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This notes are predominately based on:

J.K. Asbóth, L. Oroszlány and A. Pályi. A Short Course on Topological
Insulators ”http://arxiv.org/abs/1509.02295” (2015).

The Quantum Spin Hall Effect: Theory and Experiment, M. König et al,
J. Phys. Soc. Jpn. 77, 031007 (2008).

X-L. Qi and S-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

G. Tkachov and E.M. Hankiewicz, Phys. Status Solidi B 250, 215-232
(2013).

and several other papers referenced throughout these sides.
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Edge States of a 2D Topological Insulator
We would like to be able to construct an
effective theory of the edge states of a 2D
TI. We shall start for the BHZ model
introduced in an earlier lecture

H =

[
h(k) 0

0 h∗(−k)

]
in which

h(k) = A(σxkx − σyky) +Mkσz +Dk2σ0

Mk =M+ Bk2

where σi acts in the spin space and A, B, D
andM are material parameters that depend
on the QW geometry and M varying with
QW thickness and changing sign at a critical
thickness dc.
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Edge States of a 2D Topological Insulator

This Hamiltonian is valid near the Γ
hugh symmetry point of the BZ.

We model neglects some terms found
via a full k · p model. This hamiltonian
will capture the physics we are
interested in and we will return to
consider the missing terms in a later
slide.

using the unitary transform

U =

(
0 σz
−iσy 0

)
we can transform

the Hamiltonian into the Dirac like
form

H = τzσ · (Ak +Mkz) +Dk2τ0σ0
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Edge States of a 2D Topological Insulator

As we consider states near Γ(k = 0), we will omit terms ∝ k2. Now we find,
in the position representation, an equation for the four component wave
function Ψ(r),

[εσ0 = τzσ · (−iA∇+Mz)]Ψ(r) = 0

We now assume our system is confined by a normal band insulator with
infinite mass, M →∞. So we will seek to introduce the boundary conditions

Ψ(x, y = 0) = τ0σxΨ(x, y = 0)

We must note that these boundary are specific to Dirac fermions with a linear
spectrum. It ensures vanishing of the normal component of the particle
current without putting Ψ(r) to zero at the boundary. Other approaches can be
constructed for model with include ∝ k2 terms.
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Edge States of a 2D Topological Insulator

We seek solutions in form of the two eigenstates, Ψk,±(r) of diagonal matrix
τzσ0 propagating along the edge (in the x-direction) and decaying
exponentially away from it (in the y-direction),

Ψk,+(r) =

(
1
0

)
⊗
(

Ψ1k+

Ψ2k+

)
eikx−y/λ

Ψk,−(r) =

(
0
1

)
⊗
(

Ψ1k−
Ψ2k−

)
eikx−y/λ

with a real positive decay length λ. Now using the boundary condition we
will find two expressions for λ and ε

λ−2 − M
2

A2
= k2 − ε2

A2
λ−1 +

M
A

= k − ε

τA
τ = ±1

The τ means that these equation vanish independently. Solving this gives a
gapless linear dispersion and real decay length (forM < 0).

εkτ = τAk ; λ = − A
M

Alexander Pearce Intro to Topological Insulators: Week 11 February 2, 2017 7 / 21



Edge States of a 2D Topological Insulator

Therefore we find the edge state wave functions normalised to half-space
0 ≤ y <∞ are given by

Ψk,+(r) =

(
1
0

)
⊗
(

1
1

)√
|M|
A

eikx−|M|y/A

Ψk,−(r) =

(
0
1

)
⊗
(

1
1

)√
|M|
A

eikx−|M|y/A

A key feature is that they are orthogonal eigenstates of the helicity operator
Σ = τzσx

ΣΨk,τ (r) = τΨk,τ (r), τ = ±1

The helicity Σ is defined as the projection of the vector Σ = τzσ on the
direction of the edge-state momentum k||x. These helical states are Kramers
pairs and are related by time reversal operator T = iτyσxC,

Ψk,+ = T Ψ−k,− Ψ−k,− = −T Ψk,+
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Edge States of a 2D Topological Insulator

In a previous slide we noted that we had neglected some small terms. Their
inclusion causes the edge state spectrum to become gapped - a big difference!.
This arises due to finite size effects as the two edges may hybridise with each
other. This opens a gap in the edge states of magnitude

∆ ' 4|AB+B−M|√
B3(A2B − 4B+B−M)

e−λL

with B± = B ±D. For L = 1000nm we find ∆ = 1.4× 10−7meV, but for
L = 200nm we will find ∆ = 0.45meV which is in principle observable.

