Wannier functions, Modern theory of polarization

1 / 51

Literature:

- R. D. King-Smith and David Vanderbilt, Phys. Rev. B 47, 12847.
- Icola Marzari and David Vanderbilt, Phys. Rev. B 56, 12847.
- Saffaele Resta, Phys. Rev. Lett. 80, 1800.
- Raffaele Resta and David Vanderbilt, Theory of Polarization: A Modern Approach, in *Physics of Ferroelectrics: a Modern Perspective*, ed. by K.M. Rabe, C.H. Ahn, and J.-M. Triscone (Springer-Verlag, 2007, Berlin), pp. 31-68. (local preprint).
- Jenő Sólyom. Fundamentals of the Physics of Solids: Volume II, Electronic properties (Springer Verlag, Berlin;Heiderberg, 2009).
- Rui Yu, Xiao Liang Qi, Andrei Bernevig, Zhong Fang, and Xi Dai, Phys. Rev. B 84, 075119 (2011).
- J. K. Asbóth, L. Oroszlány, and A. Pályi, arXiv:1509.02295 (A Short Course on Topological Insulators, Lecture Notes in Physics, Vol. 919, 2016, Springer Verlag).

2 / 51

Further reading:

- E. Blount, Formalisms of band theory, Solid State Physics, 13, page 305-73. New York, Academic Press, (1962).
- S. Kivelson, Phys. Rev. B 26, 4269 (1982).
- Raffaele Resta, What makes an insulator different from a metal?, arXiv preprint cond-mat/0003014, 2000.
- J. Zak, Phys. Rev. Lett. 62, 2747 (1989).

- Reminder: Bloch functions, periodic boundary condition
- Wannier functions: introduction
- Maximally localized Wannier functions
- Modern theory of polarization
- Polarization and Wannier centers
- Calculation of Berry phase in discrete k space
- Position operator and periodic boundary conditions
- Calculation of Wannier centers in 1D systems

Bloch functions, periodic boundary condition

We want to describe the "bulk" properties of crystalline materials. In non-interacting approximation:

$$\hat{H} = \sum_{i=1}^{N_e} \left(\frac{\hat{p}_i^2}{2m_e} + U(\mathbf{r}_i) \right)$$

 $U(\mathbf{r}) = U(\mathbf{r} + \mathbf{R}_n)$ is lattice-periodic potential, \mathbf{R}_n lattice vector.

Bloch functions, periodic boundary condition

We want to describe the "bulk" properties of crystalline materials. In non-interacting approximation:

$$\hat{H} = \sum_{i=1}^{N_e} \left(\frac{\hat{p}_i^2}{2m_e} + U(\mathbf{r}_i) \right)$$

 $U(\mathbf{r}) = U(\mathbf{r} + \mathbf{R}_n)$ is lattice-periodic potential, \mathbf{R}_n lattice vector.

 \Rightarrow Hamiltonian is a sum of single-particle Hamiltonians, the solution of this N_e electron problem can be obtained using the solutions of the Schrödinger equation

$$\left[-\frac{\hbar^2}{2m_e}\nabla^2+U(\mathbf{r})\right]\Psi_i(\mathbf{r})=E_i\Psi_i(\mathbf{r})$$

In order to capture the translational invariance of the bulk, we use use periodic boundary condition \Rightarrow the solutions satisfy (Bloch theorem)

$$\Psi_{\mathbf{k}}(\mathbf{r}+\mathbf{R}_m)=e^{i\mathbf{k}\cdot\mathbf{R}_m}\Psi_{\mathbf{k}}(\mathbf{r})$$

wavevector ${f k}$ can take on discrete values in the Brillouin zone

In order to capture the translational invariance of the bulk, we use use periodic boundary condition \Rightarrow the solutions satisfy (Bloch theorem)

$$\Psi_{\mathbf{k}}(\mathbf{r}+\mathbf{R}_m)=e^{i\mathbf{k}\cdot\mathbf{R}_m}\Psi_{\mathbf{k}}(\mathbf{r})$$

wavevector ${f k}$ can take on discrete values in the Brillouin zone

Equivalent formulation:

$$\Psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}(\mathbf{r})$$

where $u_{\mathbf{k}}(\mathbf{r} + \mathbf{R}_m) = u_{\mathbf{k}}(\mathbf{r})$ lattice periodic and

$$\left[\frac{(\hat{\rho}+\hbar\mathbf{k})^2}{2m_e}+U(\mathbf{r})\right]u_{n,\mathbf{k}}(\mathbf{r})=E_{n,\mathbf{k}}u_{n,\mathbf{k}}(\mathbf{r})$$

6 / 51

For equivalent wavenumber vectors ${\bf k}'={\bf k}+{\bf G}$ (G lattice vector of the reciprocal lattice)

$$\Psi_{n,\mathbf{k}} = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r}) = e^{i(\mathbf{k}'-\mathbf{G})\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}'\cdot\mathbf{r}}u_{n\mathbf{k}'}(\mathbf{r})$$
where $u_{n\mathbf{k}'}(\mathbf{r}) = u_{n\mathbf{k}+\mathbf{G}}(\mathbf{r}) = e^{-i\mathbf{G}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$.

One can also show that $E_{n\mathbf{k}+\mathbf{G}} = E_{n\mathbf{k}}$.

۱

- Reminder: Bloch functions, periodic boundary condition
- Wannier functions: introduction
- Maximally localized Wannier functions
- Modern theory of polarization
- Polarization and Wannier centers
- Calculation of Berry phase in discrete k space
- Position operator and periodic boundary conditions
- Calculation of Wannier centers

Since

$$\Psi_{n,\mathbf{k}+\mathbf{G}}(\mathbf{r}) = e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}}u_{n,\mathbf{k}+\mathbf{G}} = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n,\mathbf{k}} = \Psi_{n,\mathbf{k}}(\mathbf{r})$$

for fixed **r** the Bloch function $\Psi_{n,\mathbf{k}}(\mathbf{r})$ is periodic in the reciprocal space.

Since

$$\Psi_{n,\mathbf{k}+\mathbf{G}}(\mathbf{r}) = e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}}u_{n,\mathbf{k}+\mathbf{G}} = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n,\mathbf{k}} = \Psi_{n,\mathbf{k}}(\mathbf{r})$$

for fixed **r** the Bloch function $\Psi_{n,\mathbf{k}}(\mathbf{r})$ is periodic in the reciprocal space.

 \Rightarrow it can be expanded into a Fourier series:

$$\Psi_{n,\mathbf{k}}(\mathbf{r}) = rac{1}{\sqrt{N}}\sum_{\mathbf{R}_j} \Phi_n(\mathbf{r},\mathbf{R}_j) e^{i\mathbf{k}\cdot\mathbf{R}_j}$$

 \mathbf{R}_i : Lattice vectors in real space

Since

$$\Psi_{n,\mathbf{k}+\mathbf{G}}(\mathbf{r}) = e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}}u_{n,\mathbf{k}+\mathbf{G}} = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n,\mathbf{k}} = \Psi_{n,\mathbf{k}}(\mathbf{r})$$

for fixed **r** the Bloch function $\Psi_{n,\mathbf{k}}(\mathbf{r})$ is periodic in the reciprocal space.

 \Rightarrow it can be expanded into a Fourier series:

$$\Psi_{n,\mathbf{k}}(\mathbf{r}) = rac{1}{\sqrt{N}}\sum_{\mathbf{R}_j} \Phi_n(\mathbf{r},\mathbf{R}_j) e^{i\mathbf{k}\cdot\mathbf{R}_j}$$

 \mathbf{R}_i : Lattice vectors in real space

Reverse transformation:

$$\Phi_n(\mathbf{r},\mathbf{R}_j) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}\in BZ} e^{-i\mathbf{k}\cdot\mathbf{R}_j} \Psi_{n,\mathbf{k}}(\mathbf{r})$$

 $\Phi_n(\mathbf{r}, \mathbf{R}_j)$ is a function of $\mathbf{r} - \mathbf{R}_j$:

$$\Phi_{n}(\mathbf{r} + \mathbf{R}_{n}, \mathbf{R}_{j} + \mathbf{R}_{n}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k} \in BZ} e^{-i\mathbf{k} \cdot (\mathbf{R}_{j} + \mathbf{R}_{n})} \Psi_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}_{n})$$
$$= \frac{1}{\sqrt{N}} \sum_{\mathbf{k} \in BZ} e^{-i\mathbf{k} \cdot (\mathbf{R}_{j} + \mathbf{R}_{n})} e^{i\mathbf{k} \cdot \mathbf{R}_{n}} \Psi_{n\mathbf{k}}(\mathbf{r})$$
$$= \frac{1}{\sqrt{N}} \sum_{\mathbf{k} \in BZ} e^{-i\mathbf{k} \cdot \mathbf{R}_{j}} \Psi_{n\mathbf{k}}(\mathbf{r})$$
$$= \Phi_{n}(\mathbf{r}, \mathbf{R}_{j})$$

10 / 51

골에 세종에

 $\Phi_n(\mathbf{r}, \mathbf{R}_j)$ is a function of $\mathbf{r} - \mathbf{R}_j$:

$$\begin{split} \Phi_n(\mathbf{r} + \mathbf{R}_n, \mathbf{R}_j + \mathbf{R}_n) &= \frac{1}{\sqrt{N}} \sum_{\mathbf{k} \in BZ} e^{-i\mathbf{k} \cdot (\mathbf{R}_j + \mathbf{R}_n)} \Psi_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}_n) \\ &= \frac{1}{\sqrt{N}} \sum_{\mathbf{k} \in BZ} e^{-i\mathbf{k} \cdot (\mathbf{R}_j + \mathbf{R}_n)} e^{i\mathbf{k} \cdot \mathbf{R}_n} \Psi_{n\mathbf{k}}(\mathbf{r}) \\ &= \frac{1}{\sqrt{N}} \sum_{\mathbf{k} \in BZ} e^{-i\mathbf{k} \cdot \mathbf{R}_j} \Psi_{n\mathbf{k}}(\mathbf{r}) \\ &= \Phi_n(\mathbf{r}, \mathbf{R}_j) \end{split}$$

