Symmetry Classifications of Topological Systems
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Time Reversal Symmetry

We define a time reversal operator which acts as

|n) — T|n)
Where Tn) is the time reversed state.
For example: if |n) = |k) we expect T k) = | — k); if |]n) = [x) we

expect 7 |x) = |x).
We also say a Hamiltonian H has time reversal symmetry if
THT ' =H.

How do we define this in a rigorous way?
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|
Time Reversal Symmetry

The infinitesimal time evolution of a state |n) is generated by the
Hamiltonian, and is given by

In,to = 0;t = 6t) = (1 - %&)m

If we consider applying the several operator at ¢ = 0, then time evolving

H "
the state, then at ¢ = 6t we have (1 — %&)TW- Intuitively we expect
that this should equal T'|n,ty = 0;¢t = —dt). Together this gives
( iH 1H

1— ?&)ﬂm = 7'(1 - ?(—&)) In)

If this is to be true for any state |n) we find

—iHT]|n) = TiH|n)
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Time Reversal Symmetry

So we found:
—iHT|n) = TiH|n)

If 7" was a unitary operator then we may directly cancel the i’s and find
—HT =TH.
This does not work: as it implies

HTn) = ~TH|n) = —e,Tn)

Therefore we find that the time reversal operator must be anti unitary
(Te|n) = ¢*T|n), where ¢ € C), this means

TH=HT
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Time Reversal Symmetry
What is the effect of time reversal on the wave function?
Tin) = [ET() ) Tl = [ @ET() )
_ / B Ty (@ n)* - / BT |n)*
_ /d%'\x’xx’\n)* - /d?’k’\ e
= /d3l~c’|k:’><—l<:’|n)*
So this shows that T (2") — o (2')* and T (p') — (—p')*.

The representation we choose crucially matters! We also see that two
successive applications gives 72 = 1.
We will now show that this story differs for spin-full particles.
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Time Reversal Symmetry

If time reversal gives TST ! = —S, then TRS rotates the spin by =.
Choosing the axis of rotation to be about the y-axis we find

T = ne—iﬂJy/hK

T(T Y l5m)G min)) =T (0> e ™/ j,m)(j,mln)")
=) e G m) (5, mn)

Using the properties of the angular momentum eigenstates under
rotation we note e~ 27/v/"|j m) = (=1)%|j, m), therefore we find

T?|j half-integer) = — |5 half-integer)
7?|j integer) = + | integer)
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Kramers Degeneracy

If we consider a system of charged particles in a static electric field,
with V(x) = e¢(x) then [T, H] = 0 will still holds as the electrostatic
potential is a real function of the time-reversal operator x.

We consider a state |n) and its time reversed parter 7|n), these must
have the same energy - following H7 |n) = T H|n) = €, T |n).

So are these the same state or different states?
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Kramers Degeneracy

The states |n) and 7|n) can only differ by a phase n with n = ¢?

Tln) = €”[n)
Now applying 7 once more

T?n) = Te®n) = e °T|n) = e e’|n) = +|n)

Which cannot hold for spin one-half particle. So we must conclude that
these are different degenerate states.

This holds as long at the system obeys time-reversal symmetry!
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Time Reversal Symmetry of Bulk Hamiltonian

What happens to systems which in addition to TRS there exists also a
translational symmetry?

Earlier we noted that 7v(p’) — ¥ (—p')*. Itis also useful to realise we
can split the time reversal operator into two parts 7 = 7K where K is
an operator which complex conjugates and 7 is a unitary operator
which acts on internal degrees of freedom.

THeaT ' =) |- K)(-kl@TH&)T ' =) |kklorH" (-k)r
k k

So TH*(—k)r~! = H(k) in the TRS bulk, and therefore the
Hamiltonian must be symmetric to inversion in the Brillouin zone (i.e.
k — —k).
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Time Reversal Symmetry of Bulk Hamiltonian

We can take an eigenstate of H (k) as

H(k)|u(k)) = E(k)|u(k)) .
Using time reversal symmetry we obtain,
TH* (~k)r u(k)) = E(k)[u(k))

then, multiplying from left by 7—! and taking the complex conjugate we
find

H(~Xk)7" |u(k))* = E(k)r" |u(k))" .
So for every eigenstate |u(k)) of H (k) there is a time-reversed partner
eigenstate of H(—k) at the same energy at 77 |u(k))*. This implies

inversion symmetry of the energies, E(k) = E(—k). Note, however,
that F(k) = E(—k) is not enough to guarantee time-reversal symmetry.
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Vanishing of Hall Conductance for T Invariant
Half-Integer Spin Systems

As we have noted in previous lectures, 0., = 0y, = 0 for all systems
with time reversal symmetry. Taking a rather brute force approach we

consider the Berry Curvature F'(k,, k,) of a two occupied Bloch bands
|un (k)) withn = I, 11, we find

F(k);u ky) = (—z(@kzuf(k)\ﬁkyuf(k» — X > y) + 1+ 1II.

