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Bloch functions, periodic boundary condition

We want to describe the “bulk” properties of crystalline materials.
In non-interacting approximation:

Ĥ =

Ne
∑

i=1

(

p̂2i
2me

+ U(ri )

)

U(r) = U(r + Rn) is lattice-periodic potential, Rn lattice vector.
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In non-interacting approximation:

Ĥ =

Ne
∑

i=1

(

p̂2i
2me

+ U(ri )

)

U(r) = U(r + Rn) is lattice-periodic potential, Rn lattice vector.

⇒ Hamiltonian is a sum of single-particle Hamiltonians, the solution of
this Ne electron problem can be obtained using the solutions of the
Schrödinger equation

[

− ~
2

2me

∇2 + U(r)

]

Ψi(r) = EiΨi(r)
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Bloch functions, periodic boundary condition

In order to capture the translational invariance of the bulk, we use use
periodic boundary condition ⇒ the solutions satisfy (Bloch theorem)

Ψk(r+ Rm) = e ik·RmΨk(r)

wavevector k can take on discrete values in the Brillouin zone
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In order to capture the translational invariance of the bulk, we use use
periodic boundary condition ⇒ the solutions satisfy (Bloch theorem)

Ψk(r+ Rm) = e ik·RmΨk(r)

wavevector k can take on discrete values in the Brillouin zone

Equivalent formulation:
Ψk(r) = e ik·ruk(r)

where uk(r+ Rm) = uk(r) lattice periodic and

[

(p̂ + ~k)2

2me

+ U(r)

]

un,k(r) = En,kun,k(r)
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Bloch functions, periodic boundary condition

For equivalent wavenumber vectors k′ = k+ G (G lattice vector of the
reciprocal lattice)

Ψn,k = e ik·runk(r) = e i(k
′−G)·runk(r) = e ik

′·runk′(r)

where unk′(r) = unk+G(r) = e−iG·runk(r).

One can also show that Enk+G = Enk.
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Wannier functions

Since

Ψn,k+G(r) = e i(k+G)·run,k+G = e ik·run,k = Ψn,k(r)

for fixed r the Bloch function Ψn,k(r) is periodic in the reciprocal space.
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Ψn,k+G(r) = e i(k+G)·run,k+G = e ik·run,k = Ψn,k(r)

for fixed r the Bloch function Ψn,k(r) is periodic in the reciprocal space.

⇒ it can be expanded into a Fourier series:

Ψn,k(r) =
1√
N

∑

Rj

Φn(r,Rj )e
ik·Rj

Rj : Lattice vectors in real space

Reverse transformation:

Φn(r,Rj ) =
1√
N

∑

k∈BZ

e−ik·RjΨn,k(r)
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Wannier functions

Φn(r,Rj ) is a function of r− Rj :

Φn(r + Rn,Rj + Rn) =
1√
N

∑

k∈Bz

e−ik·(Rj+Rn)Ψnk(r+ Rn)

=
1√
N

∑

k∈BZ

e−ik·(Rj+Rn)e ik·RnΨnk(r)

=
1√
N

∑

k∈BZ

e−ik·RjΨnk(r)

= Φn(r,Rj )
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Wannier functions

Φn(r,Rj ) is a function of r− Rj :

Φn(r + Rn,Rj + Rn) =
1√
N

∑

k∈Bz

e−ik·(Rj+Rn)Ψnk(r+ Rn)

=
1√
N

∑

k∈BZ

e−ik·(Rj+Rn)e ik·RnΨnk(r)

=
1√
N

∑

k∈BZ

e−ik·RjΨnk(r)

= Φn(r,Rj )

For Rn = −Rj : Φn(r,Rj ) = Φn(r − Rj , 0) it depends only on r − Rj

Φn(r − Rj , 0) = Wn(r − Rj) are Wannier functions

(See, e.g., Ref[5]).
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Wannier functions

Orthonormality and completeness:
Bloch functions:

∫

Ψ∗
n,k(r)Ψn′,k′(r)dr = δn,n′δk,k′

∑

n,k

Ψ∗
n,k(r)Ψn,k(r

′) = δ(r − r′)

Wannnier functions
∫

W ∗
n (r − Rj)Wn′(r − Rj ′)dr = δRj ,Rj′

δn,n′

∑

n,Rj

W ∗
n (r − Rj)Wn(r − Rj ′) = δ(r − r′)

(See, e.g., Ref[5]).

