Topological Insulator Surface States and Electrical Transport
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This notes are predominately based on:

@ J.K. Asboth, L. Oroszldny and A. Palyi. A Short Course on Topological
Insulators “http://arxiv.org/abs/1509.02295” (2015).

@ The Quantum Spin Hall Effect: Theory and Experiment, M. Konig et al,
J. Phys. Soc. Jpn. 77, 031007 (2008).

@ X-L. Qi and S-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

o G. Tkachov and E.M. Hankiewicz, Phys. Status Solidi B 250, 215-232
(2013).

and several other papers referenced throughout these sides.
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@ Edge States in 2D Z, Topological Insulators

o Topological Protection - Mass terms and No-Go Theorems
@ Magnetic Fields In The Bernevig-Hughes-Zhang model

@ Robustness of QSH State Against Interactions
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Edge States of a 2D Topological Insulator

We would like to be able to construct an
effective theory of the edge states of a 2D
TI. We shall start for the BHZ model
introduced in an earlier lecture
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Figure 3 (online color at: www.pss-b.com) Band structure of a

Mk == M + Bk2 HgTe/Hg3Cdo,Te quantum well: (a) electron El, E2,... and

heavy-hole H1, H2, - - - subband energies versus well thickness d,
(b) in plane dispersion at the critical thickness d. ~ 6.3 nm, and (c) a
. . 3D plot of the Dirac-like low-energy spectrum for d =d, near the
where o; acts in the spin space and A, B’ D I"point of the Brillouin zone (adapted from [69]).
and M are material parameters that depend
on the QW geometry and M varying with
QW thickness and changing sign at a critical

thickness d...
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Edge States of a 2D Topological Insulator

@ This Hamiltonian is valid near the I"
hugh symmetry point of the BZ.

@ We model neglects some terms found

. . . . a) 8oy ] °
via a full k - p model. This hamiltonian 5%
. . w-40 —
will capture the physics we are o I
. . . d[nm]
interested in and we will return to )% pen
. L. . s direction /
consider the missing terms in a later g’ LER 40\
. 50 HT — XN
Shde' AT ss orgs O 00 51—=0.1 0.0 O
. . Kinm-] K, [nm] K, ]
o USIIIg the unltary transform Figure 3 (online color at: www.pss-b.com) Band structure of a
HgTe/Hg3Cdy 7 Te quantum well: (a) electron E1, E2,... and
O ag z heavy-hole H1, H2, - - subband energies versus well thickness d,
U = . 0 we can transform (b) in plane dispersion at the critical thickness d. ~ 6.3 nm, and (c) a
—_ 3D plot of the Dirac-like low- spectrum for d =d, near the
he Hetmil Loy 6 the Dirac ik T point of the Brilloin sonc (adapted from [69).
the Hamiltonian into the Dirac like

form

H = 1,0 - (Ak + Myz) + Dk’1y00
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Edge States of a 2D Topological Insulator

As we consider states near I'(k = 0), we will omit terms o< k?. Now we find,
in the position representation, an equation for the four component wave
function ¥(r),

leog = 1,0 - (—IAV + Mz)|¥U(r) =0

We now assume our system is confined by a normal band insulator with
infinite mass, M — oo. So we will seek to introduce the boundary conditions

\I/(l‘,y = 0) = TOO-:E\IJ(wv y= O)

We must note that these boundary are specific to Dirac fermions with a linear
spectrum. It ensures vanishing of the normal component of the particle
current without putting W(r) to zero at the boundary. Other approaches can be
constructed for model with include oc k? terms.
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Edge States of a 2D Topological Insulator

We seek solutions in form of the two eigenstates, Wy, 4 (r) of diagonal matrix
7,00 propagating along the edge (in the x-direction) and decaying
exponentially away from it (in the y-direction),

o 1 \Illk+ ikz—y/A
\Ilk:,Jr(r) - < 0 ) ® < \112k+ )6

0 Uips \ ke
q;kj_(r):< 1>®<\P;Z >ek y/A

with a real positive decay length A\. Now using the boundary condition we
will find two expressions for A and e
M? €2 M €
= — Al = — =+l
A2 a2 T AT
The 7 means that these equation vanish independently. Solving this gives a
gapless linear dispersion and real decay length (for M < 0).