Phys. Rev. Lett. 101, 246807 (2008)
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Edge States of a 2D Topological Insulator

Phys. Rev. Lett. 101, 246807 (2008)
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Edge States - Mass Term

We can also write an effective Hamiltonian for only the edge states, this
Hamiltonian is known as the helical Luttinger Liquid. The Luttinger liquid
theory allows for the description of interacting 1D fermonic system, and will
only be discussed here very briefly as it’s not the focus of this course. The
Hamiltonian after linearising around the fermi energy is given by

H0 = vF

∫
dx
[
ψ†R,↑(x)i∂xψR,↑(x)− ψ†L,↓(x)i∂xψL,↓(x)

]
we can try and introduce a ”mass” term which will gap the spectrum

Hmass =

∫
dxm

[
ψ†R,↑(x)ψL,↓(x) + h.c.

]
However, the time-reversal symmetry of the electron system is expressed as

T −1ψR,↑(x)T = ψL,↓ T −1ψL,↓(x)T = −ψR,↑

which will give rise to
T −1HmassT = −Hmass
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Edge States - Interactions

Imagine that at t = 0, n right movers are excited, and consider whether they
can be scattered back to n left movers by a random potential. Specifically,
assume that the final state of n left movers |ψ〉 is the T conjugates of the
right-moving initial state |φ〉 The matrix element for H ′ to connect these
states is

〈ψ|H ′|φ〉 = 〈T φ|H ′|φ〉 = 〈T |H ′|T 2φ〉
(−1)n〈T φ|H ′|φ〉 = (−1)n〈ψ|H ′|φ〉

For n odd, this process is forbidden because the matrix element has to be zero.
However for n even inter branch scattering can happen, for example the only 2
particle interaction allowed are

Hfw = g

∫
dxψ†R,↑(x)ψR,↑(x)ψ†L,↓(x)ψL,↓(x)

Hum = gu

∫
dxe−i4kF xψ†R,↑(x)ψ†R,↑(x+ a)ψL,↓(x+ a)ψL,↓(x) + h.c.
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Edge States - No Go Theorems

Kramers Pair states must reform with each other as k goes to 0, π , −π
requiring crossing Fermi level 4n times. - But is allows single particle
scattering!
But we realise they merge in bulk states as some large k and can match at
k = ±π with edge states for other edge.
therefore the helical edges states can only be stable as a holographic
theory on a 2D theory.
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Edge States - Transport theory

We use the Landauer-Bütikker
formalism. Here the current through
contact Ii through the multi terminal
device with voltages Vi is

Ii =
e2

h

N∑
j=1

(TjiVi − TijVj)

and Tij is the transmission
probability for contact i to contact j.
For quantum spin hall edge states
with helical edge channels we use
the only non vanishing transmission
probabilities are
Ti+1,i = Ti,i+1 = 1.
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Edge States - Transport theory

Considering the example of current
leads on electrodes 1 and 4, and
voltage leads on electrodes 2, 3, 5
and 6, one finds that
I1 = −I4 ≡ I14,
V2 − V3 = (h/2e2)I14, and
V1 − V4 = (3h/e2)I14, giving a
four-terminal resistance of
R14,23 = h/2e2 and a two-terminal
resistance of R12,14 = 3h/2e2.

So we see a non-local signal in
the resistance
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Edge States - Longitudinal Resistance

Science 318, 766 (2007)
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Edge States of a 2D Topological Insulator

We would also want to explore the effect of a external magnetic field on the
edge states, we can introduce the effect of a B-field with the substitution
k→ (k + eA) and choose the symmetric gauge A = B/2(−y, x), this
allows us to define the new operators

π+ = ~
(
k+ +

ieB

2~
z
)
, π− = ~

(
k− −

ieB

2~
z∗
)

where k± = kx ± iky and z = x+ iy. These mechanical momenta have the
commutation relation [π+, π−] = −2~2/l2B with the magnetic length
lB = (~/eB)1/2. Finally we can use these to define the lowering and raising
operators

a =
lB
~
π− , a† =

lB
~
π+

and [a, a†] = 1. How the subblocks of the BHZ Hamiltonian can be written as
h(a, a†).
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Edge States of a 2D Topological Insulator

Solve the BHZ with these
magnetic fields included we
will find the energy
spectrum

Eα = −ωD0 n− α
ωB0
2
±√

2A2n

l2B
+ (M− nωB0 −

α

2
ωD0 )2

where ωB0 = 2B/l2B ,
ωD0 = 2D/l2B and α = ±1.
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Edge States of a 2D Topological Insulator

Science 318, 766 (2007)
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Edge States - Weak Anti-Localisation

Phys. Rev. Lett. 112, 146803 (2014)
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