11 / 51



Wannier centers

Define the Wannier center of Wn(r − Rj) as

r
(j)
n = 〈Wn(r − Rj)|r|Wn(r − Rj)〉

In general, a non-trivial question if the the above expectation value is
finite in extended systems
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Wannier centers

Define the Wannier center of Wn(r − Rj) as

r
(j)
n = 〈Wn(r − Rj)|r|Wn(r − Rj)〉

In general, a non-trivial question if the the above expectation value is
finite in extended systems ⇒ localization properties of Wannier functions

For explicit calculation of the Wannier functions in the SSH model, see
Phys. Rev. B 26, 4269 (2016).
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Wannier centers in the Rice-Mele model

Consider the Rice-Mele model (N site long, periodic boundary condition)
Bloch functions: |Ψn(k)〉 = |k〉 ⊗ |un(k)〉
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Consider the Rice-Mele model (N site long, periodic boundary condition)
Bloch functions: |Ψn(k)〉 = |k〉 ⊗ |un(k)〉
n = 1, 2 (conduction and valence band),
un(k): eigenstates of the momentum-space Hamiltonian H(k)

|k〉 = 1√
N

N
∑

l=1

e ikx l , kx ∈ {2π
N

, 2
2π

N
, . . . ,N

2π

N
}

Position operator:

x̂ =
N
∑

m=1

m (|m,A〉〈m,A|+ |m,B〉〈m,B |)

m: unit cell index; A, B , site index in a unit cell
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Wannier centers in the Rice-Mele model

x̂Wn(j) = x̂
1√
N

∑

kx

e−ijkx |Ψn(kx )〉

=
1√
N

∑

kx

e−ijkx x̂
1√
N

N
∑

l

e ilkx |l〉 ⊗ |un(kx)〉

=
1

N

∑

kx

e−ijkx
∑

m

me imkx |m〉 ⊗ |un(kx )〉
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Wannier centers in the Rice-Mele model

For N → ∞ kx continous, use partial integration:

x̂Wn(j) =
1

2π

∫ 2π

0
dkxe

−ijkx
∑

m

me imkx |m〉 ⊗ |un(kx )〉

=
1

2π
(−i)

∫ 2π

0
dkx

∂

∂kx

∑

m

e i(m−j)kx |m〉 ⊗ |un(kx)〉

+
1

2π

∫ 2π

0
dkx j e

−ijkx
∑

m

|m〉 ⊗ |un(kx )〉

+
i

2π

∫ 2π

0
dkx

∑

m

|m〉 ⊗ ∂

∂kx
|un(kx )〉
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Wannier centers in the Rice-Mele model

This can be simplified:

x̂Wn(j) =

(

−i

2π

∑

m

e i(m−j)kx |m〉 ⊗ |un(kx )〉
)∣

∣

∣

∣

∣

2π

0

+
j

2π

∫ 2π

0
dkxe

−ijkx
∑

m

|m〉 ⊗ |un(kx )〉

+
i

2π

∫ 2π

0
dkx

∑

m

|m〉 ⊗ ∂kx |un(kx)〉
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x̂Wn(j) =

(

−i

2π

∑

m

e i(m−j)kx |m〉 ⊗ |un(kx )〉
)
∣

∣

∣

∣

∣

2π

0

→ 0 (periodic function)

+
j

2π

∫ 2π

0
dkxe

−ijkx
∑

m

|m〉 ⊗ |un(kx)〉 = j ·Wn(j)

+
i

2π

∫ 2π

0
dkx

∑

m

|m〉 ⊗ ∂kx |un(kx )〉
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i
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0
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0
dkx

∑

m

|m〉 ⊗ ∂kx |un(kx )〉

One finds:

〈Wn(j)|x̂ |Wn(j)〉 =
i

2π

∫ 2π

0
dkx〈un(kx )|∂kx |un(kx )〉+ j

⇒ can be expressed in terms of Berry-phase (Zak’s phase)
⇒ Wannier centers are equally spaced
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Maximally localized Warnier functions

Figure: Phys Rev B 56, 12847 (1997).
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Maximally localized Warnier functions

Gauge freedom in choosing the Bloch orbitals: Ψnk(r) → e iφn(k)Ψnk(r)
[unk(r) → e iφn(k)unk(r)] describes the same electron density
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Maximally localized Warnier functions

Gauge freedom in choosing the Bloch orbitals: Ψnk(r) → e iφn(k)Ψnk(r)
[unk(r) → e iφn(k)unk(r)] describes the same electron density
⇒ Wannier functions are not unique!

