Maximally localized Warnier functions (MLWF)

One can decompose Q = Q1 + Q», where

2 =3 [0 = 3 [Rmrlon)?
R,m

n

Qz—z Z (Rm|r|0n)|?

n Rm#0n

One can show that

@ (21 is gauge invariant, i.e., does not depend on U,(,‘,(,) transformation

@ (2 is positive definite



Maximally localized Warnier functions (MLWF)

One can decompose Q = Q1 + Q», where

2 =3 [0 = 3 [Rmrlon)?
R,m

n
Q = Z Z (Rm|r|0n)|?
n Rm#0n

One can show that
@ (21 is gauge invariant, i.e., does not depend on U,(,‘,(,) transformation

@ (2 is positive definite

= minimalization of 2 means minimalization of €,
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Special case: MLWF in 1D

Notation: W,(x — Rx) = |Rx, n) Consider a group of bands, e.g., the
valence band(s):
Projectors:

P=> |Rom(Ren| = Wy ) (Wl

Ry,n n,kyx

In 1D the eigenfunctions of the projected position operator P X P are
MLWE.

Let |0 m) be an eigenfunction of P X P with eigenvalue Xqp.
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= (), vanishes, €21 gauge invariant
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Special case: MLWF in 1D

Notation: W,(x — Rx) = |Rx, n) Consider a group of bands, e.g., the
valence band(s):
Projectors:

P=> |Rom(Ren| = Wy ) (Wl

Ry,n n,kyx

In 1D the eigenfunctions of the projected position operator P X P are
MLWE.

Let |0 m) be an eigenfunction of P X P with eigenvalue Xqp.

(R n|X|0m) = (R n|PX P|0m) =Xomdr,00m,n

= ), vanishes, Q; gauge invariant

= |0m) is a MLWF

Argument does not work in 3D, because PX P, Py P, PZ P do not
commmute



@ bulk properties of materials — periodic boundary conditions — Bloch
functions

@ alternative description: Wannier functions

@ Wannier-centers (expectation value of the position operator): in
Rice-Mele model — Berry-phase

@ Maximally localized Wannier functions: in 1D eigenfunctions of the
projected position operator PXP



Reminder: Bloch functions, periodic boundary condition
Wannier functions: introduction

Maximally localized Wannier functions

Modern theory of polarization

Polarization and Wannier centers

Calculation of Berry phase in discrete k space

Position operator and periodic boundary conditions

e © 6 6 ¢ ¢ ¢ ¢

Calculation of Wannier centers in 1D systems



Modern theory of polarization

RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 47, NUMBER 3 15 JANUARY 1993-1

Theory of polarization of crystalline solids

R. D. King-Smith and David Vanderbilt
Dep of Physics and Rutgers University, P. O. Box 849, Piscataway, New Jersey 08855-0849
(Received 10 June 1992)

Theory of Polarization: A Modern Approach

Raffacle Resta! and David Vanderbilt?

Figure: Theory of Polarization: A Modern Approach,” in Physics of Ferroelectrics:
a Modern Perspective, ed. by K.M. Rabe, C.H. Ahn, and J.-M. Triscone
(Springer-Verlag, 2007, Berlin), pp. 31-68. (local preprint)



Modern theory of polarization

Macroscopic polarization P: fundamental concept in the phenomenological
description of dielectrics
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Macroscopic polarization P: fundamental concept in the phenomenological
description of dielectrics

Some materials possess polarization without external field (ferroelectricity)

or become polarized upon applying strain (pieozoelectricity)
How to measure the polarization ?

(a); (b)!

T ®

Figure: Pieozoelectricity: surface or bulk effect? (Figure from Ref[4]).
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Modern theory of polarization

Macroscopic polarization P: fundamental concept in the phenomenological
description of dielectrics

Some materials possess polarization without external field (ferroelectricity)

or become polarized upon applying strain (pieozoelectricity)
How to measure the polarization ?

(a); (b)!

T ®

Figure: Pieozoelectricity: surface or bulk effect? (Figure from Ref[4]).