After algebra we find
<8_kzu1(—k)|8_kyu1(—k)> —TY=— (8kzun(k)]8kyun(k)> — T Y.
(8,]%71[](—1{)|8,ky’u,[[(—k)> — T Y=— (8kzu1(k)]8kyu1(k)> —T Y.

Which implies F(k;, ky) = —F(—k,, —k,), therefore this will always
vanish upon integration over the whole Brillouin zone.
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Charge Conjugation Symmetry

Charge conjugation or particle-hole symmetry is a unitary
transformation that mixes electrons and holes. Indeed, in particle
number conserving systems is acts to flip to sign of charge carriers.

We can demand the anticomutation relation {c; ,, c;.fp} =0y is
invariant. Here we see the particle-hole symmetry explicitly with
Cci,oC_1 = cl-:g and CCZUC_1 = Cig-

Considering its action on a single-particle Hamiltonian we find
C'HC=-H

and therefore is not a unitary symmetry.
In a similar way to TRS we can find C? = +1 with —1 solution for
half-integer states and +1 for integer states.
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Charge Conjugation Symmetry

We can take an eigenstate of the single particle bulk Hamiltonian H (k)
as
H(k)[u(k)) = E(k)u(k)) .

Using charge conjugation symmetry C = u/X we obtain,
—uH* () Hu(k)) = B(k)|u(k))

then, multiplying from left by ,~! and taking the complex conjugate we
find

H(~Xk)p" u(k)* = —E(k)u’ [u(k))" .
So for every eigenstate |u(k)) of H (k) there is a charge-conjugated
partner eigenstate of H (k) at the opposite energy —E(k) at u” |u(k))*.
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Chiral Symmetry

The combination of 7" and C gives rise to a third symmetry, chiral
symmetry. Indeed, we can imagine a situation in which both 7 and C
are absent but their combination is satisfied. So Chiral symmetry is
given by

S=T-C

And for single particle Hamiltonians satisfies
S'HS =-H

As this is constructed of two anti unitary operators we find vv =1 =1,
i.e. only one solution.
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Symmetry Classes and the Ten Fold Way

We now want a general classification of single particle Hamiltonians in
terms of these symmetries.

T'HT =H T=1K TTr =41
C'HC=-H C=puk ppt = +1
S'HS=-H S=v =1

Note that unitary symmetries, which commute with the Hamiltonian,
allow us to bring the Hamiltonian into a block diagonal form. Here our
aim is to classify the symmetry properties of these irreducible blocks,
which do not exhibit any unitary symmetries.
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Symmetry Classes and the Ten Fold Way

P
Clas T ¢ § 0 1 2 3 4 5 6 1
A 0o 00 Zz 0 zZ 0 Z 0 Z 0
AII 0 0 1 0 Zz 0 Z 0 zZ 0 Z
AL + 0 0 Z 0 0 0 22 0 zZ Z
BDI + + 1 Zz, Z 0 0 0 2Z 0 Z
D 0O + 0 z, Z, Z 0 0 0 2Z 0
pm - + 1 0 2z 2Z Z 0 0 0 2Z
Al - 0 0 2Z 0 Z, Z, Z 0O O O
cit - - 1 0 22 0 Z, Z, Z O O
C 0 — 0 0 0 2Z 0 2, Z, Z O
cI + - 1 0 0 0 2Z 0 2Z, 2Z, Z
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Symmetry Classes and the Ten Fold Way

An Example 1: The SSH model from lecture 1

t —t' cosk
H(k)=R(k)-o ; R(k)= ( —t'sink )
0
We find Hamiltonian has only chiral symmetry given by
o.H(k)o, = —H(k), and therefore is belongs to class Alll. Indeed, as

we already knew, in one dimension it’s topological phases are
governed by a winding number Z.
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Symmetry Classes and the Ten Fold Way

An Example 2: The QWZ model on a square lattice from lecture 4

sin k,,
H(k)=R(k)-o ; R(k)= ( sin k, )
u + cos ky + cos ky

If o refers to real spin then R(—k) = —R(k) for TRS to hold, therefore
R.(k) being even breaks TRS. Now for o being some isospin, R, (k)
and R.(k) must be even in k and R, (k) odd in k.

Therefore this is Class A, and as we already knew, in two dimension
it's topological phases are governed by a winding number Z.
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|
Symmetry Classes and the Ten Fold Way

An Example 3: The B phase of superfluid *He

H= % Ek: Ul (k) H (k) ¥ (k)

€0 AR
Hk) = < AT(k) —s<k>>

\I’T(k) = (14»?!)1,1%,%) f(k) = k2/2m — K A(k) = Agiosk - o

This BAdG Hamiltonian satisfies 7 H” (k)7 = —H (k) and o2 H* (—k)os.
(note all BAG Hamiltonian have particle-hole symmetry by
construction)
Therefore this is Class DlIl, and as we already knew, in three
dimension its has topological nontrivial phases and is governed by a
winding number Z. (v3 = (1/2)(sgn[u] + 1))
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