If there are band degeneracies for some k (symmetries, e.g., time reversal):
→ not sufficient to consider isolated bands → consider a set of J bands
(composite bands)
A more general U(J) gauge freedom:

unk(r) →
∑

p

U
(k)
pn upk(r)
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Maximally localized Warnier functions (MLWF)

Define for the Wannier functions at the origin Rj = 0 the following:

1 Wannier center rn = 〈Wn(r)|r|Wn(r)〉
2 second moment 〈r2〉n = 〈Wn(r)|r2|Wn(r)〉
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A measure of the spread (delocalization) of the Wannier functions:

Ω =
∑

n

[〈r2〉n − r2n]

One can then try to minimize Ω with respect to the unitary

transformations U
(k)
pn ⇒ Maximally localized Wannier functions (MLWF)

This approach can be used to obtain MLWFs from DFT calculations in
plane-wave basis.
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Maximally localized Warnier functions (MLWF)

One can decompose Ω = Ω1 +Ω2, where

Ω1 =
∑

n



〈r2〉n −
∑

R,m

|〈Rm|r|0n〉|2




Ω2 =
∑

n

∑

Rm 6=0n

|〈Rm|r|0n〉|2
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Ω1 =
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∑

R,m

|〈Rm|r|0n〉|2




Ω2 =
∑

n

∑

Rm 6=0n

|〈Rm|r|0n〉|2

One can show that

Ω1 is gauge invariant, i.e., does not depend on U
(k)
pn transformation

Ω2 is positive definite

⇒ minimalization of Ω means minimalization of Ω2
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Special case: MLWF in 1D

Notation: Wn(x − Rx) = |Rx , n〉
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valence band(s):
Projectors:

P =
∑

Rx ,n

|Rx , n〉〈Rx , n| =
∑

n,kx

|Ψn,kx 〉〈Ψn,kx |

In 1D the eigenfunctions of the projected position operator P x̂ P are
MLWF.

Let |0m〉 be an eigenfunction of P x̂ P with eigenvalue x0m.

〈R n|x̂ |0m〉 = 〈R n|P x̂ P |0m〉 = x0mδR,0δm,n

⇒ Ω2 vanishes, Ω1 gauge invariant
⇒ |0m〉 is a MLWF
Argument does not work in 3D, because P x̂ P , P ŷ P , P ẑ P do not
commmute
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Summary I

bulk properties of materials → periodic boundary conditions → Bloch
functions

alternative description: Wannier functions

Wannier-centers (expectation value of the position operator): in
Rice-Mele model → Berry-phase

Maximally localized Wannier functions: in 1D eigenfunctions of the
projected position operator Px̂P
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Modern theory of polarization

Figure: Theory of Polarization: A Modern Approach,” in Physics of Ferroelectrics:

a Modern Perspective, ed. by K.M. Rabe, C.H. Ahn, and J.-M. Triscone
(Springer-Verlag, 2007, Berlin), pp. 31-68. (local preprint)
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Modern theory of polarization

Macroscopic polarization P: fundamental concept in the phenomenological
description of dielectrics
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Macroscopic polarization P: fundamental concept in the phenomenological
description of dielectrics
Some materials possess polarization without external field (ferroelectricity)
or become polarized upon applying strain (pieozoelectricity)
How to measure the polarization ?

Figure: Pieozoelectricity: surface or bulk effect? (Figure from Ref[4]).

