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General framework

Chern insulators host chiral edge states ⇒ not time reversal invariant (TRI)

Can construct TRI system from given Hamiltonian H:

HTRI =
(

H C
C† H∗

)
Define si = σi ⊗ 1ext ⊗ 1int, σi ∈ {0, x , y , z}

T1 = isyK with T 2
1 = −1

T2 = sxK with T 2
2 = 1

Coupling C determines type of time reversal symmetry:

CT = −C ⇒ [H, T1] = 0
CT = C ⇒ [H, T2] = 0

C acts on internal degree of freedom (DOF) (e.g. sublattice, spin,...)
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Graphene

2d honeycomb lattice
Sublattice degree of freedom
Dirac cones in the band structure
Valley degree of freedom:

K = 2π
3a

(
1, 1
√
3

)
K′ = 2π

3a

(
1,− 1
√
3

)
No band gap

Graphics taken from A. H. Castro Neto, F. Guinea, N. M.
R Peres, K. S. Novoselov, A. K. Geim: The electronic
properties of graphene. In: Arxiv preprint. 2007,
arxiv:0709.1163v2
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The Kane and Mele model (I)
Idea: doubling the Haldande-model by introducing spin

Start from low energy Hamitonian near the Dirac cones at K and K′ (φ = 0)

H0 = −i~vFΨ† (σxτz∂x + σy∂y ) Ψ

with Pauli matrices σ, τ corresponding to sublattice and valley

Add spin s, obtain (for τz = 1, i.e. around K)

H0(K + k) = Ψ†
(
h↑(k) 0
0 h↓(k)

)
Ψ

Introduce TRI spin-orbit-coupling HSO = λSOΨ†σzτz szΨ

Doubly degenerate bands with a gap: Ek = ±
√

(~vF k)2 + λSO

Tight binding model: two identical copies of the Haldane model
C. L. Kane, E. J. Mele. Phys. Rev. Lett., 95, 226801 (2005)

H = t1
∑
〈i,j〉,σ

c†iσciσ + iλSO
∑

〈〈i,j〉〉,σ,σ′

νijc†iσs
z
σσ′cjσ′
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The Kane and Mele model (II)

h↑(K + k) = σxkx + σyky + λSOσz sz h↑(K′ + k) = −σxkx + σyky − λSOσz sz
h↓(K + k) = σxkx + σyky − λSOσz sz h↓(K′ + k) = −σxkx + σyky + λSOσz sz

Time reversal symmetry T1 = −isyK =
(0 −1
1 0

)
K

h↑(↓) known from Haldane model ⇒ Hall conductance ±1 for ↑ (↓) = quantum spin Hall effect
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Bernevig-Hughes-Zhang-model (I)

Apply construction rule on QWZ-model ⇒ Bernevig-Hughes-Zhang-model

HBHZ(k) = s0 ⊗ [(u + cos kx + cos ky )σz + sin kxσx ] + sz ⊗ sin kyσy + sx ⊗ C

2d wavevector k, staggered onsite potential u

With C = 0 introduced as 4-band-model for HgTe
B. A. Bernevig, T. L. Hughes, and S.-C. Zhang. Science, 314, 1757 (2006)

Two symmetries for C = 0: T1 H T −11 = H = T2 H T −12

Introduce Hermitian coupling C = C†
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Properties of edge states
C = 0
Direct sum of two Chern insulators with opposite Q
Kramers’s pair of edge state branches on each edge
Edge states propagate in opposite directions
Edge state branches linked by both T1 & T2
TRI 1d Brillouin zone −π ≤ kx ≤ π has to be symmetric
⇒ N+ = N− ⇔ Q = N+ − N− = 0 = const Parameter u = 1.2

C = CT

Example with C = 0.3σx
Respects T 2 = 1 symmetry
Can gap edge state branches out
Hopping between counterpropagating edge states

C = −CT

Example with C = 0.3σy
Respects T 2 = −1 symmetry
Crossing is protected
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Edge states in T 2 = −1

Q = 0 & symmetry of the BZ ⇒ creation/annihilation of egde states in pairs of Kramer’s pairs

Crossings at kx = 0,±π (TRIM) are protected by Kramer’s degeneracy

Florian Ginzel Time reversal invariant 2d lattice models December 15, 2016 9 / 18



Edge states in T 2 = −1

Q = 0 & symmetry of the BZ ⇒ creation/annihilation of egde states in pairs of Kramer’s pairs

Crossings at kx = 0,±π (TRIM) are protected by Kramer’s degeneracy

Florian Ginzel Time reversal invariant 2d lattice models December 15, 2016 9 / 18



Edge states in T 2 = −1

Q = 0 & symmetry of the BZ ⇒ creation/annihilation of egde states in pairs of Kramer’s pairs

Crossings at kx = 0,±π (TRIM) are protected by Kramer’s degeneracy

Florian Ginzel Time reversal invariant 2d lattice models December 15, 2016 9 / 18



Edge states in T 2 = −1

Q = 0 & symmetry of the BZ ⇒ creation/annihilation of egde states in pairs of Kramer’s pairs

Crossings at kx = 0,±π (TRIM) are protected by Kramer’s degeneracy

Florian Ginzel Time reversal invariant 2d lattice models December 15, 2016 9 / 18