A
€rr = TAE M
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Edge States of a 2D Topological Insulator

Therefore we find the edge state wave functions normalised to half-space
0 <y < oo are given by

1 1 M|
Uy 4 (r) =< 0 ) ® < 1 > ’A‘e“”" IMly/A

0 1 M| ik
U, (r) :< . > ® ( ) > |A|em Miz/4

A key feature is that they are orthogonal eigenstates of the helicity operator
Y =T,0,
E\Ilkﬁ(r) = T\I’kﬂ-(r), T==1

The helicity 3 is defined as the projection of the vector 3 = 7,0 on the
direction of the edge-state momentum k||x. These helical states are Kramers
pairs and are related by time reversal operator T = i7y0,C,

Vo =TV o Vo= —TUp 4
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Edge States of a 2D Topological Insulator

In a previous slide we noted that we had neglected some small terms. Their
inclusion causes the edge state spectrum to become gapped - a big difference!.
This arises due to finite size effects as the two edges may hybridise with each
other. This opens a gap in the edge states of magnitude

N 4|ABLB_M| AL
- /B3(A2B — 4B, B-M)

with BL = B+ D. For L = 1000nm we find A = 1.4 x 10~ "meV, but for
L = 200nm we will find A = 0.45meV which is in principle observable.

Phys. Rev. Lett. 101, 246807 (2008)
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Edge States of a 2D Topological Insulator

k,=0.01nm"

(a)

k=-0.01nm’

(b}
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FIG. 2 (color online). The density dis-
tribution of the two edge states
¥,.(k,y) for L=200nm. (a) The
solid line corresponds to |Wy. (k,, y)I%,
and the dotted line to | ¥, (—k, y)I* at
=001 nm™'; (b) The solid line
corresponds to |¥;_(k,, y)|?, and the
dotted line to |¥;_(—k, ) at k, =
=001 nm™!; (c) and (d) for k, =
0nm™.




Edge States - Mass Term

We can also write an effective Hamiltonian for only the edge states, this
Hamiltonian is known as the helical Luttinger Liquid. The Luttinger liquid
theory allows for the description of interacting 1D fermonic system, and will
only be discussed here very briefly as it’s not the focus of this course. The
Hamiltonian after linearising around the fermi energy is given by

Hy = vp / dz [y} (2)idpp 1 (x) — ¥L | (2)i0nr ()]

we can try and introduce a “mass” term which will gap the spectrum

Hiass = /dxm [Zb;[%ﬁ(x)?p[ﬁi(.%’) + h.c.]
However, the time-reversal symmetry of the electron system is expressed as

T YWpt(x)T =4, T "r(2)T = —tr4

which will give rise to
TﬁleassT = _Hmass
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Edge States - Interactions

Imagine that at ¢ = 0, n right movers are excited, and consider whether they
can be scattered back to n left movers by a random potential. Specifically,
assume that the final state of n left movers [¢)) is the 7 conjugates of the

right-moving initial state |¢) The matrix element for H’ to connect these
states is

(WIH'|9) = (To|H'|¢) = (T|H'|T*9)
(=D)™(TolH'|¢) = (=1)"(¥|H'|¢)

For n odd, this process is forbidden because the matrix element has to be zero.
However for n even inter branch scattering can happen, for example the only 2
particle interaction allowed are

How =g [ devhy ()o@l (@0 (0)

i — / dae Moyl @)k (@ + @)y (@ + )iy (@) + hec.
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Edge States - No Go Theorems

o Kramers Pair states must reform with each other as k£ goes to 0, 7, —7
requiring crossing Fermi level 4n times. - But is allows single particle
scattering!

o But we realise they merge in bulk states as some large k£ and can match at
k = £+m with edge states for other edge.

o therefore the helical edges states can only be stable as a holographic
theory on a 2D theory.

(@) (b)
E E
— _
PP D
- 0 n -n 0 n
Figure 4: (a) The energy dispersion of a one-dimensional ti sal invariant

system. Kramer’s degeneracy is required at k = 0 and k = 7, so that the energy
spectrum always crosses the Fermi level er 4n times. (b) The energy dispersion
of the helical edge states on one boundary of the QSH system (solid lines). At
k = 0 the edge states are Kramers’ partners of each other, while at k = m they
merge to the bulk and pair with the edge states of the other boundary (dash
lines). In both (a) and (b), red and blue lines form Kramers’ partners of each
other.
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Edge States - Transport theory

We use the Landauer-Biitikker
formalism. Here the current through
contact I; through the multi terminal
device with voltages V; is

2 3
2 &
= G - T JIL_J)|
j=1 A
1 4 "W
and Tj; is the transmission l ” ” l
probability for contact 7 to contact j.
For quantum spin hall edge states 6 le—=>L 4|5

with helical edge channels we use
the only non vanishing transmission
probabilities are

Tiv1;="Tiit1 =1
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Edge States - Transport theory

Considering the example of current
leads on electrodes 1 and 4, and
voltage leads on electrodes 2, 3, 5
and 6, one finds that

h= T= T, | —

Vo — V3 = (h/2€?)I14, and 7
Vi — Vi = (3h/e?)I14, giving a ! AW
four-terminal resistance of l ” ” l
Risp3=h/ 2¢? and a two-terminal

resistance of R 14 = 3h/2€2. 6 le—t 5

@ So we see a non-local signal in
the resistance
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Edge States - Longitudinal Resistance