For $\mathbf{R}_n = -\mathbf{R}_j$: $\Phi_n(\mathbf{r}, \mathbf{R}_j) = \Phi_n(\mathbf{r} - \mathbf{R}_j, 0)$ it depends only on $\mathbf{r} - \mathbf{R}_j$

イロト イ部ト イヨト イヨト 三日

 $\Phi_n(\mathbf{r}, \mathbf{R}_j)$ is a function of $\mathbf{r} - \mathbf{R}_j$:

$$\begin{split} \Phi_n(\mathbf{r} + \mathbf{R}_n, \mathbf{R}_j + \mathbf{R}_n) &= \frac{1}{\sqrt{N}} \sum_{\mathbf{k} \in BZ} e^{-i\mathbf{k} \cdot (\mathbf{R}_j + \mathbf{R}_n)} \Psi_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}_n) \\ &= \frac{1}{\sqrt{N}} \sum_{\mathbf{k} \in BZ} e^{-i\mathbf{k} \cdot (\mathbf{R}_j + \mathbf{R}_n)} e^{i\mathbf{k} \cdot \mathbf{R}_n} \Psi_{n\mathbf{k}}(\mathbf{r}) \\ &= \frac{1}{\sqrt{N}} \sum_{\mathbf{k} \in BZ} e^{-i\mathbf{k} \cdot \mathbf{R}_j} \Psi_{n\mathbf{k}}(\mathbf{r}) \\ &= \Phi_n(\mathbf{r}, \mathbf{R}_j) \end{split}$$

For $\mathbf{R}_n = -\mathbf{R}_j$: $\Phi_n(\mathbf{r}, \mathbf{R}_j) = \Phi_n(\mathbf{r} - \mathbf{R}_j, 0)$ it depends only on $\mathbf{r} - \mathbf{R}_j$ $\Phi_n(\mathbf{r} - \mathbf{R}_j, 0) = W_n(\mathbf{r} - \mathbf{R}_j)$ are Wannier functions (See, e.g., Ref[5]).

10 / 51

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ─ □

Orthonormality and completeness: Bloch functions:

$$\int \Psi_{n,\mathbf{k}}^{*}(\mathbf{r})\Psi_{n',\mathbf{k}'}(\mathbf{r})d\mathbf{r} = \delta_{n,n'}\delta_{\mathbf{k},\mathbf{k}'}$$
$$\sum_{n,\mathbf{k}}\Psi_{n,\mathbf{k}}^{*}(\mathbf{r})\Psi_{n,\mathbf{k}}(\mathbf{r}') = \delta(\mathbf{r}-\mathbf{r}')$$

Wannnier functions

$$\int W_n^*(\mathbf{r} - \mathbf{R}_j) W_{n'}(\mathbf{r} - \mathbf{R}_{j'}) d\mathbf{r} = \delta_{\mathbf{R}_j, \mathbf{R}_{j'}} \delta_{n, n'}$$
$$\sum_{n, \mathbf{R}_j} W_n^*(\mathbf{r} - \mathbf{R}_j) W_n(\mathbf{r} - \mathbf{R}_{j'}) = \delta(\mathbf{r} - \mathbf{r}')$$

(See, e.g., Ref[5]).

Define the Wannier center of $W_n(\mathbf{r} - \mathbf{R}_j)$ as

$$\overline{\mathbf{r}}_n^{(j)} = \langle W_n(\mathbf{r} - \mathbf{R}_j) | \mathbf{r} | W_n(\mathbf{r} - \mathbf{R}_j) \rangle$$

In general, a non-trivial question if the the above expectation value is finite in extended systems

Define the Wannier center of $W_n(\mathbf{r} - \mathbf{R}_j)$ as

$$\overline{\mathbf{r}}_n^{(j)} = \langle W_n(\mathbf{r} - \mathbf{R}_j) | \mathbf{r} | W_n(\mathbf{r} - \mathbf{R}_j) \rangle$$

In general, a non-trivial question if the the above expectation value is finite in extended systems \Rightarrow localization properties of Wannier functions

Define the Wannier center of $W_n(\mathbf{r} - \mathbf{R}_j)$ as

$$\overline{\mathbf{r}}_n^{(j)} = \langle W_n(\mathbf{r} - \mathbf{R}_j) | \mathbf{r} | W_n(\mathbf{r} - \mathbf{R}_j) \rangle$$

In general, a non-trivial question if the the above expectation value is finite in extended systems \Rightarrow localization properties of Wannier functions

For explicit calculation of the Wannier functions in the SSH model, see Phys. Rev. B **26**, 4269 (2016).

- n = 1, 2 (conduction and valence band),
- $u_n(k)$: eigenstates of the momentum-space Hamiltonian H(k)

n = 1, 2 (conduction and valence band), $u_n(k)$: eigenstates of the momentum-space Hamiltonian H(k)

$$|k\rangle = \frac{1}{\sqrt{N}} \sum_{l=1}^{N} e^{ik_{x}l}, \quad k_{x} \in \{\frac{2\pi}{N}, 2\frac{2\pi}{N}, \dots, N\frac{2\pi}{N}\}$$

n = 1, 2 (conduction and valence band), $u_n(k)$: eigenstates of the momentum-space Hamiltonian H(k)

$$|k\rangle = \frac{1}{\sqrt{N}} \sum_{l=1}^{N} e^{ik_{x}l}, \quad k_{x} \in \{\frac{2\pi}{N}, 2\frac{2\pi}{N}, \dots, N\frac{2\pi}{N}\}$$

Position operator:

$$\hat{x} = \sum_{m=1}^{N} m(|m,A\rangle\langle m,A| + |m,B\rangle\langle m,B|)$$

m: unit cell index; A, B, site index in a unit cell

$$\begin{aligned} \hat{x}W_n(j) &= \hat{x}\frac{1}{\sqrt{N}}\sum_{k_x} e^{-ijk_x} |\Psi_n(k_x)\rangle \\ &= \frac{1}{\sqrt{N}}\sum_{k_x} e^{-ijk_x} \hat{x}\frac{1}{\sqrt{N}}\sum_{l}^{N} e^{ilk_x} |l\rangle \otimes |u_n(k_x)\rangle \\ &= \frac{1}{N}\sum_{k_x} e^{-ijk_x}\sum_{m} m e^{imk_x} |m\rangle \otimes |u_n(k_x)\rangle \end{aligned}$$

14 / 51

For $N \to \infty \ k_x$ continous, use partial integration:

$$\begin{aligned} \hat{x}W_n(j) &= \frac{1}{2\pi} \int_0^{2\pi} dk_x e^{-ijk_x} \sum_m m e^{imk_x} |m\rangle \otimes |u_n(k_x)\rangle \\ &= \frac{1}{2\pi} (-i) \int_0^{2\pi} dk_x \frac{\partial}{\partial k_x} \sum_m e^{i(m-j)k_x} |m\rangle \otimes |u_n(k_x)\rangle \\ &+ \frac{1}{2\pi} \int_0^{2\pi} dk_x j e^{-ijk_x} \sum_m |m\rangle \otimes |u_n(k_x)\rangle \\ &+ \frac{i}{2\pi} \int_0^{2\pi} dk_x \sum_m |m\rangle \otimes \frac{\partial}{\partial k_x} |u_n(k_x)\rangle \end{aligned}$$

This can be simplified:

$$\begin{aligned} \hat{x}W_n(j) &= \left(\frac{-i}{2\pi}\sum_m e^{i(m-j)k_x}|m\rangle \otimes |u_n(k_x)\rangle\right) \bigg|_0^{2\pi} \\ &+ \left.\frac{j}{2\pi}\int_0^{2\pi} dk_x e^{-ijk_x}\sum_m |m\rangle \otimes |u_n(k_x)\rangle \\ &+ \left.\frac{i}{2\pi}\int_0^{2\pi} dk_x\sum_m |m\rangle \otimes \partial_{k_x}|u_n(k_x)\rangle \end{aligned}$$

$$\begin{aligned} \hat{x}W_n(j) &= \left(\frac{-i}{2\pi}\sum_m e^{i(m-j)k_x}|m\rangle \otimes |u_n(k_x)\rangle\right) \bigg|_0^{2\pi} \to 0 \text{ (periodic function)} \\ &+ \left.\frac{j}{2\pi}\int_0^{2\pi} dk_x e^{-ijk_x}\sum_m |m\rangle \otimes |u_n(k_x)\rangle = j \cdot W_n(j) \\ &+ \left.\frac{i}{2\pi}\int_0^{2\pi} dk_x\sum_m |m\rangle \otimes \partial_{k_x}|u_n(k_x)\rangle \right.\end{aligned}$$

$$\hat{x}W_{n}(j) = \left(\frac{-i}{2\pi}\sum_{m}e^{i(m-j)k_{x}}|m\rangle\otimes|u_{n}(k_{x})\rangle\right)\Big|_{0}^{2\pi} \to 0 \text{ (periodic function)}$$

$$+ \frac{j}{2\pi}\int_{0}^{2\pi}dk_{x}e^{-ijk_{x}}\sum_{m}|m\rangle\otimes|u_{n}(k_{x})\rangle = j \cdot W_{n}(j)$$

$$+ \frac{i}{2\pi}\int_{0}^{2\pi}dk_{x}\sum_{m}|m\rangle\otimes\partial_{k_{x}}|u_{n}(k_{x})\rangle$$

One finds:

$$\langle W_n(j)|\hat{x}|W_n(j)\rangle = rac{i}{2\pi}\int_0^{2\pi} dk_x \langle u_n(k_x)|\partial_{k_x}|u_n(k_x)\rangle + j$$

17 / 51

$$\begin{aligned} \hat{x}W_n(j) &= \left(\frac{-i}{2\pi}\sum_m e^{i(m-j)k_x}|m\rangle \otimes |u_n(k_x)\rangle\right) \Big|_0^{2\pi} \to 0 \text{ (periodic function)} \\ &+ \left.\frac{j}{2\pi}\int_0^{2\pi} dk_x e^{-ijk_x}\sum_m |m\rangle \otimes |u_n(k_x)\rangle = j \cdot W_n(j) \\ &+ \left.\frac{i}{2\pi}\int_0^{2\pi} dk_x\sum_m |m\rangle \otimes \partial_{k_x}|u_n(k_x)\rangle \end{aligned}$$