While the crystal is strained, a transient electrical current flows through
the sample
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Modern theory of polarization

Fundamental relation: the change in polarization P is accompanied with a
transient current j(t) flowing through the sample:

dP .
— = (T
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Modern theory of polarization

Fundamental relation: the change in polarization P is accompanied with a
transient current j(t) flowing through the sample:

dP .
— =i(t
” i(t)

= Change in polarization:

At
AP = P(Af) — P(0) = /0 i(6)

If the change is slow enough — adiabatic limit — adiabatic perturbation
theory to calculate j(t)
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Introduce the parameter A € [0,1]: dimensionless adiabatic time
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Formal description of the theory: polarization P

Introduce the parameter A € [0,1]: dimensionless adiabatic time

1
dP
AP = d\—
/0 dA

A = O:initial state; A = 1:final state

Assumptions:
@ system remains insulating for all values of A

@ system bulk retains crystalline periodicity for all A



Formal description of the theory: current jV
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Formal description of the theory: current jV

Because of crystalline periodicity the solutions of the Schrodinger equation
are Bloch-functions: W,(()‘)(r) = e Tu)(r)

Schrodinger equation for the lattice periodic part uk)‘ (r)

b+ hk)?
(B+1k)”

o+ UV 030 = B ()

Adiabatic change: the current j()) can be calculated using adiabatic
perturbation theory

For a adiabatically changing time periodic 1D lattice

[H(k,t) = H(k,t + T)] this is done in Chapter 5 of the Lecture Notes
(Refl7])

The same steps can be done here: t — X\, A does not need be periodic
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Formal description of the theory: current jV

Current from a single filled band n:

dng\) . ie A A A A
Y ZJ%\) = 2n )3 /BZ dk[<aku£,k)‘a)\u£,k)> - <8/\“E,,k)‘ak”£,k)>]
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Formal description of the theory: current jV

Current from a single filled band n:

dPY) oy —e SV TGN
= :W/ dk[(@u \8u > (8)\un7k\8kun7k>]

Total change in polarization (— number of pumped particles):

—Ie )\ A A
- 5 Z/BZ dk/ IN(Ohu1036)) — (03 0]

N: number of filled bands
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Polarization as Berry phase

For simplicity, consider a 1D system:
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—le
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Polarization as Berry phase

For simplicity, consider a 1D system:

—le
(zé)Z/Bde/ MDYy — ()]

Make use of the following to re-write the integral for AP
@ partial integration with respect to A
o O (u)orul))y = (@kulonul)y + (ul)|okorul))

0 NL 1 d , A
jAP_(QW)Z Lok | o] - [ axgwlos



Polarization as Berry phase

Note, that

1
[on ] bl —o
0 BZ Ok ’ ’
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Polarization as Berry phase

Note, that

1
[on ] bl —o
0 BZ Ok ’ ’

because the Bloch functions are periodic in reciprocal space:

A A
V) = v ()
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Polarization as Berry phase

Note, that )
/ d)\/ dk%@gfg@ugfb:o
0 BZ

because the Bloch functions are per|od|c in reciprocal space:
A A A)
Vn0) = Wl (0 = 000 = e ul ()

= <u£)2\8)\u£)2> is periodic in k = its integral over the BZ is zero.

One finds:
AP — P()\Zl) . P()\ZO)

where

PO — (27T)Z / dk(u)0icul)

33 /51
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Polarization as Berry phase

A
PO = (%)Z/ dk(uQ)10|ul))

@ the right hand side is the integral of the Berry-connection over the
BZ — Berry phase (Zak's phase)

@ in case the path in A space takes the crystal from its centrosymmetric
reference state (P(*=%) = 0) to its equilibrium polarized state —
spontaneous polarization

Note: the total electrical polarization of any material has an ionic
contribution as well (but this will not be important in the discussion of
topological properties)



Polarization as Berry phase: gauge dependence

There is a gauge freedom in defining |up «): |dn k) = e"ﬁ(k)|un7k> gives the
same electron density.
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Polarization as Berry phase: gauge dependence

There is a gauge freedom in defining |up «): |dn k) = e"ﬁ(k)|un7k> gives the
same electron density.

