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Time Reversal Symmetry

We define a time reversal operator which acts as

|n〉 → T |n〉

Where T |n〉 is the time reversed state.
For example: if |n〉 = |k〉 we expect T |k〉 = | − k〉; if |n〉 = |x〉 we
expect T |x〉 = |x〉.
We also say a Hamiltonian H has time reversal symmetry if
T HT −1 = H.

How do we define this in a rigorous way?
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Time Reversal Symmetry

The infinitesimal time evolution of a state |n〉 is generated by the
Hamiltonian, and is given by

|n, t0 = 0; t = δt〉 =
(

1− iH

~
δt
)
|n〉

If we consider applying the several operator at t = 0, then time evolving

the state, then at t = δt we have
(
1− iH

~
δt
)
T |n〉. Intuitively we expect

that this should equal T |n, t0 = 0; t = −δt〉. Together this gives(
1− iH

~
δt
)
T |n〉 = T

(
1− iH

~
(−δt)

)
|n〉

If this is to be true for any state |n〉 we find

−iHT |n〉 = T iH|n〉
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Time Reversal Symmetry

So we found:
−iHT |n〉 = T iH|n〉

If T was a unitary operator then we may directly cancel the i’s and find
−HT = T H.
This does not work: as it implies

HT |n〉 = −T H|n〉 = −εnT |n〉

Therefore we find that the time reversal operator must be anti unitary
(T c|n〉 = c∗T |n〉, where c ∈ C), this means

T H = HT

Alexander Pearce Intro to Topological Insulators: Week 5 December 1, 2016 6 / 21



Time Reversal Symmetry

What is the effect of time reversal on the wave function?

T |n〉 =

∫
d3x′T

(
|x′〉〈x′|n〉

)
T |n〉 =

∫
d3k′T

(
|k′〉〈k′|n〉

)
=

∫
d3x′T |x′〉〈x′|n〉∗ =

∫
d3k′T |k′〉〈k′|n〉∗

=

∫
d3x′|x′〉〈x′|n〉∗ =

∫
d3k′| − k′〉〈k′|n〉∗

=

∫
d3k′|k′〉〈−k′|n〉∗

So this shows that T ψ(x′)→ ψ(x′)∗ and T ψ(p′)→ ψ(−p′)∗.

The representation we choose crucially matters! We also see that two
successive applications gives T 2 = 1.

We will now show that this story differs for spin-full particles.
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Time Reversal Symmetry

If time reversal gives T ST −1 = −S, then TRS rotates the spin by π.
Choosing the axis of rotation to be about the y-axis we find

T = ηe−iπJy/~K

T
(
T
∑
|j,m〉〈j,m|n〉

)
= T

(
η
∑

e−iπJy/~|j,m〉〈j,m|n〉∗
)

= |η|2
∑

e−2iπJy/~|j,m〉〈j,m|n〉

Using the properties of the angular momentum eigenstates under
rotation we note e−2iπJy/~|j,m〉 = (−1)2j |j,m〉, therefore we find

T 2|j half-integer〉 =− |j half-integer〉
T 2|j integer〉 = + |j integer〉
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Kramers Degeneracy

If we consider a system of charged particles in a static electric field,
with V (x) = eφ(x) then [T , H] = 0 will still holds as the electrostatic
potential is a real function of the time-reversal operator x.
We consider a state |n〉 and its time reversed parter T |n〉, these must
have the same energy - following HT |n〉 = T H|n〉 = εnT |n〉.

So are these the same state or different states?
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Kramers Degeneracy

The states |n〉 and T |n〉 can only differ by a phase η with η = eiδ.

T |n〉 = eiδ|n〉

Now applying T once more

T 2|n〉 = T eiδ|n〉 = e−iδT |n〉 = e−iδeiδ|n〉 = +|n〉

Which cannot hold for spin one-half particle. So we must conclude that
these are different degenerate states.

This holds as long at the system obeys time-reversal symmetry!
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Time Reversal Symmetry of Bulk Hamiltonian

What happens to systems which in addition to TRS there exists also a
translational symmetry?

Earlier we noted that T ψ(p′)→ ψ(−p′)∗. It is also useful to realise we
can split the time reversal operator into two parts T = τK where K is
an operator which complex conjugates and τ is a unitary operator
which acts on internal degrees of freedom.

T HBulkT −1 =
∑
k

| − k〉〈−k| ⊗ T H(k)T −1 =
∑
k

|k〉〈k| ⊗ τH∗(−k)τ−1

So τH∗(−k)τ−1 = H(k) in the TRS bulk, and therefore the
Hamiltonian must be symmetric to inversion in the Brillouin zone (i.e.
k→ −k).
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Time Reversal Symmetry of Bulk Hamiltonian

We can take an eigenstate of H(k) as

H(k)|u(k)〉 = E(k)|u(k)〉 .

Using time reversal symmetry we obtain,

τH∗(−k)τ−1|u(k)〉 = E(k)|u(k)〉

then, multiplying from left by τ−1 and taking the complex conjugate we
find

H(−k)τT |u(k)〉∗ = E(k)τT |u(k)〉∗ .