One finds:

$$\langle W_n(j)|\hat{x}|W_n(j)\rangle = rac{i}{2\pi}\int_0^{2\pi} dk_x \langle u_n(k_x)|\partial_{k_x}|u_n(k_x)\rangle + j$$

 \Rightarrow can be expressed in terms of Berry-phase (Zak's phase)

$$\begin{aligned} \hat{x}W_n(j) &= \left(\frac{-i}{2\pi}\sum_m e^{i(m-j)k_x}|m\rangle \otimes |u_n(k_x)\rangle\right) \bigg|_0^{2\pi} \to 0 \text{ (periodic function)} \\ &+ \left.\frac{j}{2\pi}\int_0^{2\pi} dk_x e^{-ijk_x}\sum_m |m\rangle \otimes |u_n(k_x)\rangle = j \cdot W_n(j) \\ &+ \left.\frac{i}{2\pi}\int_0^{2\pi} dk_x\sum_m |m\rangle \otimes \partial_{k_x}|u_n(k_x)\rangle \end{aligned}$$

One finds:

$$\langle W_n(j)|\hat{x}|W_n(j)\rangle = rac{i}{2\pi}\int_0^{2\pi} dk_x \langle u_n(k_x)|\partial_{k_x}|u_n(k_x)\rangle + j$$

⇒ can be expressed in terms of Berry-phase (Zak's phase) ⇒ Wannier centers are equally spaced

- Reminder: Bloch functions, periodic boundary condition
- Wannier functions: introduction
- Maximally localized Wannier functions
- Modern theory of polarization
- Polarization and Wannier centers
- Calculation of Berry phase in discrete k space
- Position operator and periodic boundary conditions
- Calculation of Wannier centers in 1D systems

PHYSICAL REVIEW B

VOLUME 56, NUMBER 20

15 NOVEMBER 1997-II

Maximally localized generalized Wannier functions for composite energy bands

Nicola Marzari and David Vanderbilt

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849 (Received 10 July 1997)

We discuss a method for determining the optimally localized set of generalized Wannier functions associated with a set of Bloch bands in a crystalline solid. By "generalized Wannier functions" we mean a set of localized orthonormal orbitals spanning the same space as the specified set of Bloch bands. Although we minimize a functional that represents the total spread $\Sigma_n \langle \mathbf{r}^2 \rangle_n - \langle \mathbf{r} \rangle_n^2$ of the Wannier functions in real space, our method proceeds directly from the Bloch functions as represented on a mesh of k points, and carries out the minimization in a space of unitary matrice $U_{n,0}^{(4)}$ accriting the contain among the Bloch bands. At each k point. The method is thus suitable for use in connection with conventional electronic-structure codes. The procedure also returns the total electric polarization as well as the location of each Mannier center. Sample results for Si, GaAs, molecular C₁H₄, and LiCl will be presented. [S0163-1829(97)02944-5]

Figure: Phys Rev B 56, 12847 (1997).

Gauge freedom in choosing the Bloch orbitals: $\Psi_{n\mathbf{k}}(\mathbf{r}) \rightarrow e^{i\phi_n(\mathbf{k})}\Psi_{n\mathbf{k}}(\mathbf{r})$ $[u_{n\mathbf{k}}(\mathbf{r}) \rightarrow e^{i\phi_n(\mathbf{k})}u_{n\mathbf{k}}(\mathbf{r})]$ describes the same electron density Gauge freedom in choosing the Bloch orbitals: $\Psi_{n\mathbf{k}}(\mathbf{r}) \rightarrow e^{i\phi_n(\mathbf{k})}\Psi_{n\mathbf{k}}(\mathbf{r})$ $[u_{n\mathbf{k}}(\mathbf{r}) \rightarrow e^{i\phi_n(\mathbf{k})}u_{n\mathbf{k}}(\mathbf{r})]$ describes the same electron density \Rightarrow Wannier functions are not unique! Gauge freedom in choosing the Bloch orbitals: $\Psi_{n\mathbf{k}}(\mathbf{r}) \rightarrow e^{i\phi_n(\mathbf{k})}\Psi_{n\mathbf{k}}(\mathbf{r})$ $[u_{n\mathbf{k}}(\mathbf{r}) \rightarrow e^{i\phi_n(\mathbf{k})}u_{n\mathbf{k}}(\mathbf{r})]$ describes the same electron density \Rightarrow Wannier functions are not unique!

If there are band degeneracies for some **k** (symmetries, e.g., time reversal): \rightarrow not sufficient to consider isolated bands \rightarrow consider a set of J bands (composite bands)

Gauge freedom in choosing the Bloch orbitals: $\Psi_{n\mathbf{k}}(\mathbf{r}) \rightarrow e^{i\phi_n(\mathbf{k})}\Psi_{n\mathbf{k}}(\mathbf{r})$ $[u_{n\mathbf{k}}(\mathbf{r}) \rightarrow e^{i\phi_n(\mathbf{k})}u_{n\mathbf{k}}(\mathbf{r})]$ describes the same electron density \Rightarrow Wannier functions are not unique!

If there are band degeneracies for some **k** (symmetries, e.g., time reversal): \rightarrow not sufficient to consider isolated bands \rightarrow consider a set of J bands (composite bands)

A more general U(J) gauge freedom:

$$u_{n\mathbf{k}}(\mathbf{r}) \rightarrow \sum_{p} U_{pn}^{(\mathbf{k})} u_{p\mathbf{k}}(\mathbf{r})$$

Define for the Wannier functions at the origin $\mathbf{R}_j = 0$ the following:

- **Q** Wannier center $\overline{\mathbf{r}}_n = \langle W_n(\mathbf{r}) | \mathbf{r} | W_n(\mathbf{r}) \rangle$
- **2** second moment $\langle r^2 \rangle_n = \langle W_n(\mathbf{r}) | r^2 | W_n(\mathbf{r}) \rangle$

Define for the Wannier functions at the origin $\mathbf{R}_j = 0$ the following:

1 Wannier center
$$\overline{\mathbf{r}}_n = \langle W_n(\mathbf{r}) | \mathbf{r} | W_n(\mathbf{r}) \rangle$$

2 second moment $\langle r^2 \rangle_n = \langle W_n(\mathbf{r}) | r^2 | W_n(\mathbf{r}) \rangle$

A measure of the spread (delocalization) of the Wannier functions:

$$\Omega = \sum_{n} [\langle r^2 \rangle_n - \overline{\mathbf{r}}_n^2]$$

One can then try to minimize Ω with respect to the unitary transformations $U_{pn}^{(\mathbf{k})} \Rightarrow$ Maximally localized Wannier functions (MLWF)

Define for the Wannier functions at the origin $\mathbf{R}_j = 0$ the following:

• Wannier center
$$\overline{\mathbf{r}}_n = \langle W_n(\mathbf{r}) | \mathbf{r} | W_n(\mathbf{r}) \rangle$$

2 second moment $\langle r^2 \rangle_n = \langle W_n(\mathbf{r}) | r^2 | W_n(\mathbf{r}) \rangle$

A measure of the spread (delocalization) of the Wannier functions:

$$\Omega = \sum_{n} [\langle r^2 \rangle_n - \overline{\mathbf{r}}_n^2]$$

One can then try to minimize Ω with respect to the unitary transformations $U_{pn}^{(\mathbf{k})} \Rightarrow$ Maximally localized Wannier functions (MLWF)

This approach can be used to obtain MLWFs from DFT calculations in plane-wave basis.

One can decompose $\Omega=\Omega_1+\Omega_2,$ where

$$\Omega_{1} = \sum_{n} \left[\langle r^{2} \rangle_{n} - \sum_{\mathbf{R},m} |\langle \mathbf{R}m | \mathbf{r} | \mathbf{0}n \rangle|^{2} \right]$$
$$\Omega_{2} = \sum_{n} \sum_{\mathbf{R}m \neq \mathbf{0}n} |\langle \mathbf{R}m | \mathbf{r} | \mathbf{0}n \rangle|^{2}$$

22 / 51

One can decompose $\Omega=\Omega_1+\Omega_2$, where

$$\Omega_{1} = \sum_{n} \left[\langle r^{2} \rangle_{n} - \sum_{\mathbf{R},m} |\langle \mathbf{R}m | \mathbf{r} | \mathbf{0}n \rangle|^{2} \right]$$
$$\Omega_{2} = \sum_{n} \sum_{\mathbf{R}m \neq \mathbf{0}n} |\langle \mathbf{R}m | \mathbf{r} | \mathbf{0}n \rangle|^{2}$$

One can show that

- Ω_1 is gauge invariant, i.e., does not depend on $U_{pn}^{(\mathbf{k})}$ transformation
- Ω_2 is positive definite

One can decompose $\Omega=\Omega_1+\Omega_2$, where

$$\Omega_{1} = \sum_{n} \left[\langle r^{2} \rangle_{n} - \sum_{\mathbf{R},m} |\langle \mathbf{R}m | \mathbf{r} | \mathbf{0}n \rangle|^{2} \right]$$
$$\Omega_{2} = \sum_{n} \sum_{\mathbf{R}m \neq \mathbf{0}n} |\langle \mathbf{R}m | \mathbf{r} | \mathbf{0}n \rangle|^{2}$$

One can show that

- Ω_1 is gauge invariant, i.e., does not depend on $U_{pn}^{(\mathbf{k})}$ transformation
- Ω_2 is positive definite
- \Rightarrow minimalization of Ω means minimalization of Ω_2

Notation: $W_n(x - R_x) = |R_x, n\rangle$

(日) 《母》 《臣》 《臣》 《日》

Notation: $W_n(x - R_x) = |R_x, n\rangle$ Consider a group of bands, e.g., the valence band(s): Projectors:

 $P = \sum_{R_x,n} |R_x,n\rangle \langle R_x,n| = \sum_{n,k_x} |\Psi_{n,k_x}\rangle \langle \Psi_{n,k_x}|$

Notation: $W_n(x - R_x) = |R_x, n\rangle$ Consider a group of bands, e.g., the valence band(s):

Projectors:

$$P = \sum_{R_x,n} |R_x,n\rangle \langle R_x,n| = \sum_{n,k_x} |\Psi_{n,k_x}\rangle \langle \Psi_{n,k_x}|$$

In 1D the eigenfunctions of the projected position operator $P \hat{x} P$ are MLWF.