B(k) is not arbitrary: Bloch functions obey W, ;i c(x) = W, k(x)
= f(2n/a) — B(0) = 27, j integer

= the polarization is well defined only modulo 27:

/ dk<agfk)|ak\agfk)>:/ dk(u)0k|u$)) + 2imj
BZ BZ

In3D: B, =P, + &—R”, R a lattice vector.
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Polarization and Wannier centers

Remember the relation between the Bloch functions and Wannier functions

M
1 ik
Wn,k(X) = —\/M Z Wn(X — Rm)e’k Rm

m=1

M: number of unit cells

= upk(x ZW x—R ke(Rp=x)

Using the Berry-phase formula, one can express the polarization in terms
of the Wannier functions:

A)—ez X)X Wi (x)

Polarization ~ sum of the Wannier centers of the occupied bands (for one
given Rp)
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Tracking the Wannier centers for cyclic A

Until now, A is not periodic The formalism remains valid for cyclic

changes: HA=! = H*=0
1
dP
APy :qu d)‘ﬁ

The Wannier center must return to their initial location at the end of the
cyclic evolution. But this is possible in two different ways:

@51 ® 771/
)
1)

Figure: Fig.10 of “Theory of Polarization: A Modern Approach”
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Tracking the Wannier centers in the Rice-Mele model

In the case of Rice-Mele model, A = t time, = the adiabatic charge
pumping can be visualized by tracking the Wannier centers:
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Tracking the Wannier centers in the Rice-Mele model

In the case of Rice-Mele model, A = t time, = the adiabatic charge
pumping can be visualized by tracking the Wannier centers:

; 27
N A . / .
WG = 5- /O dlc () () O b (ko)) +J

0

mo |

m il

position (i)

Figure: Figure 4.5(a) of the Lecture Notes. Time evolution of the Wannnier

centers of the bands. Solid line: valence band, dashed line: conduction band. The
Chern number is 1.
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Polarization as Berry phase: calculation in discrete k-space

We only consider the 1D case
P,(,)‘) = %d)g,)‘); L length of sample
A A A
o = —tm | dk(ula )
BZ
Typically, we need to calculate this on a discrete grid of k-points

/dk<unvk|ak“n,k>dk = dk{un, | Osctin i) | k=t;
k.

J
Note the following:

Un k+dk = Up k + Okup i dk
(Un k|Un ktdk) = 1+ (up k|Okun k) dk

In[{un k|tn k+dk)] = In[1 + (up k|Okun k) dk] = (U k| Ok un k) dk
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Polarization as Berry phase: calculation in discrete k-space

/dk(un,k|5’kun,k>dk — Z In[{un k| tn ktdi) ]| k=k;
kj

Take ki = 2%_{ a lattice constant, J, j =0,...J — 1 integer, dk = 27/(J a)

ImZIn[ nk+1 ImInH nkj+1

Note, the product

( nko|un k1>< nkl‘un k2>

does not depend on the phase of \un kj>s — gauge independent
Can be considered a "1D Wilson loop " for a single non-degenerate band
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A subtle issue: position operator and periodic boundary

conditions

In 1D the eigenfunctions of the operator PXP, where P is a projector onto
a set of bands, yields a localized set of Wannier functions.
The eigenvalues of PXP are the Wannier centers.
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A subtle issue: position operator and periodic boundary

conditions

In 1D the eigenfunctions of the operator PXP, where P is a projector onto
a set of bands, yields a localized set of Wannier functions.

The eigenvalues of PXP are the Wannier centers.

The projectors are most easily calculated using Bloch functions:

P = Z ‘Wn,kx><wn,kx| = Z ‘Un,kx><un,kx‘

n,kx n7kX
The projectors |up k. )(Un k.| are periodic in x because |uy, k(X)) is periodic.

However, the operator X is not periodic.
We want to work in the Hilbert space spanned by |up, . (x)).

= We need to find a "periodic” form of PXP

44 / 51
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conditions

Raffaele Resta [3]: if periodic boundary conditions are used, expectation

values that involve the operator X should be calculated using the unitary
operator

L: imposed periodicity in the system

= to obtain well-localized Wannier functions while using periodic
boundary conditions: find the eigenfunction(s) of

Xp = PXP

P: projects onto the occupied bands (see Phys Rev B 84, 075119)

45 / 51



A subtle issue: position operator and periodic boundary

conditions

Raffaele Resta [3]: if periodic boundary conditions are used, expectation

values that involve the operator X should be calculated using the unitary
operator

L: imposed periodicity in the system

= to obtain well-localized Wannier functions while using periodic
boundary conditions: find the eigenfunction(s) of

Xp = PXP
P: projects onto the occupied bands (see Phys Rev B 84, 075119)

Note: in general Xp is not a Hermitian operator, only for L — oo
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PXP operator in 1D lattice system

For a 1D system consisting of M unit cells:

« band index, R, labels the mth unit cell
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PXP operator in 1D lattice system