Fig. 4. The longitudinal four-
terminal resistance, Ry4,,3, of
various normal (d = 5.5 nm)
(1) and inverted (d = 7.3 nm)
(I, 1, and IV) QW structures
as a function of the gate volt-
age measured for B=0T at
T = 30 mK. The device sizes
are (20.0 x 13.3) um? for

Ria23/Q

) Vg=Vind/V 7
devices | and I, (1.0 x 1.0) G=0.3¢e2h

um?for tz!evice lll,and (1.0x II{‘

0.5) um* for device IV. The 4L J
inset shows Ry4,53(V) of two 10 // 1\{ G=2e%h
samples from the same wafer,

having the same device size 108 . . . L L

() at 30 mK (green) and -1.0  -05 0.0 0.5 1.0 1.5 20
1.8 K (black) on a linear scale. (Vg=Vinr) /V

Science 318, 766 (2007)




Edge States of a 2D Topological Insulator

We would also want to explore the effect of a external magnetic field on the
edge states, we can introduce the effect of a B-field with the substitution

k — (k + eA) and choose the symmetric gauge A = B/2(—y, =), this
allows us to define the new operators

=k + 502 o n = (e - o)

where k4 = k; £ ik, and z = x + iy. These mechanical momenta have the
commutation relation [, , 7_] = —2h?% /1% with the magnetic length

I = (h/eB)"/?. Finally we can use these to define the lowering and raising
operators

and [a, aT] = 1. How the subblocks of the BHZ Hamiltonian can be written as
h(a,a).
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Edge States of a 2D Topological Insulator

Solve the BHZ with these
magnetic fields included we
will find the energy
spectrum

Ea:—wODn—a

100

wii

I

where wf = 2B/1%,
wd =2D/1% and a = +1.

2
\/2An+(M—nw§—§

“(a)d,, =40A

(b) dQW'= 150 A
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Edge States of a 2D Topological Insulator

Fig. 1. (A) Hall resistance, Ry, of a (L x
W) = (600 x 200) um? QW structure with
6.5-nm well width for different carrier con-
centrations obtained for gate voltages V
of =1.0 V (black), 1.1 V (purple), —1.2 V
(navy),—13 V (blue), —1.35 V (cyan), —1.4V
(green), —1.7 V (red), —1.8 V (orange),
—1.9 V (brown), and —2.0 V (black, lower
curve). For decreasing V, the n-type carrier
concentration decreases and a transition to a
p-type conductor is observed, passing
through an insulating regime between
~14 and 1.9 V at B = 0 T. The inset
shows a schematic sample layout with 20
ohmic contacts labeled 1 to 6. The gray

shaded region indicates the top gate

electrode and defines the part of the 0
sample where the carrier concentration
and type can be changed. Red and blue
arrows indicate the counterpropagating
spin-polarized edge channels of the QSH ~ ° [T=
effect. (B) The Landau-level fan chart of a E (Vg=-2V) wit — —
6.5-nm QW obtained from an eight-band
k-p calculation. Black dashed lines indi-
cate the energetic position of the Fermi
energy, E, for V; = —1.0 and 2.0 V. Red
and green dashed lines correspond to the

Ryl kQ

— case i, 6y, =0 case ii, 6,,=0
TEVg=-1V) L Xy J Xy’
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position of the Fermi energies of the red and green Hall resistance traces of (A). The Landau-level crossing
points are marked by arrows of the same color.




Edge States - Weak Anti-Localisation

(a)
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FIG. 1 (color online). Magnetoresistance (d = 7 nm), Ry(B) B PO,
of (a) a macroscopic Hall bar with 30 x 10 ym? at T = 4.2 K and 1600 wl Invertog
(b) 40 parallel wires with 50 x 0.37 ym? area for different gate _ &
voltages V; at T = 1.8 K. For clarity, the traces of Fig. 1(a) E 1200f |overted T
are displayed with a constant offset of 1 kQ. The corresponding = 32
measured carrier densities are n=32, 4.3, 5.4, 6., and 800 30 35 40 45 50
7.9 10" em™2 for the indicated gate voltage. For the multiple o, [10"m]
wire sample of Fig. 1(b), the carrier densities are indicated in the Normal —
@ figure. 400
2 4 6 8 10
TIKI

e

FIG. 3 (color online). (a) Temperature dependence of the
conductivity 8o,,(T) for wires of the 7 (inverted) QW and
5 nm (normal) QW (inset) at different gate voltages. The solid
lines are fits based on Egs. (1)~(3). (b) Extracted dephasing
length for wires of the inverted and normal QW at V, = 0. Inset:
. . st Exiracted Berry phase, fy, versus carrier density , for inverted
@ R e it o “ and normal samples.

Phys. Rev. Lett. 112, 146803 (2014)