Notation: $W_n(x - R_x) = |R_x, n\rangle$ Consider a group of bands, e.g., the valence band(s): Projectors:

 $P = \sum_{R_x,n} |R_x,n\rangle \langle R_x,n| = \sum_{n,k_x} |\Psi_{n,k_x}\rangle \langle \Psi_{n,k_x}|$

In 1D the eigenfunctions of the projected position operator $P \hat{x} P$ are MLWF.

Let $|0 m\rangle$ be an eigenfunction of $P \hat{x} P$ with eigenvalue \overline{x}_{0m} .

$$\langle R n | \hat{x} | 0 m \rangle = \langle R n | P \hat{x} P | 0 m \rangle = \overline{x}_{0m} \delta_{R,0} \delta_{m,n}$$

Notation: $W_n(x - R_x) = |R_x, n\rangle$ Consider a group of bands, e.g., the valence band(s): Projectors:

 $P = \sum_{R_x,n} |R_x,n\rangle \langle R_x,n| = \sum_{n,k_x} |\Psi_{n,k_x}\rangle \langle \Psi_{n,k_x}|$

In 1D the eigenfunctions of the projected position operator $P \hat{x} P$ are MLWF.

Let $|0 m\rangle$ be an eigenfunction of $P \hat{x} P$ with eigenvalue \overline{x}_{0m} .

$$\langle R n | \hat{x} | 0 m \rangle = \langle R n | P \hat{x} P | 0 m \rangle = \overline{x}_{0m} \delta_{R,0} \delta_{m,n}$$

 $\Rightarrow \Omega_2$ vanishes, Ω_1 gauge invariant

(本部) ((日) (日) (日) (日)

Notation: $W_n(x - R_x) = |R_x, n\rangle$ Consider a group of bands, e.g., the valence band(s): Projectors:

 $P = \sum_{R_x,n} |R_x,n\rangle \langle R_x,n| = \sum_{n,k_x} |\Psi_{n,k_x}\rangle \langle \Psi_{n,k_x}|$

In 1D the eigenfunctions of the projected position operator $P \hat{x} P$ are MLWF.

Let $|0 m\rangle$ be an eigenfunction of $P \hat{x} P$ with eigenvalue \overline{x}_{0m} .

$$\langle R n | \hat{x} | 0 m \rangle = \langle R n | P \hat{x} P | 0 m \rangle = \overline{x}_{0m} \delta_{R,0} \delta_{m,n}$$

 $\Rightarrow \Omega_2$ vanishes, Ω_1 gauge invariant $\Rightarrow |0 m\rangle$ is a MLWF

個人 くほん くほん しき

Notation: $W_n(x - R_x) = |R_x, n\rangle$ Consider a group of bands, e.g., the valence band(s): Projectors:

$$P = \sum_{R_x,n} |R_x,n\rangle \langle R_x,n| = \sum_{n,k_x} |\Psi_{n,k_x}\rangle \langle \Psi_{n,k_x}|$$

In 1D the eigenfunctions of the projected position operator $P \hat{x} P$ are MLWF.

Let $|0 m\rangle$ be an eigenfunction of $P \hat{x} P$ with eigenvalue \overline{x}_{0m} .

$$\langle R n | \hat{x} | 0 m \rangle = \langle R n | P \hat{x} P | 0 m \rangle = \overline{x}_{0m} \delta_{R,0} \delta_{m,n}$$

 $\begin{array}{l} \Rightarrow \ \Omega_2 \text{ vanishes, } \Omega_1 \text{ gauge invariant} \\ \Rightarrow \ |0 \ m\rangle \text{ is a MLWF} \\ \text{Argument does not work in 3D, because } P \ \hat{x} P, \ P \ \hat{y} P, \ P \ \hat{z} P \ \text{do not} \\ \text{commute} \\ \end{array}$

- $\bullet\,$ bulk properties of materials $\to\,$ periodic boundary conditions $\to\,$ Bloch functions
- alternative description: Wannier functions
- \bullet Wannier-centers (expectation value of the position operator): in Rice-Mele model \rightarrow Berry-phase
- Maximally localized Wannier functions: in 1D eigenfunctions of the projected position operator $P\hat{x}P$

- Reminder: Bloch functions, periodic boundary condition
- Wannier functions: introduction
- Maximally localized Wannier functions
- Modern theory of polarization
- Polarization and Wannier centers
- Calculation of Berry phase in discrete k space
- Position operator and periodic boundary conditions
- Calculation of Wannier centers in 1D systems

RAPID COMMUNICATIONS

PHYSICAL REVIEW B

VOLUME 47, NUMBER 3

15 JANUARY 1993-I

Theory of polarization of crystalline solids

R. D. King-Smith and David Vanderbilt Department of Physics and Astronomy, Rutgers University, P. O. Box 849, Piscataway, New Jersey 08855-0849 (Received 10 June 1992)

Theory of Polarization: A Modern Approach

Raffaele Resta¹ and David Vanderbilt²

Figure: Theory of Polarization: A Modern Approach," in *Physics of Ferroelectrics: a Modern Perspective*, ed. by K.M. Rabe, C.H. Ahn, and J.-M. Triscone (Springer-Verlag, 2007, Berlin), pp. 31-68. (local preprint)

Macroscopic polarization \mathbf{P} : fundamental concept in the phenomenological description of dielectrics

Macroscopic polarization **P**: fundamental concept in the phenomenological description of dielectrics

Some materials possess polarization without external field (ferroelectricity) or become polarized upon applying strain (pieozoelectricity)

27 / 51

Macroscopic polarization **P**: fundamental concept in the phenomenological description of dielectrics

Some materials possess polarization without external field (ferroelectricity) or become polarized upon applying strain (pieozoelectricity)

How to measure the polarization ?

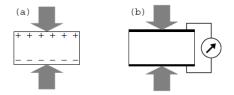


Figure: Pieozoelectricity: surface or bulk effect? (Figure from Ref[4]).

Macroscopic polarization **P**: fundamental concept in the phenomenological description of dielectrics

Some materials possess polarization without external field (ferroelectricity) or become polarized upon applying strain (pieozoelectricity)

How to measure the polarization ?

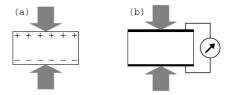


Figure: Pieozoelectricity: surface or bulk effect? (Figure from Ref[4]).

While the crystal is strained, a transient electrical current flows through the sample

Fundamental relation: the change in polarization **P** is accompanied with a transient current $\mathbf{j}(t)$ flowing through the sample:

$$\frac{d\mathbf{P}}{dt} = \mathbf{j}(t)$$

Fundamental relation: the change in polarization **P** is accompanied with a transient current $\mathbf{j}(t)$ flowing through the sample:

$$\frac{d\mathbf{P}}{dt} = \mathbf{j}(t)$$

 \Rightarrow Change in polarization:

$$\Delta \mathbf{P} = \mathbf{P}(\Delta t) - \mathbf{P}(0) = \int_0^{\Delta t} \mathbf{j}(t)$$

If the change is slow enough \rightarrow adiabatic limit

Fundamental relation: the change in polarization **P** is accompanied with a transient current $\mathbf{j}(t)$ flowing through the sample:

$$\frac{d\mathbf{P}}{dt} = \mathbf{j}(t)$$

 \Rightarrow Change in polarization:

$$\Delta \mathbf{P} = \mathbf{P}(\Delta t) - \mathbf{P}(0) = \int_0^{\Delta t} \mathbf{j}(t)$$

If the change is slow enough ightarrow adiabatic limit ightarrow adiabatic perturbation theory to calculate ${f j}(t)$

Introduce the parameter $\lambda \in [0,1]:$ dimensionless adiabatic time

Introduce the parameter $\lambda \in [0,1]$: dimensionless adiabatic time

$$\Delta \mathbf{P} = \int_0^1 d\lambda \frac{d\mathbf{P}}{d\lambda}$$

 $\lambda = 0$:initial state; $\lambda = 1$:final state

Introduce the parameter $\lambda \in [0,1]$: dimensionless adiabatic time

$$\Delta \mathbf{P} = \int_0^1 d\lambda \frac{d\mathbf{P}}{d\lambda}$$

 $\lambda = 0$:initial state; $\lambda = 1$:final state

Assumptions:

- $\bullet\,$ system remains insulating for all values of λ
- $\bullet\,$ system bulk retains crystalline periodicity for all λ

4

Formal description of the theory: current $\mathbf{j}^{(\lambda)}$

(ロ > < 聞 > < 豆 > < 豆 > (豆) のへで

30 / 51

Formal description of the theory: current $\mathbf{j}^{(\lambda)}$

Because of crystalline periodicity the solutions of the Schrödinger equation are Bloch-functions: $\Psi_{\mathbf{k}}^{(\lambda)}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}^{\lambda}(\mathbf{r})$

30 / 51

Because of crystalline periodicity the solutions of the Schrödinger equation are Bloch-functions: $\Psi_{\mathbf{k}}^{(\lambda)}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}^{\lambda}(\mathbf{r})$ Schrödinger equation for the lattice periodic part $u_{\mathbf{k}}^{(\lambda)}(\mathbf{r})$

$$\left[\frac{(\hat{\rho}+\hbar\mathbf{k})^2}{2m_e}+U^{(\lambda)}(\mathbf{r})\right]u^{(\lambda)}_{n,\mathbf{k}}(\mathbf{r})=E^{(\lambda)}_{n,\mathbf{k}}u^{(\lambda)}_{n,\mathbf{k}}(\mathbf{r})$$

Because of crystalline periodicity the solutions of the Schrödinger equation are Bloch-functions: $\Psi_{\mathbf{k}}^{(\lambda)}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}^{\lambda}(\mathbf{r})$ Schrödinger equation for the lattice periodic part $u_{\mathbf{k}}^{(\lambda)}(\mathbf{r})$

$$\left[\frac{(\hat{\rho}+\hbar\mathbf{k})^2}{2m_e}+U^{(\lambda)}(\mathbf{r})\right]u_{n,\mathbf{k}}^{(\lambda)}(\mathbf{r})=E_{n,\mathbf{k}}^{(\lambda)}u_{n,\mathbf{k}}^{(\lambda)}(\mathbf{r})$$