While the crystal is strained, a transient electrical current flows through
the sample
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Modern theory of polarization

Fundamental relation: the change in polarization P is accompanied with a
transient current j(t) flowing through the sample:

dP

dt
= j(t)
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Fundamental relation: the change in polarization P is accompanied with a
transient current j(t) flowing through the sample:

dP

dt
= j(t)

⇒ Change in polarization:

∆P = P(∆t)− P(0) =

∫ ∆t

0
j(t)

If the change is slow enough → adiabatic limit → adiabatic perturbation
theory to calculate j(t)
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Formal description of the theory: polarization P

Introduce the parameter λ ∈ [0, 1]: dimensionless adiabatic time
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0
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Formal description of the theory: polarization P

Introduce the parameter λ ∈ [0, 1]: dimensionless adiabatic time

∆P =

∫ 1

0
dλ

dP

dλ

λ = 0:initial state; λ = 1:final state

Assumptions:

system remains insulating for all values of λ

system bulk retains crystalline periodicity for all λ
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Formal description of the theory: current j(λ)
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Formal description of the theory: current j(λ)

Because of crystalline periodicity the solutions of the Schrödinger equation

are Bloch-functions: Ψ
(λ)
k (r) = e ik·ruλk (r)

Schrödinger equation for the lattice periodic part u
(λ)
k (r)

[

(p̂ + ~k)2

2me

+ U(λ)(r)

]

u
(λ)
n,k (r) = E

(λ)
n,k u

(λ)
n,k (r)

Adiabatic change: the current j(λ) can be calculated using adiabatic
perturbation theory
For a adiabatically changing time periodic 1D lattice
[H(k , t) = H(k , t + T )] this is done in Chapter 5 of the Lecture Notes
(Ref[7])
The same steps can be done here: t → λ, λ does not need be periodic
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Formal description of the theory: current j(λ)

Current from a single filled band n:

dP
(λ)
n

dλ
= j

(λ)
n =

−ie

(2π)3

∫

BZ

dk[〈∂ku(λ)n,k |∂λu
(λ)
n,k 〉 − 〈∂λu(λ)n,k |∂ku

(λ)
n,k 〉]
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Formal description of the theory: current j(λ)

Current from a single filled band n:

dP
(λ)
n

dλ
= j

(λ)
n =

−ie

(2π)3

∫

BZ

dk[〈∂ku(λ)n,k |∂λu
(λ)
n,k 〉 − 〈∂λu(λ)n,k |∂ku

(λ)
n,k 〉]

Total change in polarization (→ number of pumped particles):

∆P =
−ie

(2π)3

N
∑

n=1

∫

BZ

dk

∫ λ

0
dλ[〈∂ku(λ)n,k |∂λu

(λ)
n,k 〉 − 〈∂λu(λ)n,k |∂ku

(λ)
n,k 〉]

N: number of filled bands
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Polarization as Berry phase

For simplicity, consider a 1D system:

∆P =
−ie

(2π)

N
∑

n=1

∫

BZ

dk

∫ λ

0
dλ[〈∂ku(λ)n,k |∂λu

(λ)
n,k 〉 − 〈∂λu(λ)n,k |∂ku

(λ)
n,k 〉]
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(λ)
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Make use of the following to re-write the integral for ∆P

partial integration with respect to λ

∂k〈u(λ)n,k |∂λu
(λ)
n,k 〉 = 〈∂ku(λ)n,k |∂λu
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(λ)
n,k 〉+ 〈u(λ)n,k |∂k∂λu

(λ)
n,k 〉

⇒ ∆P =
ie

(2π)

N
∑

n=1

∫

BZ

dk

[

〈u(λ)n,k |∂ku
(λ)
n,k 〉
∣

∣

∣

1

0
−
∫ 1

0
dλ

∂

∂k
〈u(λ)n,k |∂λu

(λ)
n,k 〉
]
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Polarization as Berry phase

Note, that
∫ 1

0
dλ

∫

BZ

dk
∂

∂k
〈u(λ)n,k |∂λu

(λ)
n,k 〉 = 0

33 / 51



Polarization as Berry phase

Note, that
∫ 1

0
dλ

∫

BZ

dk
∂

∂k
〈u(λ)n,k |∂λu

(λ)
n,k 〉 = 0

because the Bloch functions are periodic in reciprocal space:

Ψ
(λ)
k,n(x) = Ψ

(λ)
k+G ,n(x)

33 / 51



Polarization as Berry phase

Note, that
∫ 1

0
dλ

∫

BZ

dk
∂

∂k
〈u(λ)n,k |∂λu

(λ)
n,k 〉 = 0

because the Bloch functions are periodic in reciprocal space:

Ψ
(λ)
k,n(x) = Ψ

(λ)
k+G ,n(x) ⇒ u

(λ)
n,k (x) = e iGxu

(λ)
n,k+G (x)