So for every eigenstate |u(k)〉 of H(k) there is a time-reversed partner
eigenstate of H(−k) at the same energy at τT |u(k)〉∗. This implies
inversion symmetry of the energies, E(k) = E(−k). Note, however,
that E(k) = E(−k) is not enough to guarantee time-reversal symmetry.
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Vanishing of Hall Conductance for T Invariant
Half-Integer Spin Systems

As we have noted in previous lectures, σxy = σyx = 0 for all systems
with time reversal symmetry. Taking a rather brute force approach we
consider the Berry Curvature F (kx, ky) of a two occupied Bloch bands
|un(k)〉 with n = I, II, we find

F (kx, ky) = (−i〈∂kxuI(k)|∂kyuI(k)〉 − x↔ y) + I ↔ II .

After algebra we find

〈∂−kxuI(−k)|∂−kyuI(−k)〉 − x↔ y =− 〈∂kxuII(k)|∂kyuII(k)〉 − x↔ y .

〈∂−kxuII(−k)|∂−kyuII(−k)〉 − x↔ y =− 〈∂kxuI(k)|∂kyuI(k)〉 − x↔ y .

Which implies F (kx, ky) = −F (−kx,−ky), therefore this will always
vanish upon integration over the whole Brillouin zone.
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Charge Conjugation Symmetry

Charge conjugation or particle-hole symmetry is a unitary
transformation that mixes electrons and holes. Indeed, in particle
number conserving systems is acts to flip to sign of charge carriers.

We can demand the anticomutation relation {ci,σ, c†i,σ} = δij is
invariant. Here we see the particle-hole symmetry explicitly with

Cci,σC−1 = c†i,σ and Cc†i,σC
−1 = ci,σ.

Considering its action on a single-particle Hamiltonian we find

C−1HC = −H

and therefore is not a unitary symmetry.
In a similar way to TRS we can find C2 = ±1 with −1 solution for
half-integer states and +1 for integer states.
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Charge Conjugation Symmetry

We can take an eigenstate of the single particle bulk Hamiltonian H(k)
as

H(k)|u(k)〉 = E(k)|u(k)〉 .

Using charge conjugation symmetry C = µK we obtain,

−µH∗(−k)µ−1|u(k)〉 = E(k)|u(k)〉

then, multiplying from left by µ−1 and taking the complex conjugate we
find

H(−k)µT |u(k)〉∗ = −E(k)µT |u(k)〉∗ .

So for every eigenstate |u(k)〉 of H(k) there is a charge-conjugated
partner eigenstate of H(k) at the opposite energy −E(k) at µT |u(k)〉∗.
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Chiral Symmetry

The combination of T and C gives rise to a third symmetry, chiral
symmetry. Indeed, we can imagine a situation in which both T and C
are absent but their combination is satisfied. So Chiral symmetry is
given by

S = T · C

And for single particle Hamiltonians satisfies

S−1HS = −H

As this is constructed of two anti unitary operators we find νν−1 = 1,
i.e. only one solution.
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Symmetry Classes and the Ten Fold Way

We now want a general classification of single particle Hamiltonians in
terms of these symmetries.

T −1HT = H T = τK ττ∗ = ±1

C−1HC = −H C = µK µµ∗ = ±1

S−1HS = −H S = ν ν2 = 1

Note that unitary symmetries, which commute with the Hamiltonian,
allow us to bring the Hamiltonian into a block diagonal form. Here our
aim is to classify the symmetry properties of these irreducible blocks,
which do not exhibit any unitary symmetries.
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Symmetry Classes and the Ten Fold Way
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Symmetry Classes and the Ten Fold Way

An Example 1: The SSH model from lecture 1

H(k) = R(k) · σ ; R(k) =

( t− t′ cos k
−t′ sin k

0

)

We find Hamiltonian has only chiral symmetry given by
σzH(k)σz = −H(k), and therefore is belongs to class AIII. Indeed, as
we already knew, in one dimension it’s topological phases are
governed by a winding number Z.
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Symmetry Classes and the Ten Fold Way

An Example 2: The QWZ model on a square lattice from lecture 4

H(k) = R(k) · σ ; R(k) =

( sin kx
sin ky

u+ cos kx + cos ky

)

If σ refers to real spin then R(−k) = −R(k) for TRS to hold, therefore
Rz(k) being even breaks TRS. Now for σ being some isospin, Rx(k)
and Rz(k) must be even in k and Ry(k) odd in k.
Therefore this is Class A, and as we already knew, in two dimension
it’s topological phases are governed by a winding number Z.
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Symmetry Classes and the Ten Fold Way

An Example 3: The B phase of superfluid 3He

Ĥ =
1

2

∑
k

Ψ†(k)H(k)Ψ(k)

where

H(k) =

(
ξ(k) ∆(k)

∆†(k) −ξ(k)

)
Ψ†(k) = (ψ†↑, ψ

†
↓, ψ↑, ψ↓) ξ(k) = k2/2m− µ ∆(k) = ∆0iσ2k · σ

This BdG Hamiltonian satisfies τ1HT (k)τ1 = −H(k) and σ2H∗(−k)σ2.
(note all BdG Hamiltonian have particle-hole symmetry by
construction)
Therefore this is Class DIII, and as we already knew, in three
dimension its has topological nontrivial phases and is governed by a
winding number Z. (ν3 = (1/2)(sgn[µ] + 1))
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