Adiabatic change: the current $\mathbf{j}^{(\lambda)}$ can be calculated using adiabatic perturbation theory

Because of crystalline periodicity the solutions of the Schrödinger equation are Bloch-functions: $\Psi_{\mathbf{k}}^{(\lambda)}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}^{\lambda}(\mathbf{r})$ Schrödinger equation for the lattice periodic part $u_{\mathbf{k}}^{(\lambda)}(\mathbf{r})$

$$\left[\frac{(\hat{\rho}+\hbar\mathbf{k})^2}{2m_e}+U^{(\lambda)}(\mathbf{r})\right]u_{n,\mathbf{k}}^{(\lambda)}(\mathbf{r})=E_{n,\mathbf{k}}^{(\lambda)}u_{n,\mathbf{k}}^{(\lambda)}(\mathbf{r})$$

Adiabatic change: the current $\mathbf{j}^{(\lambda)}$ can be calculated using adiabatic perturbation theory

For a adiabatically changing time periodic 1D lattice

[H(k, t) = H(k, t + T)] this is done in Chapter 5 of the Lecture Notes (Ref[7])

The same steps can be done here: $t \rightarrow \lambda$, λ does not need be periodic

Current from a single filled band *n*:

$$\frac{d\mathbf{P}_{n}^{(\lambda)}}{d\lambda} = \mathbf{j}_{n}^{(\lambda)} = \frac{-ie}{(2\pi)^{3}} \int_{BZ} d\mathbf{k} [\langle \partial_{\mathbf{k}} u_{n,\mathbf{k}}^{(\lambda)} | \partial_{\lambda} u_{n,\mathbf{k}}^{(\lambda)} \rangle - \langle \partial_{\lambda} u_{n,\mathbf{k}}^{(\lambda)} | \partial_{\mathbf{k}} u_{n,\mathbf{k}}^{(\lambda)} \rangle]$$

4 B K 4 B K

Current from a single filled band *n*:

$$\frac{d\mathbf{P}_{n}^{(\lambda)}}{d\lambda} = \mathbf{j}_{n}^{(\lambda)} = \frac{-ie}{(2\pi)^{3}} \int_{BZ} d\mathbf{k} [\langle \partial_{\mathbf{k}} u_{n,\mathbf{k}}^{(\lambda)} | \partial_{\lambda} u_{n,\mathbf{k}}^{(\lambda)} \rangle - \langle \partial_{\lambda} u_{n,\mathbf{k}}^{(\lambda)} | \partial_{\mathbf{k}} u_{n,\mathbf{k}}^{(\lambda)} \rangle]$$

Total change in polarization (\rightarrow number of pumped particles):

$$\Delta \mathbf{P} = \frac{-ie}{(2\pi)^3} \sum_{n=1}^{N} \int_{BZ} d\mathbf{k} \int_{0}^{\lambda} d\lambda [\langle \partial_{\mathbf{k}} u_{n,\mathbf{k}}^{(\lambda)} | \partial_{\lambda} u_{n,\mathbf{k}}^{(\lambda)} \rangle - \langle \partial_{\lambda} u_{n,\mathbf{k}}^{(\lambda)} | \partial_{\mathbf{k}} u_{n,\mathbf{k}}^{(\lambda)} \rangle]$$

N: number of filled bands

For simplicity, consider a 1D system:

$$\Delta P = \frac{-ie}{(2\pi)} \sum_{n=1}^{N} \int_{BZ} dk \int_{0}^{\lambda} d\lambda [\langle \partial_{k} u_{n,k}^{(\lambda)} | \partial_{\lambda} u_{n,k}^{(\lambda)} \rangle - \langle \partial_{\lambda} u_{n,k}^{(\lambda)} | \partial_{k} u_{n,k}^{(\lambda)} \rangle]$$

32 / 51

For simplicity, consider a 1D system:

$$\Delta P = \frac{-ie}{(2\pi)} \sum_{n=1}^{N} \int_{BZ} dk \int_{0}^{\lambda} d\lambda [\langle \partial_{k} u_{n,k}^{(\lambda)} | \partial_{\lambda} u_{n,k}^{(\lambda)} \rangle - \langle \partial_{\lambda} u_{n,k}^{(\lambda)} | \partial_{k} u_{n,k}^{(\lambda)} \rangle]$$

Make use of the following to re-write the integral for ΔP

• partial integration with respect to λ

•
$$\partial_k \langle u_{n,k}^{(\lambda)} | \partial_\lambda u_{n,k}^{(\lambda)} \rangle = \langle \partial_k u_{n,k}^{(\lambda)} | \partial_\lambda u_{n,k}^{(\lambda)} \rangle + \langle u_{n,k}^{(\lambda)} | \partial_k \partial_\lambda u_{n,k}^{(\lambda)} \rangle$$

For simplicity, consider a 1D system:

$$\Delta P = \frac{-ie}{(2\pi)} \sum_{n=1}^{N} \int_{BZ} dk \int_{0}^{\lambda} d\lambda [\langle \partial_{k} u_{n,k}^{(\lambda)} | \partial_{\lambda} u_{n,k}^{(\lambda)} \rangle - \langle \partial_{\lambda} u_{n,k}^{(\lambda)} | \partial_{k} u_{n,k}^{(\lambda)} \rangle]$$

Make use of the following to re-write the integral for ΔP

• partial integration with respect to λ

• $\partial_k \langle u_{n,k}^{(\lambda)} | \partial_\lambda u_{n,k}^{(\lambda)} \rangle = \langle \partial_k u_{n,k}^{(\lambda)} | \partial_\lambda u_{n,k}^{(\lambda)} \rangle + \langle u_{n,k}^{(\lambda)} | \partial_k \partial_\lambda u_{n,k}^{(\lambda)} \rangle$

$$\Rightarrow \Delta P = \frac{ie}{(2\pi)} \sum_{n=1}^{N} \int_{BZ} dk \left[\left\langle u_{n,k}^{(\lambda)} | \partial_k u_{n,k}^{(\lambda)} \right\rangle \Big|_0^1 - \int_0^1 d\lambda \frac{\partial}{\partial k} \left\langle u_{n,k}^{(\lambda)} | \partial_\lambda u_{n,k}^{(\lambda)} \right\rangle \right]$$

Note, that

$$\int_0^1 d\lambda \int_{BZ} dk \frac{\partial}{\partial k} \langle u_{n,k}^{(\lambda)} | \partial_\lambda u_{n,k}^{(\lambda)} \rangle = 0$$

Note, that

$$\int_{0}^{1} d\lambda \int_{BZ} dk \frac{\partial}{\partial k} \langle u_{n,k}^{(\lambda)} | \partial_{\lambda} u_{n,k}^{(\lambda)} \rangle = 0$$

because the Bloch functions are periodic in reciprocal space: $\Psi_{k,n}^{(\lambda)}(x)=\Psi_{k+G,n}^{(\lambda)}(x)$

Note, that

$$\int_{0}^{1} d\lambda \int_{BZ} dk \frac{\partial}{\partial k} \langle u_{n,k}^{(\lambda)} | \partial_{\lambda} u_{n,k}^{(\lambda)} \rangle = 0$$

because the Bloch functions are periodic in reciprocal space: $\Psi_{k,n}^{(\lambda)}(x) = \Psi_{k+G,n}^{(\lambda)}(x) \Rightarrow u_{n,k}^{(\lambda)}(x) = e^{iGx}u_{n,k+G}^{(\lambda)}(x)$

Note, that

$$\int_0^1 d\lambda \int_{BZ} dk \frac{\partial}{\partial k} \langle u_{n,k}^{(\lambda)} | \partial_\lambda u_{n,k}^{(\lambda)} \rangle = 0$$

because the Bloch functions are periodic in reciprocal space: $\Psi_{k,n}^{(\lambda)}(x) = \Psi_{k+G,n}^{(\lambda)}(x) \Rightarrow u_{n,k}^{(\lambda)}(x) = e^{iGx}u_{n,k+G}^{(\lambda)}(x)$ $\Rightarrow \langle u_{n,k}^{(\lambda)} | \partial_{\lambda} u_{n,k}^{(\lambda)} \rangle \text{ is periodic in } k \Rightarrow \text{ its integral over the BZ is zero.}$

Note, that

$$\int_0^1 d\lambda \int_{BZ} dk \frac{\partial}{\partial k} \langle u_{n,k}^{(\lambda)} | \partial_\lambda u_{n,k}^{(\lambda)} \rangle = 0$$

because the Bloch functions are periodic in reciprocal space:
$$\begin{split} \Psi_{k,n}^{(\lambda)}(x) &= \Psi_{k+G,n}^{(\lambda)}(x) \Rightarrow u_{n,k}^{(\lambda)}(x) = e^{iGx} u_{n,k+G}^{(\lambda)}(x) \\ \Rightarrow \langle u_{n,k}^{(\lambda)} | \partial_{\lambda} u_{n,k}^{(\lambda)} \rangle \text{ is periodic in } k \Rightarrow \text{ its integral over the BZ is zero.} \end{split}$$

One finds:

$$\Delta P = P^{(\lambda=1)} - P^{(\lambda=0)}$$

where

$$P^{(\lambda)} = \frac{ie}{(2\pi)} \sum_{n=1}^{N} \int_{BZ} dk \langle u_{n,k}^{(\lambda)} | \partial_k u_{n,k}^{(\lambda)} \rangle$$

$$P^{(\lambda)} = \frac{ie}{(2\pi)} \sum_{n=1}^{N} \int_{BZ} dk \langle u_{n,k}^{(\lambda)} | \partial_k | u_{n,k}^{(\lambda)} \rangle$$

• the right hand side is the integral of the Berry-connection over the BZ \rightarrow Berry phase (Zak's phase)

$$P^{(\lambda)} = \frac{ie}{(2\pi)} \sum_{n=1}^{N} \int_{BZ} dk \langle u_{n,k}^{(\lambda)} | \partial_k | u_{n,k}^{(\lambda)} \rangle$$