For a 1D system consisting of M unit cells:

M
ZZ Rm|m, a)(m, a

« band index, R, labels the mth unit cell

M
A . 27
=X = E E e’5kRm|m, a)(m, al O = Va

m=1 «

a: lattice constant
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PXP operator in 1D lattice system

For simplicity, consider a single occupied band and the corresponding
Bloch functions |W)

First, the matrix elements of X:

M _ikR,
A e m ; _ -
(Ve X|We) = > v (m'|@ (u IZe‘SkR “Bm|m) @ |u(k))
m'=1 m=1

_ 1< WY ul k ﬁ/l: i(k+6x—K')R,
= Klu) 3 e

= (KK a5, k0

= Xp =Y W) (Wi XWi) (W] =) (ulk + 6| u(k) | Wirs, ) (Wil
k, k' k



PXP operator in 1D lattice system

For a system consisting of M unit cells, the k values are discrete and there
2

are M, Bloch-wavefunctions |Wy, ) : ky = gom, m=1...M



PXP operator in 1D lattice system

For a system consisting of M unit cells, the k values are discrete and there

are M, Bloch-wavefunctions Wy, ) : k= 2tm, m=1...M

Taking matrix elements of Xp in the basis of Bloch wavefunctions:

0 0 0 . (u(k1)|u(kM)>
(u(k2)|u(ke)) 0 0 0
Xp = 0 (u(ks)|u(kz)) 0 0 0
0 0 (u(ka)u(ks)) 0 0
0 0 0 0

Xpisa M x M matrix



PXP operator in 1D lattice system

For a system consisting of M unit cells, the k values are discrete and there
are M, Bloch-wavefunctions Wy, ) : k= 2tm, m=1...M
Taking matrix elements of Xp in the basis of Bloch wavefunctions:

0 0 0 . (u(k1)|u(kM)>
(u(k2)|u(ke)) 0 0 0
Xp = 0 (u(ks)|u(kz)) 0 0 0
0 0 (u(ka)u(ks)) 0 0
0 0 0 .. 0

Xpisa M x M matrix
One can easily check, that (Xp)™ = w1, where w € C and 1 is the unit
matrix



PXP operator in 1D lattice system

For a system consisting of M unit cells, the k values are discrete and there
are M, Bloch-wavefunctions Wy, ) : k= 2tm, m=1...M
Taking matrix elements of Xp in the basis of Bloch wavefunctions:

0 0 0 . (u(k1)|u(kM)>
(u(k2)|u(ke)) 0 0 0
Xp = 0 (u(ks)|u(kz)) 0 0 0
0 0 (u(ka)u(ks)) 0 0
0 0 0 .. 0

Xpisa M x M matrix
One can easily check, that (Xp)™ = w1, where w € C and 1 is the unit
matrix

Note, we used that (u(kz)|u(k1)), (u(ks)|u(k)) etc are complex numbers
— they commmute



PXP operator in 1D lattice system

(Xp)M = wi where
w = (u(k)|u(km))(u(ke) u(ke))(u(ks) u(k2)) . . . (u(km)u(km—1))

w is a 1D Wilson loop, gauge independent
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PXP operator in 1D lattice system

(Xp)M = wi where
w = (u(k)|u(km))(u(ke) u(ke))(u(ks) u(k2)) . . . (u(km)u(km—1))

w is a 1D Wilson loop, gauge independent
Similar to the discrete Berry-phase

The eigenvalues A\, of Xp are the M roots of w:

w=|wle? 6 =Tmin[w]

=An =X |W\ei(2”m+6)/M, m=1,...M

Note: since Xp is not Hermitian, the eigenvectors are not orthogonal in
general, only in the M — oo limit (we will actually not need the
eigenstates)
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Wannier centers and the eigenvalues of PXP

Remember from earlier:
1) polarization of a single filled band in a 1D lattice ~ X; Wannier centers,
xi = (W) IxIW())), j is unit cell index
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Wannier centers and the eigenvalues of PXP

Remember from earlier:
1) polarization of a single filled band in a 1D lattice ~ X; Wannier centers,
xi = (W) IxIW())), j is unit cell index

2) In discrete k space

XN—ImInH nk\ Un k.

j different discrete value of k in the 1D Brillouin zone

If there are M unit cells, k is discretized as k,,, = ,%/,—Zm
= The Wannier centers X, can be obtained from \,, as
_ M 0 Imln w
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