33 / 51



Polarization as Berry phase

Note, that
∫ 1

0
dλ

∫

BZ

dk
∂

∂k
〈u(λ)n,k |∂λu

(λ)
n,k 〉 = 0

because the Bloch functions are periodic in reciprocal space:

Ψ
(λ)
k,n(x) = Ψ

(λ)
k+G ,n(x) ⇒ u

(λ)
n,k (x) = e iGxu

(λ)
n,k+G (x)

⇒ 〈u(λ)n,k |∂λu
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∫ 1

0
dλ

∫

BZ

dk
∂

∂k
〈u(λ)n,k |∂λu

(λ)
n,k 〉 = 0

because the Bloch functions are periodic in reciprocal space:

Ψ
(λ)
k,n(x) = Ψ

(λ)
k+G ,n(x) ⇒ u

(λ)
n,k (x) = e iGxu

(λ)
n,k+G (x)

⇒ 〈u(λ)n,k |∂λu
(λ)
n,k 〉 is periodic in k ⇒ its integral over the BZ is zero.

One finds:
∆P = P(λ=1) − P(λ=0)

where

P(λ) =
ie

(2π)

N
∑

n=1

∫

BZ

dk〈u(λ)n,k |∂ku
(λ)
n,k 〉
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Polarization as Berry phase

P(λ) =
ie

(2π)

N
∑

n=1

∫

BZ

dk〈u(λ)n,k |∂k |u
(λ)
n,k 〉

the right hand side is the integral of the Berry-connection over the
BZ → Berry phase (Zak’s phase)
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in case the path in λ space takes the crystal from its centrosymmetric
reference state (P(λ=0) = 0) to its equilibrium polarized state →
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Polarization as Berry phase

P(λ) =
ie

(2π)

N
∑

n=1

∫

BZ

dk〈u(λ)n,k |∂k |u
(λ)
n,k 〉

the right hand side is the integral of the Berry-connection over the
BZ → Berry phase (Zak’s phase)

in case the path in λ space takes the crystal from its centrosymmetric
reference state (P(λ=0) = 0) to its equilibrium polarized state →
spontaneous polarization

Note: the total electrical polarization of any material has an ionic
contribution as well (but this will not be important in the discussion of
topological properties)
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Polarization as Berry phase: gauge dependence

There is a gauge freedom in defining |un,k〉: |ũn,k〉 = e iβ(k)|un,k〉 gives the
same electron density.
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β(k) is not arbitrary: Bloch functions obey Ψn,k+G (x) = Ψn,k(x)
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Polarization as Berry phase: gauge dependence

There is a gauge freedom in defining |un,k〉: |ũn,k〉 = e iβ(k)|un,k〉 gives the
same electron density.

β(k) is not arbitrary: Bloch functions obey Ψn,k+G (x) = Ψn,k(x)
⇒ β(2π/a) − β(0) = 2πj , j integer

⇒ the polarization is well defined only modulo 2π:

∫

BZ

dk〈ũ(λ)n,k |∂k |ũ
(λ)
n,k 〉 =

∫

BZ

dk〈u(λ)n,k |∂k |u
(λ)
n,k 〉+ 2iπj

In 3D: P̃n = Pn +
eR
Vcell

, R a lattice vector.
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Polarization and Wannier centers

Remember the relation between the Bloch functions and Wannier functions

Ψn,k(x) =
1√
M

M
∑

m=1

Wn(x − Rm)e
ik·Rm

M: number of unit cells
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M: number of unit cells

⇒ un,k(x) =
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∑
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Using the Berry-phase formula, one can express the polarization in terms
of the Wannier functions:
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N
∑
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n (x)〉

37 / 51



Polarization and Wannier centers

Remember the relation between the Bloch functions and Wannier functions

Ψn,k(x) =
1√
M

M
∑

m=1

Wn(x − Rm)e
ik·Rm

M: number of unit cells

⇒ un,k(x) =
1√
M

M
∑

m=1

Wn(x − Rm)e
ik·(Rm−x)

Using the Berry-phase formula, one can express the polarization in terms
of the Wannier functions:

P(λ) = e

N
∑

n=1

〈W (λ)
n (x)|x |W (λ)

n (x)〉

Polarization ∼ sum of the Wannier centers of the occupied bands (for one
given Rm)