- the right hand side is the integral of the Berry-connection over the BZ \rightarrow Berry phase (Zak's phase)
- in case the path in λ space takes the crystal from its centrosymmetric reference state ($P^{(\lambda=0)} = 0$) to its equilibrium polarized state \rightarrow spontaneous polarization

$$P^{(\lambda)} = \frac{ie}{(2\pi)} \sum_{n=1}^{N} \int_{BZ} dk \langle u_{n,k}^{(\lambda)} | \partial_k | u_{n,k}^{(\lambda)} \rangle$$

- the right hand side is the integral of the Berry-connection over the BZ \rightarrow Berry phase (Zak's phase)
- in case the path in λ space takes the crystal from its centrosymmetric reference state ($P^{(\lambda=0)} = 0$) to its equilibrium polarized state \rightarrow spontaneous polarization

Note: the total electrical polarization of any material has an ionic contribution as well (but this will not be important in the discussion of topological properties)

 $\beta(k)$ is not arbitrary: Bloch functions obey $\Psi_{n,k+G}(x) = \Psi_{n,k}(x)$ $\Rightarrow \beta(2\pi/a) - \beta(0) = 2\pi j, j$ integer

 $\beta(k)$ is not arbitrary: Bloch functions obey $\Psi_{n,k+G}(x) = \Psi_{n,k}(x)$ $\Rightarrow \beta(2\pi/a) - \beta(0) = 2\pi j, j$ integer

 \Rightarrow the polarization is well defined only modulo 2π :

$$\int_{BZ} dk \langle \tilde{u}_{n,k}^{(\lambda)} | \partial_k | \tilde{u}_{n,k}^{(\lambda)} \rangle = \int_{BZ} dk \langle u_{n,k}^{(\lambda)} | \partial_k | u_{n,k}^{(\lambda)} \rangle + 2i\pi j$$

 $\beta(k)$ is not arbitrary: Bloch functions obey $\Psi_{n,k+G}(x) = \Psi_{n,k}(x)$ $\Rightarrow \beta(2\pi/a) - \beta(0) = 2\pi j, j$ integer

 \Rightarrow the polarization is well defined only modulo 2π :

$$\int_{BZ} dk \langle \tilde{u}_{n,k}^{(\lambda)} | \partial_k | \tilde{u}_{n,k}^{(\lambda)} \rangle = \int_{BZ} dk \langle u_{n,k}^{(\lambda)} | \partial_k | u_{n,k}^{(\lambda)} \rangle + 2i\pi j$$

In 3D: $\tilde{\mathbf{P}}_n = \mathbf{P}_n + \frac{e\mathbf{R}}{V_{cell}}$, **R** a lattice vector.

- Reminder: Bloch functions, periodic boundary condition
- Wannier functions: introduction
- Maximally localized Wannier functions
- Modern theory of polarization
- Polarization and Wannier centers
- Calculation of Berry phase in discrete k space
- Position operator and periodic boundary conditions
- Calculation of Wannier centers in 1D systems

Remember the relation between the Bloch functions and Wannier functions

$$\Psi_{n,k}(x) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} W_n(x - R_m) e^{ik \cdot R_m}$$

M: number of unit cells

37 / 51

Remember the relation between the Bloch functions and Wannier functions

$$\Psi_{n,k}(x) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} W_n(x-R_m) e^{ik \cdot R_m}$$

M: number of unit cells

$$\Rightarrow u_{n,k}(x) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} W_n(x - R_m) e^{ik \cdot (R_m - x)}$$

37 / 51

Remember the relation between the Bloch functions and Wannier functions

$$\Psi_{n,k}(x) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} W_n(x-R_m) e^{ik \cdot R_m}$$

M: number of unit cells

$$\Rightarrow u_{n,k}(x) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} W_n(x - R_m) e^{ik \cdot (R_m - x)}$$

Using the Berry-phase formula, one can express the polarization in terms of the Wannier functions:

$$P^{(\lambda)} = e \sum_{n=1}^{N} \langle W_n^{(\lambda)}(x) | x | W_n^{(\lambda)}(x) \rangle$$

Remember the relation between the Bloch functions and Wannier functions

$$\Psi_{n,k}(x) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} W_n(x - R_m) e^{ik \cdot R_m}$$

M: number of unit cells

$$\Rightarrow u_{n,k}(x) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} W_n(x - R_m) e^{ik \cdot (R_m - x)}$$

Using the Berry-phase formula, one can express the polarization in terms of the Wannier functions:

$$P^{(\lambda)} = e \sum_{n=1}^{N} \langle W_n^{(\lambda)}(x) | x | W_n^{(\lambda)}(x) \rangle$$

Polarization \sim sum of the Wannier centers of the occupied bands (for one given R_m)

Tracking the Wannier centers for cyclic λ

Until now, λ is not periodic

Tracking the Wannier centers for cyclic λ

Until now, λ is not periodic The formalism remains valid for cyclic

changes: $H^{\lambda=1} = H^{\lambda=0}$

$$\Delta \mathbf{P}_{cyc} = \oint_0^1 d\lambda \frac{d\mathbf{P}}{d\lambda}$$

38 / 51

Tracking the Wannier centers for cyclic λ

Until now, λ is not periodic The formalism remains valid for cyclic

changes: $H^{\lambda=1} = H^{\lambda=0}$

$$\Delta \mathbf{P}_{cyc} = \oint_0^1 d\lambda \frac{d\mathbf{P}}{d\lambda}$$

The Wannier center must return to their initial location at the end of the cyclic evolution. But this is possible in two different ways:

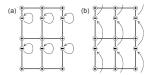


Figure: Fig.10 of "Theory of Polarization: A Modern Approach"

Tracking the Wannier centers in the Rice-Mele model

In the case of Rice-Mele model, $\lambda = t$ time, \Rightarrow the adiabatic charge pumping can be visualized by tracking the Wannier centers:

Tracking the Wannier centers in the Rice-Mele model

In the case of Rice-Mele model, $\lambda = t$ time, \Rightarrow the adiabatic charge pumping can be visualized by tracking the Wannier centers:

$$\langle W_n^{(t)}(j)|\hat{x}|W_n^{(t)}(j)
angle = rac{i}{2\pi}\int_0^{2\pi} dk_x \langle u_n^{(t)}(k_x)|\partial_{k_x}|u_n^{(t)}(k_x)
angle + j$$

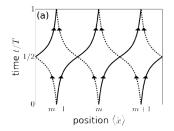


Figure: Figure 4.5(a) of the Lecture Notes. Time evolution of the Wannnier centers of the bands. Solid line: valence band, dashed line: conduction band. The Chern number is 1.

- Reminder: Bloch functions, periodic boundary condition
- Wannier functions: introduction
- Maximally localized Wannier functions
- Modern theory of polarization
- Polarization and Wannier centers
- Calculation of Berry phase in discrete k space
- Position operator and periodic boundary conditions
- Calculation of Wannier centers in 1D systems

We only consider the 1D case $P_n^{(\lambda)} = \frac{e}{2\pi} \Phi_n^{(\lambda)}$; L length of sample

$$\Phi_n^{(\lambda)} = -\mathrm{Im} \int_{\mathrm{BZ}} \mathrm{d} \mathrm{k} \langle \mathrm{u}_{\mathrm{n},\mathrm{k}}^{(\lambda)} | \partial_{\mathrm{k}} | \mathrm{u}_{\mathrm{n},\mathrm{k}}^{(\lambda)} \rangle$$

41 / 51

We only consider the 1D case $P_n^{(\lambda)} = \frac{e}{2\pi} \Phi_n^{(\lambda)}$; L length of sample

$$\Phi_n^{(\lambda)} = -\mathrm{Im} \int_{\mathrm{BZ}} \mathrm{dk} \langle \mathrm{u}_{n,k}^{(\lambda)} | \partial_k | \mathrm{u}_{n,k}^{(\lambda)} \rangle$$

Typically, we need to calculate this on a discrete grid of k-points

$$\int dk \langle u_{n,k} | \partial_k u_{n,k} \rangle dk \to \sum_{k_j} dk \langle u_{n,k} | \partial_k u_{n,k} \rangle |_{k=k_j}$$

We only consider the 1D case $P_n^{(\lambda)} = \frac{e}{2\pi} \Phi_n^{(\lambda)}$; L length of sample

$$\Phi_n^{(\lambda)} = -\mathrm{Im} \int_{\mathrm{BZ}} \mathrm{dk} \langle \mathrm{u}_{\mathrm{n},k}^{(\lambda)} | \partial_k | \mathrm{u}_{\mathrm{n},k}^{(\lambda)} \rangle$$

Typically, we need to calculate this on a discrete grid of k-points

$$\int dk \langle u_{n,k} | \partial_k u_{n,k} \rangle dk \to \sum_{k_j} dk \langle u_{n,k} | \partial_k u_{n,k} \rangle |_{k=k_j}$$

Note the following:

$$u_{n,k+dk} \approx u_{n,k} + \partial_k u_{n,k} dk$$

We only consider the 1D case $P_n^{(\lambda)} = \frac{e}{2\pi} \Phi_n^{(\lambda)}$; L length of sample

$$\Phi_n^{(\lambda)} = -\mathrm{Im} \int_{\mathrm{BZ}} \mathrm{dk} \langle \mathrm{u}_{\mathrm{n},k}^{(\lambda)} | \partial_k | \mathrm{u}_{\mathrm{n},k}^{(\lambda)} \rangle$$

Typically, we need to calculate this on a discrete grid of k-points

$$\int dk \langle u_{n,k} | \partial_k u_{n,k} \rangle dk \to \sum_{k_j} dk \langle u_{n,k} | \partial_k u_{n,k} \rangle |_{k=k_j}$$

Note the following:

$$u_{n,k+dk} \approx u_{n,k} + \partial_k u_{n,k} dk$$

$$\langle u_{n,k}|u_{n,k+dk}\rangle \approx 1 + \langle u_{n,k}|\partial_k u_{n,k}\rangle dk$$