Edge states in T 2 = −1

Q = 0 & symmetry of the BZ ⇒ creation/annihilation of egde states in pairs of Kramer’s pairs

Crossings at kx = 0,±π (TRIM) are protected by Kramer’s degeneracy

Florian Ginzel Time reversal invariant 2d lattice models December 15, 2016 9 / 18



Edge states in T 2 = −1

Q = 0 & symmetry of the BZ ⇒ creation/annihilation of egde states in pairs of Kramer’s pairs

Crossings at kx = 0,±π (TRIM) are protected by Kramer’s degeneracy

Florian Ginzel Time reversal invariant 2d lattice models December 15, 2016 9 / 18



The Z2-invariant

Parity of the number of egde states is well defined at any E
Parity of the number of egde states is (almost) independent of E

Number of egde states changes only by 4 · n, n ∈ N, for T 2 = −1
⇒ Parity of N(E) = N+(E) + N−(E) conserved:

D(E) = N(E)
2

mod 2 = const ∈ {0, 1}

Topological invariant for TRI 2d lattices

Not well defined on sets of zero measure:
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Absence of backscattering: the scattering matrix (I)

Consider a 2d lattice with internal degree of freedom
Finite extent in y-direction and periodic boundaries in x
rectangular unit cells Nx × Ny and translational invariance along x

States from Bloch theorem: |l ,±〉 = |kl,±〉 ⊗ |φl,±〉
left / right propagating (±) with mode l ∈ {1, ...,N}
usual momentum eigenstates: |kl,±〉 = 1√

Nx

∑Nx
mx=1 e

ikmx |mx 〉
transverse mode, inernal DOF: |φl,±〉
with group velocity: vl,± = ∂E(k)

∂k

∣∣
k=kl,±

Re-normalize: different states carry same particle current trough arbitrary cross section

|l ,±〉c = 1√
|vl,±|

|l ,±〉
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Absence of backscattering: the scattering matrix (II)

Consider scattering at disordered region (gray) with respect to coefficients:

ain =
(
ainL,1, ...a

in
L,N , a

in
R,1, ..., a

in
R,N
)
7→ aout =

(
aoutL,1, ...a

out
L,N , a

out
R,1, ..., a

out
R,N
)

Energy eigenstate outside scattering region:

|ψ〉 =
N∑
l=1

ainL,l |l ,+, L〉c + ainR,l |l ,−,R〉c + aoutL,l |l ,−, L〉c + aoutR,l |l ,+,R〉c

Unitary 2N × 2N scattering matrix S: aout = S ain =
(
r t′
t r ′

)
ain

Eigenvalues of tt†, t′t′†, 1− rr† and 1− r ′r ′† are the same
(transmission eigenvalues)
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Absence of backscattering: scattering of Kramer’s pairs of edge states (I)

Choose propagating modes such that T |l ,−, L〉c = |l ,+, L〉c
T |l ,+,R〉c = |l ,−,R〉c

Energy eigenstate outside scattering region:

|ψ〉 =
N∑
l=1

ainL,l |l ,+, L〉c + ainR,l |l ,−,R〉c +
(
S ain

)
L,l
|l ,−, L〉c +

(
S ain

)
R,l
|l ,+,R〉c
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Absence of backscattering: scattering of Kramer’s pairs of edge states (II)

With S =
(
r t′
t r ′

)
follows r = −rT and r ′ = −r ′T

This implies det(r) = det(rT ) = det(−r) = (−1)N det(r)
For an odd number N of Kramer’s pairs: det(r) = det(r ′) = 0
⇒ det(rr†) = det(r) det(r†) = 0 and the same for r ′

For D = 1 at least one transmission eigenvalue is 1, i.e. there is at least one linear
combination of incoming edge states from both sides that is perfectly transmitted through a

time-reversal symmetryc defect.

No backscattering at small constriction
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Absence of backscattering: robustness against disorder

Finite disordered TRI 2d topological insulator with
arbitrary geometry and TRS disorder

Inside the box switch disorder off and straighten
geometry out

Apply adiabatic deformation in the box make such
that there is only one Kramer’s pair of edge states

Disordered region is time reversal symmetric scatterer

⇒ Any segment of the edge supports at least one perfectly transmitted Kramer’s pair of edge
states
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Experimental realisation (I)

Conventional semiconductor: the p-orbital-like
band is below the s-like band

In HgTe these bands are inverted.

Construct quantum wells of HgTe-layers in CdTe:

At thickness dc ≈ 64Å the bands do cross

Theory predicts D = 1 for d > dc
B. A. Bernevig, T. L. Hughes, and S.-C. Zhang. Science, 314,
1757 (2006)

Expect quantum spin Hall effect
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Experimental realisation (II)
Six-terminal measurements with HgTe quantum wells of different size
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, S.-C. Zhang. Science, 318, 766 (2007)

Confirmed phase transition at dc = 63(1)Å

d / Å L×W / µm2

I 55 20.0× 13.3
II 73 20.0× 13.3
III 73 1.0× 1.0
IV 73 1.0× 0.5

Insert: both samples like III

Breaking time reversal symmetry?
Sample like II
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