37 / 51



Tracking the Wannier centers for cyclic λ

Until now, λ is not periodic
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Until now, λ is not periodic The formalism remains valid for cyclic

changes: Hλ=1 = Hλ=0

∆Pcyc =

∮ 1

0
dλ
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Tracking the Wannier centers for cyclic λ

Until now, λ is not periodic The formalism remains valid for cyclic

changes: Hλ=1 = Hλ=0

∆Pcyc =

∮ 1

0
dλ

dP

dλ

The Wannier center must return to their initial location at the end of the
cyclic evolution. But this is possible in two different ways:

Figure: Fig.10 of “Theory of Polarization: A Modern Approach”
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Tracking the Wannier centers in the Rice-Mele model

In the case of Rice-Mele model, λ = t time, ⇒ the adiabatic charge
pumping can be visualized by tracking the Wannier centers:
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Tracking the Wannier centers in the Rice-Mele model

In the case of Rice-Mele model, λ = t time, ⇒ the adiabatic charge
pumping can be visualized by tracking the Wannier centers:

〈W (t)
n (j)|x̂ |W (t)

n (j)〉 = i

2π

∫ 2π

0
dkx〈u(t)n (kx )|∂kx |u

(t)
n (kx)〉+ j

Figure: Figure 4.5(a) of the Lecture Notes. Time evolution of the Wannnier
centers of the bands. Solid line: valence band, dashed line: conduction band. The
Chern number is 1.
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Polarization as Berry phase: calculation in discrete k-space

We only consider the 1D case

P
(λ)
n = e

2πΦ
(λ)
n ; L length of sample

Φ
(λ)
n = −Im

∫

BZ

dk〈u(λ)
n,k|∂k|u

(λ)
n,k〉
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Typically, we need to calculate this on a discrete grid of k-points

∫

dk〈un,k |∂kun,k〉dk →
∑

kj

dk〈un,k |∂kun,k〉|k=kj

Note the following:
un,k+dk ≈ un,k + ∂kun,k dk

〈un,k |un,k+dk 〉 ≈ 1 + 〈un,k |∂kun,k〉dk
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Polarization as Berry phase: calculation in discrete k-space

We only consider the 1D case

P
(λ)
n = e

2πΦ
(λ)
n ; L length of sample

Φ
(λ)
n = −Im

∫

BZ

dk〈u(λ)
n,k|∂k|u

(λ)
n,k〉

Typically, we need to calculate this on a discrete grid of k-points

∫

dk〈un,k |∂kun,k〉dk →
∑

kj

dk〈un,k |∂kun,k〉|k=kj

Note the following:
un,k+dk ≈ un,k + ∂kun,k dk

〈un,k |un,k+dk 〉 ≈ 1 + 〈un,k |∂kun,k〉dk

ln[〈un,k |un,k+dk 〉] = ln[1 + 〈un,k |∂kun,k〉dk] ≈ 〈un,k |∂kun,k〉dk
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Polarization as Berry phase: calculation in discrete k-space
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Polarization as Berry phase: calculation in discrete k-space

∫

dk〈un,k |∂kun,k〉dk →
∑

kj

ln[〈un,k |un,k+dk 〉]|k=kj

Take kj =
2πj
J a

, a lattice constant, J, j = 0, . . . J − 1 integer, dk = 2π/(J a)
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∑

kj

ln[〈un,k |un,k+dk 〉]|k=kj

Take kj =
2πj
J a

, a lattice constant, J, j = 0, . . . J − 1 integer, dk = 2π/(J a)

Φ
(λ)
n = −Im

∑
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〉] = −Im ln
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〈u(λ)n,kj
|u(λ)n,kj+1

〉
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∫

dk〈un,k |∂kun,k〉dk →
∑
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Take kj =
2πj
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, a lattice constant, J, j = 0, . . . J − 1 integer, dk = 2π/(J a)

Φ
(λ)
n = −Im

∑

j

ln[〈u(λ)n,kj
|u(λ)n,kj+1

〉] = −Im ln
J−1
∏

j=0

〈u(λ)n,kj
|u(λ)n,kj+1

〉

Note, the product

〈u(λ)n,k0
|u(λ)n,k1

〉〈u(λ)n,k1
|u(λ)n,k2

〉 . . .