41 / 51

We only consider the 1D case $P_n^{(\lambda)} = \frac{e}{2\pi} \Phi_n^{(\lambda)}$; L length of sample

$$\Phi_n^{(\lambda)} = -\mathrm{Im} \int_{\mathrm{BZ}} \mathrm{dk} \langle \mathrm{u}_{n,k}^{(\lambda)} | \partial_k | \mathrm{u}_{n,k}^{(\lambda)} \rangle$$

Typically, we need to calculate this on a discrete grid of k-points

$$\int dk \langle u_{n,k} | \partial_k u_{n,k} \rangle dk \to \sum_{k_j} dk \langle u_{n,k} | \partial_k u_{n,k} \rangle |_{k=k_j}$$

Note the following:

$$u_{n,k+dk} \approx u_{n,k} + \partial_k u_{n,k} dk$$

$$\langle u_{n,k}|u_{n,k+dk}\rangle \approx 1 + \langle u_{n,k}|\partial_k u_{n,k}\rangle dk$$

 $\ln[\langle u_{n,k}|u_{n,k+dk}\rangle] = \ln[1 + \langle u_{n,k}|\partial_k u_{n,k}\rangle dk] \approx \langle u_{n,k}|\partial_k u_{n,k}\rangle dk$

$$\int dk \langle u_{n,k} | \partial_k u_{n,k} \rangle dk \to \sum_{k_j} \ln[\langle u_{n,k} | u_{n,k+dk} \rangle]|_{k=k_j}$$

▲□▶▲鄙▶▲콜▶▲콜▶ 콜 ∽��(

$$\int dk \langle u_{n,k} | \partial_k u_{n,k} \rangle dk \to \sum_{k_j} \ln[\langle u_{n,k} | u_{n,k+dk} \rangle]|_{k=k_j}$$

Take $k_j = \frac{2\pi j}{Ja}$, a lattice constant, $J, j = 0, \dots J - 1$ integer, $dk = 2\pi/(Ja)$

42 / 51

$$\int dk \langle u_{n,k} | \partial_k u_{n,k} \rangle dk \to \sum_{k_j} \ln[\langle u_{n,k} | u_{n,k+dk} \rangle]|_{k=k_j}$$

r

Take $k_j = \frac{2\pi j}{Ja}$, a lattice constant, $J, j = 0, \dots J - 1$ integer, $dk = 2\pi/(Ja)$

$$\Phi_n^{(\lambda)} = -Im \sum_j \ln[\langle u_{n,k_j}^{(\lambda)} | u_{n,k_{j+1}}^{(\lambda)} \rangle] = -Im \ln \prod_{j=0}^{J-1} \langle u_{n,k_j}^{(\lambda)} | u_{n,k_{j+1}}^{(\lambda)} \rangle$$

$$\int dk \langle u_{n,k} | \partial_k u_{n,k} \rangle dk \to \sum_{k_j} \ln[\langle u_{n,k} | u_{n,k+dk} \rangle]|_{k=k_j}$$

Take $k_j = \frac{2\pi j}{Ja}$, a lattice constant, $J, j = 0, \dots J - 1$ integer, $dk = 2\pi/(Ja)$

$$\Phi_n^{(\lambda)} = -Im \sum_j \ln[\langle u_{n,k_j}^{(\lambda)} | u_{n,k_{j+1}}^{(\lambda)} \rangle] = -Im \ln \prod_{j=0}^{J-1} \langle u_{n,k_j}^{(\lambda)} | u_{n,k_{j+1}}^{(\lambda)} \rangle$$

Note, the product

$$\langle u_{n,k_0}^{(\lambda)}|u_{n,k_1}^{(\lambda)}\rangle\langle u_{n,k_1}^{(\lambda)}|u_{n,k_2}^{(\lambda)}\rangle\ldots$$

does not depend on the phase of $|u_{n,k_{i}}^{(\lambda)}\rangle {\rm s} \rightarrow {\rm gauge\ independent}$

$$\int dk \langle u_{n,k} | \partial_k u_{n,k} \rangle dk \to \sum_{k_j} \ln[\langle u_{n,k} | u_{n,k+dk} \rangle]|_{k=k_j}$$

Take $k_j = \frac{2\pi j}{Ja}$, a lattice constant, $J, j = 0, \dots J - 1$ integer, $dk = 2\pi/(Ja)$

$$\Phi_n^{(\lambda)} = -Im \sum_j \ln[\langle u_{n,k_j}^{(\lambda)} | u_{n,k_{j+1}}^{(\lambda)} \rangle] = -Im \ln \prod_{j=0}^{J-1} \langle u_{n,k_j}^{(\lambda)} | u_{n,k_{j+1}}^{(\lambda)} \rangle$$

Note, the product

$$\langle u_{n,k_0}^{(\lambda)}|u_{n,k_1}^{(\lambda)}\rangle\langle u_{n,k_1}^{(\lambda)}|u_{n,k_2}^{(\lambda)}\rangle\ldots$$

does not depend on the phase of $|u_{n,k_j}^{(\lambda)}\rangle s \rightarrow \text{gauge independent}$ Can be considered a "1D Wilson loop" for a single non-degenerate band

- Reminder: Bloch functions, periodic boundary condition
- Wannier functions: introduction
- Maximally localized Wannier functions
- Modern theory of polarization
- Polarization and Wannier centers
- Calculation of Berry phase in discrete k space
- Position operator and periodic boundary conditions
- Calculation of Wannier centers in 1D systems

A subtle issue: position operator and periodic boundary conditions

In 1D the eigenfunctions of the operator $P\hat{x}P$, where P is a projector onto a set of bands, yields a localized set of Wannier functions. The eigenvalues of $P\hat{x}P$ are the Wannier centers.

In 1D the eigenfunctions of the operator $P\hat{x}P$, where P is a projector onto a set of bands, yields a localized set of Wannier functions. The eigenvalues of $P\hat{x}P$ are the Wannier centers. The projectors are most easily calculated using Bloch functions:

$$P = \sum_{n,k_{x}} |\Psi_{n,k_{x}}\rangle \langle \Psi_{n,k_{x}}| = \sum_{n,k_{x}} |u_{n,k_{x}}\rangle \langle u_{n,k_{x}}|$$

In 1D the eigenfunctions of the operator $P\hat{x}P$, where P is a projector onto a set of bands, yields a localized set of Wannier functions. The eigenvalues of $P\hat{x}P$ are the Wannier centers. The projectors are most easily calculated using Bloch functions:

$$P = \sum_{n,k_{x}} |\Psi_{n,k_{x}}\rangle \langle \Psi_{n,k_{x}}| = \sum_{n,k_{x}} |u_{n,k_{x}}\rangle \langle u_{n,k_{x}}|$$

The projectors $|u_{n,k_x}\rangle\langle u_{n,k_x}|$ are periodic in x because $|u_{n,k_x}(x)\rangle$ is periodic. However, the operator \hat{x} is not periodic.

In 1D the eigenfunctions of the operator $P\hat{x}P$, where P is a projector onto a set of bands, yields a localized set of Wannier functions. The eigenvalues of $P\hat{x}P$ are the Wannier centers. The projectors are most easily calculated using Bloch functions:

$$P = \sum_{n,k_{x}} |\Psi_{n,k_{x}}\rangle \langle \Psi_{n,k_{x}}| = \sum_{n,k_{x}} |u_{n,k_{x}}\rangle \langle u_{n,k_{x}}|$$

The projectors $|u_{n,k_x}\rangle\langle u_{n,k_x}|$ are periodic in x because $|u_{n,k_x}(x)\rangle$ is periodic. However, the operator \hat{x} is not periodic.

We want to work in the Hilbert space spanned by $|u_{n,k_x}(x)\rangle$.

In 1D the eigenfunctions of the operator $P\hat{x}P$, where P is a projector onto a set of bands, yields a localized set of Wannier functions. The eigenvalues of $P\hat{x}P$ are the Wannier centers. The projectors are most easily calculated using Bloch functions:

$$P = \sum_{n,k_{x}} |\Psi_{n,k_{x}}\rangle \langle \Psi_{n,k_{x}}| = \sum_{n,k_{x}} |u_{n,k_{x}}\rangle \langle u_{n,k_{x}}|$$

The projectors $|u_{n,k_x}\rangle\langle u_{n,k_x}|$ are periodic in x because $|u_{n,k_x}(x)\rangle$ is periodic. However, the operator \hat{x} is not periodic.

We want to work in the Hilbert space spanned by $|u_{n,k_x}(x)\rangle$.

 \Rightarrow We need to find a "periodic" form of $P\hat{x}P$

Raffaele Resta [3]: if periodic boundary conditions are used, expectation values that involve the operator \hat{x} should be calculated using the unitary operator

$$\hat{X} = e^{i\frac{2\pi}{L}\hat{X}}$$

L: imposed periodicity in the system

Raffaele Resta [3]: if periodic boundary conditions are used, expectation values that involve the operator \hat{x} should be calculated using the unitary operator

$$\hat{X} = e^{i\frac{2\pi}{L}\hat{X}}$$

L: imposed periodicity in the system

 \Rightarrow to obtain well-localized Wannier functions while using periodic boundary conditions: find the eigenfunction(s) of

$$\hat{X}_P = P\hat{X}P$$

P: projects onto the occupied bands (see Phys Rev B 84, 075119)

Raffaele Resta [3]: if periodic boundary conditions are used, expectation values that involve the operator \hat{x} should be calculated using the unitary operator

$$\hat{X} = e^{i\frac{2\pi}{L}\hat{X}}$$

L: imposed periodicity in the system

 \Rightarrow to obtain well-localized Wannier functions while using periodic boundary conditions: find the eigenfunction(s) of

$$\hat{X}_P = P\hat{X}P$$

P: projects onto the occupied bands (see Phys Rev B 84, 075119)

Note: in general \hat{X}_P is not a Hermitian operator, only for $L \to \infty$

(1日) (1日) (日) (日)

- Reminder: Bloch functions, periodic boundary condition
- Wannier functions: introduction
- Maximally localized Wannier functions
- Modern theory of polarization
- Polarization and Wannier centers
- Calculation of Berry phase in discrete k space
- Position operator and periodic boundary conditions
- Calculation of Wannier centers in 1D systems