does not depend on the phase of |u(λ)n,kj
〉s → gauge independent
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∫

dk〈un,k |∂kun,k〉dk →
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kj
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Take kj =
2πj
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, a lattice constant, J, j = 0, . . . J − 1 integer, dk = 2π/(J a)

Φ
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n = −Im

∑

j
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|u(λ)n,kj+1

〉] = −Im ln
J−1
∏

j=0

〈u(λ)n,kj
|u(λ)n,kj+1

〉

Note, the product

〈u(λ)n,k0
|u(λ)n,k1

〉〈u(λ)n,k1
|u(λ)n,k2

〉 . . .

does not depend on the phase of |u(λ)n,kj
〉s → gauge independent

Can be considered a ”1D Wilson loop“ for a single non-degenerate band
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The projectors |un,kx 〉〈un,kx | are periodic in x because |un,kx (x)〉 is periodic.
However, the operator x̂ is not periodic.
We want to work in the Hilbert space spanned by |un,kx (x)〉.

⇒ We need to find a ”periodic“ form of Px̂P
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A subtle issue: position operator and periodic boundary

conditions

Raffaele Resta [3]: if periodic boundary conditions are used, expectation
values that involve the operator x̂ should be calculated using the unitary
operator

X̂ = e i
2π
L
x̂

L: imposed periodicity in the system
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boundary conditions: find the eigenfunction(s) of
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Note: in general X̂P is not a Hermitian operator, only for L → ∞
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PX̂P operator in 1D lattice system

For a 1D system consisting of M unit cells:

x̂ =

M
∑

m=1

∑

α

Rm|m, α〉〈m, α|

α band index, Rm labels the mth unit cell
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x̂ =

M
∑

m=1

∑

α

Rm|m, α〉〈m, α|

α band index, Rm labels the mth unit cell

⇒ X̂ =
M
∑

m=1

∑

α

e iδkRm |m, α〉〈m, α| δk =
2π

Ma

a: lattice constant
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PX̂P operator in 1D lattice system

For simplicity, consider a single occupied band and the corresponding
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For simplicity, consider a single occupied band and the corresponding
Bloch functions |Ψk〉
First, the matrix elements of X̂ :
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= 〈u(k ′)|u(k)〉δk+δk−k′,0
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= 〈u(k ′)|u(k)〉δk+δk−k′,0

⇒ X̂P =
∑

k,k′

|Ψk′〉〈Ψk′ |X̂ |Ψk〉〈Ψk | =
∑
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0 0 〈u(k4)|u(k3)〉 0 0
0 0 0 . . . 0













XP is a M ×M matrix
One can easily check, that (XP)

M = w1, where w ∈ C and 1 is the unit
matrix

Note, we used that 〈u(k2)|u(k1)〉, 〈u(k3)|u(k2)〉 etc are complex numbers
→ they commmute
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w is a 1D Wilson loop, gauge independent
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(XP)
M = w1 where

w = 〈u(k1)|u(kM )〉〈u(k2)|u(k1)〉〈u(k3)|u(k2)〉 . . . 〈u(kM)|u(kM−1)〉
w is a 1D Wilson loop, gauge independent
Similar to the discrete Berry-phase

The eigenvalues λm of XP are the M roots of w :

w = |w |e iθ θ = Im ln[w ]

⇒ λm = M
√

|w |e i(2πm+θ)/M , m = 1, . . .M

Note: since X̂P is not Hermitian, the eigenvectors are not orthogonal in
general, only in the M → ∞ limit (we will actually not need the
eigenstates)
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Wannier centers and the eigenvalues of PX̂P

Remember from earlier:
1) polarization of a single filled band in a 1D lattice ∼ x̄j Wannier centers,
x̄j = 〈W (j)|x |W (j)〉, j is unit cell index
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Wannier centers and the eigenvalues of PX̂P

Remember from earlier:
1) polarization of a single filled band in a 1D lattice ∼ x̄j Wannier centers,
x̄j = 〈W (j)|x |W (j)〉, j is unit cell index

2) In discrete k space

x̄ ∼ −Im ln
J−1
∏

j=0

〈un,kj |un,kj+1
〉

j different discrete value of k in the 1D Brillouin zone

If there are M unit cells, k is discretized as km = 2π
Ma

m

⇒ The Wannier centers x̄m can be obtained from λm as

x̄m =
M

2π
Im ln[λm] =

θ

2π
+m =

Im ln[w ]

2π
+m
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