For a 1D system consisting of M unit cells:

$$\hat{x} = \sum_{m=1}^{M} \sum_{\alpha} R_m |m, \alpha\rangle \langle m, \alpha|$$

 α band index, R_m labels the *m*th unit cell

For a 1D system consisting of M unit cells:

$$\hat{x} = \sum_{m=1}^{M} \sum_{\alpha} R_m |m, \alpha\rangle \langle m, \alpha|$$

 α band index, R_m labels the *m*th unit cell

$$\Rightarrow \hat{X} = \sum_{m=1}^{M} \sum_{\alpha} e^{i\delta_k R_m} |m, \alpha\rangle \langle m, \alpha| \qquad \delta_k = \frac{2\pi}{Ma}$$

a: lattice constant

For simplicity, consider a single occupied band and the corresponding Bloch functions $|\Psi_k\rangle$

For simplicity, consider a single occupied band and the corresponding Bloch functions $|\Psi_k\rangle$ First, the matrix elements of \hat{X} :

$$\begin{split} \langle \Psi_{k'} | \hat{X} | \Psi_k \rangle &= \sum_{m'=1}^M \frac{e^{-i \, k' \, R_{m'}}}{M} \langle m' | \otimes \langle u(k') | \sum_{m=1}^M e^{i \delta_k R_m} e^{i \, k \, R_m} | m \rangle \otimes | u(k) \rangle \\ &= \frac{1}{M} \langle u(k') | u(k) \rangle \sum_{m=1}^M e^{i(k+\delta_k-k')R_m} \\ &= \langle u(k') | u(k) \rangle \delta_{k+\delta_k-k',0} \end{split}$$

For simplicity, consider a single occupied band and the corresponding Bloch functions $|\Psi_k\rangle$ First, the matrix elements of \hat{X} :

$$\begin{split} \langle \Psi_{k'} | \hat{X} | \Psi_k \rangle &= \sum_{m'=1}^M \frac{e^{-i \, k' \, R_{m'}}}{M} \langle m' | \otimes \langle u(k') | \sum_{m=1}^M e^{i \delta_k R_m} e^{i \, k \, R_m} | m \rangle \otimes | u(k) \rangle \\ &= \frac{1}{M} \langle u(k') | u(k) \rangle \sum_{m=1}^M e^{i(k+\delta_k-k')R_m} \\ &= \langle u(k') | u(k) \rangle \delta_{k+\delta_k-k',0} \end{split}$$

$$\Rightarrow \hat{X}_{P} = \sum_{k,k'} |\Psi_{k'}\rangle \langle \Psi_{k'} | \hat{X} | \Psi_{k} \rangle \langle \Psi_{k} | = \sum_{k} \langle u(k+\delta_{k}) | u(k) \rangle |\Psi_{k+\delta_{k}}\rangle \langle \Psi_{k} |$$

For a system consisting of M unit cells, the k values are discrete and there are M_x Bloch-wavefunctions $|\Psi_{k_m}\rangle$: $k_m = \frac{2\pi}{Ma}m$, m = 1...M

For a system consisting of M unit cells, the k values are discrete and there are M_x Bloch-wavefunctions $|\Psi_{k_m}\rangle$: $k_m = \frac{2\pi}{Ma}m$, m = 1...MTaking matrix elements of \hat{X}_P in the basis of Bloch wavefunctions:

$$X_P = \begin{bmatrix} 0 & 0 & 0 & \dots & \langle u(k_1) | u(k_M) \rangle \\ \langle u(k_2) | u(k_1) \rangle & 0 & 0 & 0 \\ 0 & \langle u(k_3) | u(k_2) \rangle & 0 & 0 & 0 \\ 0 & 0 & \langle u(k_4) | u(k_3) \rangle & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

 X_P is a M imes M matrix

For a system consisting of M unit cells, the k values are discrete and there are M_x Bloch-wavefunctions $|\Psi_{k_m}\rangle$: $k_m = \frac{2\pi}{Ma}m$, m = 1...MTaking matrix elements of \hat{X}_P in the basis of Bloch wavefunctions:

$$X_P = \begin{bmatrix} 0 & 0 & 0 & \dots & \langle u(k_1) | u(k_M) \rangle \\ \langle u(k_2) | u(k_1) \rangle & 0 & 0 & 0 \\ 0 & \langle u(k_3) | u(k_2) \rangle & 0 & 0 & 0 \\ 0 & 0 & \langle u(k_4) | u(k_3) \rangle & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

 X_P is a M imes M matrix One can easily check, that $(X_P)^M = w\mathbb{1}$, where $w \in \mathbb{C}$ and $\mathbb{1}$ is the unit matrix

For a system consisting of M unit cells, the k values are discrete and there are M_x Bloch-wavefunctions $|\Psi_{k_m}\rangle$: $k_m = \frac{2\pi}{Ma}m$, m = 1...MTaking matrix elements of \hat{X}_P in the basis of Bloch wavefunctions:

$$X_{P} = \begin{bmatrix} 0 & 0 & 0 & \dots & \langle u(k_{1})|u(k_{M})\rangle \\ \langle u(k_{2})|u(k_{1})\rangle & 0 & 0 & 0 \\ 0 & \langle u(k_{3})|u(k_{2})\rangle & 0 & 0 & 0 \\ 0 & 0 & \langle u(k_{4})|u(k_{3})\rangle & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

 X_P is a M imes M matrix One can easily check, that $(X_P)^M = w\mathbb{1}$, where $w \in \mathbb{C}$ and $\mathbb{1}$ is the unit matrix

Note, we used that $\langle u(k_2)|u(k_1)\rangle$, $\langle u(k_3)|u(k_2)\rangle$ etc are complex numbers \rightarrow they commute

 $(X_P)^M = w\mathbb{1}$ where $w = \langle u(k_1) | u(k_M) \rangle \langle u(k_2) | u(k_1) \rangle \langle u(k_3) | u(k_2) \rangle \dots \langle u(k_M) | u(k_{M-1}) \rangle$

w is a 1D Wilson loop, gauge independent

50 / 51

 $(X_P)^M = w\mathbb{1}$ where $w = \langle u(k_1) | u(k_M) \rangle \langle u(k_2) | u(k_1) \rangle \langle u(k_3) | u(k_2) \rangle \dots \langle u(k_M) | u(k_{M-1}) \rangle$

w is a 1D Wilson loop, gauge independent Similar to the discrete Berry-phase

 $(X_P)^M = w\mathbb{1}$ where $w = \langle u(k_1) | u(k_M) \rangle \langle u(k_2) | u(k_1) \rangle \langle u(k_3) | u(k_2) \rangle \dots \langle u(k_M) | u(k_{M-1}) \rangle$

w is a 1D Wilson loop, gauge independent Similar to the discrete Berry-phase

The eigenvalues λ_m of X_P are the *M* roots of *w*:

$$w = |w|e^{i heta}$$
 $heta = \operatorname{Im} \ln[w]$

 $(X_P)^M = w\mathbb{1}$ where $w = \langle u(k_1) | u(k_M) \rangle \langle u(k_2) | u(k_1) \rangle \langle u(k_3) | u(k_2) \rangle \dots \langle u(k_M) | u(k_{M-1}) \rangle$

w is a 1D Wilson loop, gauge independent Similar to the discrete Berry-phase

The eigenvalues λ_m of X_P are the *M* roots of *w*:

$$w = |w|e^{i heta}$$
 $heta = \operatorname{Im} \ln[w]$

$$\Rightarrow \lambda_m = \sqrt[M]{|w|} e^{i(2\pi m + \theta)/M}, \qquad m = 1, \dots M$$

 $(X_P)^M = w\mathbb{1}$ where $w = \langle u(k_1) | u(k_M) \rangle \langle u(k_2) | u(k_1) \rangle \langle u(k_3) | u(k_2) \rangle \dots \langle u(k_M) | u(k_{M-1}) \rangle$

w is a 1D Wilson loop, gauge independent Similar to the discrete Berry-phase

The eigenvalues λ_m of X_P are the *M* roots of *w*:

$$w = |w|e^{i heta}$$
 $heta = \operatorname{Im} \ln[w]$

$$\Rightarrow \lambda_m = \sqrt[M]{|w|} e^{i(2\pi m + \theta)/M}, \qquad m = 1, \dots M$$

Note: since \hat{X}_P is not Hermitian, the eigenvectors are not orthogonal in general, only in the $M \to \infty$ limit (we will actually not need the eigenstates)

Wannier centers and the eigenvalues of $P\hat{X}P$

Remember from earlier:

1) polarization of a single filled band in a 1D lattice $\sim \bar{x}_j$ Wannier centers, $\bar{x}_j = \langle W(j) | x | W(j) \rangle$, j is unit cell index

51 / 51

Wannier centers and the eigenvalues of $P\hat{X}P$

Remember from earlier:

1) polarization of a single filled band in a 1D lattice $\sim \bar{x}_j$ Wannier centers, $\bar{x}_j = \langle W(j) | x | W(j) \rangle$, j is unit cell index

2) In discrete k space

$$ar{\mathbf{x}} \sim -Im \ln \prod_{j=0}^{J-1} \langle u_{n,k_j} | u_{n,k_{j+1}} \rangle$$

j different discrete value of k in the 1D Brillouin zone

Wannier centers and the eigenvalues of $P\hat{X}P$

Remember from earlier:

1) polarization of a single filled band in a 1D lattice $\sim \bar{x}_j$ Wannier centers, $\bar{x}_j = \langle W(j) | x | W(j) \rangle$, j is unit cell index

2) In discrete k space

$$ar{x} \sim -Im \ln \prod_{j=0}^{J-1} \langle u_{n,k_j} | u_{n,k_{j+1}} \rangle$$

j different discrete value of k in the 1D Brillouin zone

If there are M unit cells, k is discretized as $k_m = \frac{2\pi}{Ma}m$

 \Rightarrow The Wannier centers \bar{x}_m can be obtained from λ_m as

$$\bar{x}_m = \frac{M}{2\pi} \operatorname{Im} \ln[\lambda_m] = \frac{\theta}{2\pi} + m = \frac{\operatorname{Im} \ln[w]}{2\pi} + m$$